
LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Reminder Ted’s talk
• Ted Selker

– “what is a human computer input sensor?”

• 2.15 pm, BU101 Öttingenstrasse 67

1
Monday 10 November 14

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Mobile Technologies

2

context and task

theory

interaction techniques

in/output technologies

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Taxonomy of Gesture styles

3

Literature: Baudel et al. Charade: remote control of objects using free-hand gestures, Communications of the ACM 1993

http://thomas.baudel.name/Morphologie/These/images/VI11.gif

• sign language
• gesticulation

– communicative gestures made in conjunction
with speech

– know how your users gesture naturally and
design artificial gestures that have no cross-talk
with natural gesturing

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

• manipulative
– gestures which tightly related movements to an object being

manipulated
• 2D Interaction: mouse or stylus
• 3D Interaction: free-hand movement to mimic manipulations of

physical objects

• deictic gestures (aimed pointing)
– establish identity or spatial location of an object.

• semaphoric gestures (signals send to the
computer)
– stroke gestures, involve tracing of a specific path (marking

menu)
– static gestures (pose), involving no movement
– dynamic gestures, require movement

4

Taxonomy of Gesture styles

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

• pantomimic gestures:
– demonstrate a specific task to be performed or

imitated
– performed without object being present.

• iconic
– communicate information about objects or entities

(e.g. size, shapes and motion path)
• static
• dynamic

5

Taxonomy of Gesture styles

Data Miming: Inferring Spatial Object Descriptions
from Human Gesture

Christian Holz1,2 and Andrew D. Wilson2

1Hasso Plattner Institute
Potsdam, Germany

2Microsoft Research
Redmond, WA 98052 USA

chr.isti.an.holz@hpi.uni-po-tsd.am.de a-wil.s.on@micro.soft.com

ABSTRACT
Speakers often use hand gestures when talking about or
describing physical objects. Such gesture is particularly
useful when the speaker is conveying distinctions of shape
that are difficult to describe verbally. We present data mim-
ing—an approach to making sense of gestures as they are
used to describe concrete physical objects. We first observe
participants as they use gestures to describe real-world
objects to another person. From these observations, we
derive the data miming approach, which is based on a voxel
representation of the space traced by the speaker’s hands
over the duration of the gesture. In a final proof-of-concept
study, we demonstrate a prototype implementation of
matching the input voxel representation to select among a
database of known physical objects.

Author Keywords
Gestures, shape descriptions, 3D modeling, depth camera,
object retrieval.

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User
Interfaces. Input devices & strategies.

General Terms
Design, Experimentation, Human Factors.

INTRODUCTION
In conversation we sometimes resort to using hand gestures
to assist in describing a shape, particularly when it would
be cumbersome to describe with words alone. For example,
the roofline of a new car might be conveyed by a swoop of
the outstretched hand, or a particular chair style might be
indicated to a shopkeeper by a series of gestures that de-
scribe the arrangement of surfaces unique to that chair. In
such cases, the speaker often appears to trace the precise 3D
shape of the described object. Meanwhile, the listener ap-
pears to effortlessly integrate the speaker’s gestures over
time to recreate the 3D shape. This exchange strikes us as a
remarkably efficient and useful means of communicating
the mental imagery of the speaker.

Figure 1: Data miming walkthrough. The user performs ges-

tures in 3-space, as they might during conversations with
another person, to query the database for a specific object that
they have in mind (here a 3-legged stool). Users thereby visual-
ize their mental image of the object not only by indicating the
dimensions of the object (a), but more importantly the specific

attributes, such as (b) the seat and (c) the legs of the chair.
Our prototype system tracks the user’s gestures with an over-
head camera (a) and derives an internal representation of the
user’s intended image (d). (e) The query to the database re-

turns the most closely matching object (green).

In this paper, we consider the use of gestures to describe
physical objects. We present data miming as an approach to
enable users to spatially describe existing 3D objects to a
computer just as they would to another person.

We make two contributions in this paper. First is an obser-
vation of how people use gestures in a natural way to de-
scribe physical objects (i.e., without telling them how to use
a certain gesture to specify a certain part of an object).
From these observations, we derive the data miming ap-
proach to making sense of gestures as they are used to de-
scribe physical objects (i.e., which object was described).
Our second contribution is a prototype system, which al-
lows for walk-up use with a single overhead depth camera
to sense the user’s gestures. Our system follows a query-by-
demonstration approach and retrieves the model in a data-
base that most closely matches the user’s descriptions.

a

b c

ed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05....$10.00.

Literature: Holz et al. Data Miming: Inferring Spatial
Object Descriptions from Human Gesture, CHI
2011

Literature: Aginer et al.: Understanding Mid-air
Hand Gestures: A Study of Human Preferences in
Usage of Gesture Types for HCI, Tech Report
Microsoft Research

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide 6

Taxonomy of Gesture styles

actor without any objects actually being present, such as
filling an imaginary glass with water, by tilting an imaginary
bucket. They often consist of multiple low-level gestures,
e.g., (i) grabbing an object, (ii) moving it, and (iii) releasing
it again. We code these as a single pantomimic gesture.

Figure 4. The classification we used to analyze gestures in this

research, including examples for each of the gesture types.

Iconic
Iconic gestures are used to communicate information about
objects or entities, such as specific sizes, shapes, and
motion paths.

Static iconics are performed by static hand postures. In
contrast to static semaphorics they do not rely on a
commonly known vocabulary, instead they are rather
spontaneous, such as forming an “O” with index finger and
thumb, meaning “circle”.

Dynamic iconics are often used to describe paths or shapes,
such as moving the hand in circles, meaning “the circle”.
Compared to concatenated flicks (which would be
semaphoric strokes), the motions are usually performed
more slowly. Another difference is that in strokes, the
actual range of the movement does not hold information
about the action, however in dynamic iconics it does.

Manipulation Gestures
Manipulation gestures are used to guide movement in a
short feedback loop. Thus, they feature a tight relationship
between the movements of the actor and the movements of
the object to be manipulated. The criterion for
distinguishing them from pantomimic and dynamic iconic

gestures is the presence of the feedback loop. In the case of
manipulation gestures, the actor waits for the entity to
“follow” before continuing, instead of performing
beforehand, only causing a reaction subsequently.

RESULTS
To review the results of our study, we begin with classifying
each of the observed gestures used for each effect.

Gesture Effects
Three researchers collected approximately 5,500 gestures
and categorized them using our classification scheme,
constantly consulting each other in order to prevent from
biasing and diverging interpretations. We also differentiated
by unimanual and bimanual gestures. The overall results are
depicted in Figure 5. This represents our primary
contribution: the types of gesture chosen for each of the
desired effects.
Note that some gestures may include elements of more than
one type, as actors displayed diverse creativity in
composing gestures from different types. This is especially
apparent in the case for bimanual gestures, since gestures
might be combined, such as expressing “move the round
block” by forming a round static-iconic gesture and then
pantomiming a movement with that shape. Also, some
movements were not gestures to convey meaning, such as
when the actors hesitated or when they were irritated. As a
result, the sums for any given effect may not add up to
100%.
As predicted, actors used a wide variety of gestures to
accomplish the same effect. However, the type of gesture
that they used was often consistent across time, and
participant. Thus, while a classification of particular
gestures might find a high degree of variance [28], our
results suggest that classifying by type reveals a much
greater degree of consistency.

Select
Selection was most often indicated with pantomimic
gestures, primarily in the form of “grasping”. Bimanual
gestures were rarely present for selection.

Release
Pantomimics, semaphoric strokes and iconic dynamics
showed high proportions of bimanual acting. Pantomimic
gestures were “releasing hand gestures”, thus the
counterpart of the grasping gestures used for selection.
Semaphoric strokes were usually flicks downwards, mostly
with stretched palms facing down, indicating placement of
the object down onto the table.

Accept
All gestures were semaphoric static, either by showing
thumbs-up hand poses, okay-signs (foming an “o” with
index finger and thumb), or the previously described
pointing-like semaphoric gesture.

Refuse
97% were semaphoric dynamic gestures, either by waving
sideward with one or two hands and palms facing down,

Literature: Aginer et al.: Understanding Mid-air Hand Gestures: A Study of Human Preferences in Usage of Gesture Types for
HCI, Tech Report Microsoft Research

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

three gesture phases
• registration phase
• continuation
• termination

• easy to detect for touch sensitive surfaces
• what about freehand gestures?

7
Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide 8

Gestural Input vs. Keyboard+Mouse
• loosing the hover state
• gesture design
– ‘natural’ gestures

• dependent on culture

– multi-finger chords (what does that remind
you of?)

• memorability, learnability
– short-term vs. long-term retention

• gesture discoverability
• missing standards
• difficult to write, keep track and

maintain gesture recognition code
– detect/resolve conflicts between

gestures
• and how to communicate and

document a gesture?

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Proton++
• declarative multitouch framework
• enables Multitouch gesture description as

regular expression of touch event symbols
• generates gesture recognizers and static

analysis of gesture conflicts
• note:

– “*” kleene star indicates that a symbol can appear
zero or more consecutive times.

– “|” denotes the logical or of attribute values
– “ֺֺ ‧ ” ֺ wildcard, specifies that an attribute can take any

value.

9

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Proton++ - formal description language

10

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

• touch event:
– touch action (down, move, up)
– touch ID (1st, 2nd, etc.)
– series of touch attribute values

• direction = NW, hit-target = circle

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Proton++

• stream generator
– converts each touch event into a touch symbol of the

form

11

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

where E ∈ {D,M,U}, attribute values A1:A2:A3, A1
corresponds to first attribute etc.

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

move-with-first-touch-on-star-object-in-
west-direction

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Proton++ Gesture
• describe a gesture as regular expression over

these touch event symbols

12

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

where E ∈ {D,M,U}, attribute values A1:A2:A3, A1
corresponds to first attribute etc.

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

consider attributes:
hit-target shape,
direction

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Proton++ Gesture
• describe a gesture as regular expression over

these touch event symbols

13

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

where E ∈ {D,M,U}, attribute values A1:A2:A3, A1
corresponds to first attribute etc.

consider attributes:
hit-target shape,
direction

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

1 Minute Micro Task:
Create the regular expression for this gesture

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Proton++ Gesture
• describe a gesture as regular expression over

these touch event symbols

14

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

where E ∈ {D,M,U}, attribute values A1:A2:A3, A1
corresponds to first attribute etc.

consider attributes:
hit-target shape,
direction

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Custom Attributes
• for example a pinch attribute:

– relative movements of multiple touches
– touches are assigned a ‘P’ when on average the touches

move towards the centroid, an ‘S’ when the touches move
away from the centroid and an ‘N’when they stay stationary

15
Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

1 Minute Micro Task:
Create the regular expression for this gesture

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Custom Attributes
• for example a pinch attribute:

– relative movements of multiple touches
– touches are assigned a ‘P’ when on average the touches

move towards the centroid, an ‘S’ when the touches move
away from the centroid and an ‘N’when they stay stationary

16
Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

• Direction Attribute
• Touch Area Attribute
• Finger Orientation Attribute
• Screen Location Attribute

17

Further Attributes

→ Let’s practice that in the exercise

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Discussion
• How would you come up with a gesture set

for a drawing application on your tablet?

18
Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Elicitation studies
• type of participatory design

– come up with a gesture set
– understanding mental modal

• guessability study methodology (theater
approach) that presents the effects of a
gesture to the participant and elicits the
causes meant to invoke them.

• Wobbock and colleagues combined it with
think-aloud protocol and video analysis
– detailed picture of user-defined gestures and mental

model performance that accompany them

19

Wobbrock et al.: User-Defined Gestures for Surface Computing, CHI’09

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Procedure
• randomly present X referents to participants
• For each referent, ask participant to perform a

1-handed and a 2-handed gesture (or other
factors that you want to include...)

• show a Likert scale and ask them to rate
– goodness
– ease
– comfort
– etc.

20
Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Procedure
• you collect

– user-defined gesture set
– performance measures
– subjective responses
– qualitative observations
– gesture taxonomy!

• what are the aspects/patterns that are shared by
different gestures for a referent?

21
Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Taxonomy of Surface Gestures

22

REFERENTS REFERENTS
 Mean SD Mean SD

1. Move a little 1.00 0.00 15. Previous 3.00 0.00
2. Move a lot 1.00 0.00 16. Next 3.00 0.00
3. Select single 1.00 0.00 17. Insert 3.33 0.58
4. Rotate 1.33 0.58 18. Maximize 3.33 0.58
5. Shrink 1.33 0.58 19. Paste 3.33 1.15
6. Delete 1.33 0.58 20. Minimize 3.67 0.58
7. Enlarge 1.33 0.58 21. Cut 3.67 0.58
8. Pan 1.67 0.58 22. Accept 4.00 1.00
9. Close 2.00 0.00 23. Reject 4.00 1.00
10. Zoom in 2.00 0.00 24. Menu access 4.33 0.58
11. Zoom out 2.00 0.00 25. Help 4.33 0.58
12. Select group 2.33 0.58 26. Task switch 4.67 0.58
13. Open 2.33 0.58 27. Undo 5.00 0.00
14. Duplicate 2.67 1.53 MEAN 2.70 0.47

Table 1. The 27 commands for which participants chose gestures.

Each command’s conceptual complexity was rated by the 3 authors

(1=simple, 5=complex). During the study, each command was

presented with an animation and recorded verbal description.

you are moving the view of the screen to reveal hidden off-
screen content. Here’s an example.” After the voice
finished, our software animated a field of objects moving
from left to right. After the animation, the software showed
the objects as they were before the panning effect, and
waited for the user to perform a gesture.

The Surface vision system watched participants’ hands
from beneath the table and reported contact information to
our software. All contacts were logged as ovals having
millisecond timestamps. These logs were then parsed by
our software to compute trial-level measures.

Participants’ hands were also videotaped from four angles.
In addition, two authors observed each session and took
detailed notes, particularly concerning the think-aloud data.

Procedure
Our software randomly presented 27 referents (Table 1) to
participants. For each referent, participants performed a 1-
hand and a 2-hand gesture while thinking aloud, and then
indicated whether they preferred 1 or 2 hands. After each
gesture, participants were shown two 7-point Likert scales
concerning gesture goodness and ease. With 20
participants, 27 referents, and 1 and 2 hands, a total of
20 × 27 × 2 = 1080 gestures were made. Of these, 6 were
discarded due to participant confusion.

RESULTS
Our results include a gesture taxonomy, the user-defined
gesture set, performance measures, subjective responses,
and qualitative observations.

Classification of Surface Gestures
As noted in related work, gesture classifications have been
developed for human discursive gesture [4,11,15],
multimodal gestures with speech [20], cooperative gestures
[17], and pen gestures [13]. However, no work has
established a taxonomy of surface gestures based on user
behavior to capture and describe the gesture design space.

TAXONOMY OF SURFACE GESTURES
Form static pose Hand pose is held in one location.

dynamic pose Hand pose changes in one location.
static pose and path Hand pose is held as hand moves.
dynamic pose and path Hand pose changes as hand moves.
one-point touch Static pose with one finger.
one-point path Static pose & path with one finger.

Nature symbolic Gesture visually depicts a symbol.
physical Gesture acts physically on objects.
metaphorical Gesture indicates a metaphor.
abstract Gesture-referent mapping is arbitrary.

Binding object-centric Location defined w.r.t. object features.
world-dependent Location defined w.r.t. world features.
world-independent Location can ignore world features.
mixed dependencies World-independent plus another.

Flow discrete Response occurs after the user acts.
continuous Response occurs while the user acts.

Table 2. Taxonomy of surface gestures based on 1080 gestures.

The abbreviation “w.r.t.” means “with respect to.”
Taxonomy of Surface Gestures
The authors manually classified each gesture along four
dimensions: form, nature, binding, and flow. Within each
dimension are multiple categories, shown in Table 2.

The scope of the form dimension is within one hand. It is
applied separately to each hand in a 2-hand gesture. One-
point touch and one-point path are special cases of static
pose and static pose and path, respectively. These are worth
distinguishing because of their similarity to mouse actions.
A gesture is still considered a one-point touch or path even
if the user casually touches with more than one finger at the
same point, as our participants often did. We investigated
such cases during debriefing, finding that users’ mental
models of such gestures involved only one contact point.

In the nature dimension, symbolic gestures are visual
depictions. Examples are tracing a caret (“^”) to perform
insert, or forming the O.K. pose on the table (“%”) for
accept. Physical gestures should ostensibly have the same
effect on a table with physical objects. Metaphorical
gestures occur when a gesture acts on, with, or like
something else. Examples are tracing a finger in a circle to
simulate a “scroll ring,” using two fingers to “walk” across
the screen, pretending the hand is a magnifying glass,
swiping as if to turn a book page, or just tapping an
imaginary button. Of course, the gesture itself usually is not
enough to reveal its metaphorical nature; the answer lies in
the user’s mental model. Finally, abstract gestures have no
symbolic, physical, or metaphorical connection to their
referents. The mapping is arbitrary, which does not
necessarily mean it is poor. Triple-tapping an object to
delete it, for example, would be an abstract gesture.

In the binding dimension, object-centric gestures only
require information about the object they affect or produce.
An example is pinching two fingers together on top of an
object for shrink. World-dependent gestures are defined
with respect to the world, such as tapping in the top-right

Wobbrock et al.: User-Defined Gestures for Surface Computing, CHI’09

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Agreement
• group gestures within each referent
• agreement score A

– reflects in a single number the degree of consensus
among participants.

– e.g. gesture agreement of “move a little” (2 hands)
across 20 participants showed four groups of
identical gestures: 12, 3, 3, 2

23

Figure 2. Percentage of gestures in each taxonomy category. From
top to bottom, the categories are listed in the same order as they
appear in Table 2. The form dimension is separated by hands for all
2-hand gestures. (All participants were right-handed.)

corner of the display or dragging an object off-screen.
World-independent gestures require no information about
the world, and generally can occur anywhere. We include in
this category gestures that can occur anywhere except on
temporary objects that are not world features. Finally,
mixed dependencies occur for gestures that are world-
independent in one respect but world-dependent or object-
centric in another. This sometimes occurs for 2-hand
gestures, where one hand acts on an object and the other
hand acts anywhere.

A gesture’s flow is discrete if the gesture is performed,
delimited, recognized, and responded to as an event. An
example is tracing a question mark (“?”) to bring up help.
Flow is continuous if ongoing recognition is required, such
as during most of our participants’ resize gestures. Discrete
and continuous gestures have been previously noted [35].

Taxonometric Breakdown of Gestures in our Data
We found that our taxonomy adequately describes even
widely differing gestures made by our users. Figure 2
shows for each dimension the percentage of gestures made
within each category for all gestures in our study.

An interesting question is how the conceptual complexity of
referents (Table 1) affected gesture nature (Figure 2). The
average conceptual complexity for each nature category
was: physical (2.11), abstract (2.99), metaphorical (3.26),
and symbolic (3.52). Logistic regression indicates these

differences were significant (χ2
(3,N=1074)=234.58, p<.0001).

Thus, simpler commands more often resulted in physical
gestures, while more complex commands resulted in
metaphorical or symbolic gestures.

A User-defined Gesture Set
At the heart of this work is the creation of a user-defined
gesture set. This section gives the process by which the set
was created and properties of the set. Unlike prior gesture
sets for surface computing, this set is based on observed
user behavior and joins gestures to commands.

Agreement
After all 20 participants had provided gestures for each
referent for one and two hands, we grouped the gestures
within each referent such that each group held identical
gestures. Group size was then used to compute an
agreement score A that reflects, in a single number, the
degree of consensus among participants. (This process was
adopted from prior work [33].)

R
P
P

A Rr PP r

i

ri

∑ ∑
∈ ⊆

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=

2

 (1)

In Eq. 1, r is a referent in the set of all referents R, Pr is the
set of proposed gestures for referent r, and Pi is a subset of
identical gestures from Pr. The range for A is [|Pr|

-1, 1]. As
an example, consider agreement for move a little (2-hand)
and select single (1-hand). Both had four groups of identical
gestures. The former had groups of size 12, 3, 3, and 2; the
latter of size 11, 3, 3, and 3. For move a little, we compute

42.0
20

2

20

3

20

3

20

12
2222

 =⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=littleamoveA (2)

For select single, we compute

37.0
20

3

20

3

20

3

20

11
2222

 =⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=singleselectA (3)

Agreement for our study is graphed in Figure 3. The overall
agreement for 1- and 2-hand gestures was A1H=0.32 and
A2H=0.28, respectively. Referents’ conceptual complexities
(Table 1) correlated significantly and inversely with their
agreement (r=-.52, F1,25=9.51, p<.01), as more complex
referents elicited lesser gestural agreement.

Conflict and Coverage
The user-defined gesture set was developed by taking the
largest groups of identical gestures for each referent and
assigning those groups’ gestures to the referent. However,
where the same gesture was used to perform different
commands, a conflict occurred because one gesture cannot
result in different outcomes. To resolve this, the referent
with the largest group won the gesture. Our resulting user-
defined gesture set (Figure 4) is conflict-free and covers
57.0% of all gestures proposed.

Properties of the User-defined Gesture Set
Twenty-two of 27 referents from Table 1 were assigned
dedicated gestures, and the two move referents were
combined. Four referents were not assigned gestures: insert,
maximize, task switch, and close. For the first two, the
action most participants took comprised more primitive
gestures: insert used dragging, and maximize used
enlarging. For the second two, participants relied on
imaginary widgets; a common gesture was not feasible. For
example, most participants performed task switch by
tapping an imaginary taskbar button, and close by tapping
an imaginary button in the top-right corner of an open view.

Figure 2. Percentage of gestures in each taxonomy category. From
top to bottom, the categories are listed in the same order as they
appear in Table 2. The form dimension is separated by hands for all
2-hand gestures. (All participants were right-handed.)

corner of the display or dragging an object off-screen.
World-independent gestures require no information about
the world, and generally can occur anywhere. We include in
this category gestures that can occur anywhere except on
temporary objects that are not world features. Finally,
mixed dependencies occur for gestures that are world-
independent in one respect but world-dependent or object-
centric in another. This sometimes occurs for 2-hand
gestures, where one hand acts on an object and the other
hand acts anywhere.

A gesture’s flow is discrete if the gesture is performed,
delimited, recognized, and responded to as an event. An
example is tracing a question mark (“?”) to bring up help.
Flow is continuous if ongoing recognition is required, such
as during most of our participants’ resize gestures. Discrete
and continuous gestures have been previously noted [35].

Taxonometric Breakdown of Gestures in our Data
We found that our taxonomy adequately describes even
widely differing gestures made by our users. Figure 2
shows for each dimension the percentage of gestures made
within each category for all gestures in our study.

An interesting question is how the conceptual complexity of
referents (Table 1) affected gesture nature (Figure 2). The
average conceptual complexity for each nature category
was: physical (2.11), abstract (2.99), metaphorical (3.26),
and symbolic (3.52). Logistic regression indicates these

differences were significant (χ2
(3,N=1074)=234.58, p<.0001).

Thus, simpler commands more often resulted in physical
gestures, while more complex commands resulted in
metaphorical or symbolic gestures.

A User-defined Gesture Set
At the heart of this work is the creation of a user-defined
gesture set. This section gives the process by which the set
was created and properties of the set. Unlike prior gesture
sets for surface computing, this set is based on observed
user behavior and joins gestures to commands.

Agreement
After all 20 participants had provided gestures for each
referent for one and two hands, we grouped the gestures
within each referent such that each group held identical
gestures. Group size was then used to compute an
agreement score A that reflects, in a single number, the
degree of consensus among participants. (This process was
adopted from prior work [33].)

R
P
P

A Rr PP r

i

ri

∑ ∑
∈ ⊆

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=

2

 (1)

In Eq. 1, r is a referent in the set of all referents R, Pr is the
set of proposed gestures for referent r, and Pi is a subset of
identical gestures from Pr. The range for A is [|Pr|

-1, 1]. As
an example, consider agreement for move a little (2-hand)
and select single (1-hand). Both had four groups of identical
gestures. The former had groups of size 12, 3, 3, and 2; the
latter of size 11, 3, 3, and 3. For move a little, we compute

42.0
20

2

20

3

20

3

20

12
2222

 =⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=littleamoveA (2)

For select single, we compute

37.0
20

3

20

3

20

3

20

11
2222

 =⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=singleselectA (3)

Agreement for our study is graphed in Figure 3. The overall
agreement for 1- and 2-hand gestures was A1H=0.32 and
A2H=0.28, respectively. Referents’ conceptual complexities
(Table 1) correlated significantly and inversely with their
agreement (r=-.52, F1,25=9.51, p<.01), as more complex
referents elicited lesser gestural agreement.

Conflict and Coverage
The user-defined gesture set was developed by taking the
largest groups of identical gestures for each referent and
assigning those groups’ gestures to the referent. However,
where the same gesture was used to perform different
commands, a conflict occurred because one gesture cannot
result in different outcomes. To resolve this, the referent
with the largest group won the gesture. Our resulting user-
defined gesture set (Figure 4) is conflict-free and covers
57.0% of all gestures proposed.

Properties of the User-defined Gesture Set
Twenty-two of 27 referents from Table 1 were assigned
dedicated gestures, and the two move referents were
combined. Four referents were not assigned gestures: insert,
maximize, task switch, and close. For the first two, the
action most participants took comprised more primitive
gestures: insert used dragging, and maximize used
enlarging. For the second two, participants relied on
imaginary widgets; a common gesture was not feasible. For
example, most participants performed task switch by
tapping an imaginary taskbar button, and close by tapping
an imaginary button in the top-right corner of an open view.

r is a referent in a set of all referents R
Pi is a subset of identical gestures from Pr

Wobbrock et al.: User-Defined Gestures for Surface Computing, CHI’09

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide 24

Figure 3. Agreement for each referent sorted in descending order
for 1-hand gestures. Two-hand gesture agreement is also shown.

Our user-defined set is useful, therefore, not just for what it
contains, but also for what it omits.

Aliasing has been shown to dramatically increase input
guessability [8,33]. In our user-defined set, ten referents are
assigned 1 gesture, four referents have 2 gestures, three
referents have 3 gestures, four referents have 4 gestures,
and one referent has 5 gestures. There are 48 gestures in the
final set. Of these, 31 (64.6%) are performed with one hand,
and 17 (35.4%) are performed with two.

Gratifyingly, a high degree of consistency and symmetry
exists in our user-defined set. Dichotomous referents use
reversible gestures, and the same gestures are reused for
similar operations. For example, enlarge, which can be
accomplished with four distinct gestures, is performed on
an object, but the same four gestures can be used for zoom
in if performed on the background, or for open if performed
on a container (e.g., a folder). Flexibility exists insofar as
the number of fingers rarely matters and the fingers, palms,
or edges of the hands can often be used interchangeably.

Taxonometric Breakdown of User-defined Gestures
As we should expect, the taxonometric breakdown of the
final user-defined gesture set (Figure 4) is similar to the
proportions of all gestures proposed (Figure 2). Across all
taxonomy categories, the average difference between these
two sets was only 6.7 percentage points.

Planning, Articulation, and Subjective Preferences
This section gives some of the performance measures and
preference ratings for gesture planning and articulation.

Effects on Planning and Articulation Time
Referents’ conceptual complexities (Table 1) correlated
significantly with average gesture planning time (r=.71,
F1,25=26.04, p<.0001). In general, the more complex the
referent, the more time participants took to begin
articulating their gesture. Simple referents took about 8
seconds of planning. Complex referents took about 15
seconds. Conceptual complexity did not, however, correlate
significantly with gesture articulation time.

Effects on Goodness and Ease
Immediately after performing each gesture, participants
rated it on two Likert scales. The first read, “The gesture I
picked is a good match for its intended purpose.” The
second read, “The gesture I picked is easy to perform.”
Both scales solicited ordinal responses from 1 = strongly
disagree to 7 = strongly agree.

Gestures that were members of larger groups of identical
gestures for a given referent had significantly higher
goodness ratings (χ2

(1,N=1074)=34.10, p<.0001), indicating
that popularity does, in fact, identify better gestures over
worse ones. This finding goes a long way to validating this
user-driven approach to gesture design.

Referents’ conceptual complexities (Table 1) correlated
significantly and inversely with participants’ average
gesture goodness ratings (r=-.59, F1,25=13.30, p<.01). The
more complex referents were more likely to elicit gestures
rated poor. The simpler referents elicited gestures rated 5.6
on average, while more complex referents elicited gestures
rated 4.9. Referents’ conceptual complexities did not
correlate significantly with average ratings of gesture ease.

Planning time also significantly affected participants’
feelings about the goodness of their gestures
(χ2

(1,N=1074)=38.98, p<.0001). Generally, as planning time
increased, goodness ratings decreased, suggesting that good
gestures were those most quickly apparent to participants.
Planning time did not affect perceptions of gesture ease.

Unlike planning time, gesture articulation time did not
significantly affect goodness ratings, but it did affect ease
ratings (χ2

(1,N=1074)=17.00, p<.0001). Surprisingly, gestures
that took longer to perform were generally rated as easier,
perhaps because they were smoother or less hasty. Gestures
rated as easy took about 3.4 seconds, while those rated as
difficult took about 2.0 seconds. These subjective findings
are corroborated by objective counts of finger touch events
(down, move, and up), which may be considered rough
measures of a gesture’s activity or “energy.” Clearly, long
lived gestures will have more touch events. The number of
touch events significantly affected ease ratings
(χ2

(1,N=1074)=21.82, p<.0001). Gestures with the fewest touch
events were rated as the hardest; those with about twice as
many touch events were rated as easier.

Preference for Number of Hands
Overall, participants preferred 1-hand gestures for 25 of 27
referents (Table 1), and were evenly divided for the other
two. No referents elicited gestures for which two hands
were preferred overall. Interestingly, the referents that
elicited equal preference for 1- and 2-hands were insert and
maximize, neither of which were included in the user-
defined gesture set because they reused existing gestures.
As noted above, the user-designed set (Figure 4) has 31
(64.6%) 1-hand gestures and 17 (35.4%) 2-hand gestures.
Although participants’ preferences for 1-hand gestures was
strong, some 2-hand gestures had good agreement scores
and nicely complemented their 1-hand counterparts.

Wobbrock et al.: User-Defined Gestures for Surface Computing, CHI’09

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

user-defined gesture set
• take the largest groups of identical gestures

for each referent.
• if same gesture was proposed for two

commands, a conflict occurred
– resolve this, the referent with largest group won the

gesture.
– they came up with a conflict-free set that covers 57%

of all proposed gestures.

25

Enlarge (Shrink)4: splay fingers

Accept: draw check

Enlarge (Shrink)3: pinchEnlarge (Shrink)2: pull apart with fingersEnlarge (Shrink)1: pull apart with hands

Move1: drag

Help: draw ‘?’

Next (Previous): draw line across object

Paste1: tap

Rotate: drag corner

Undo: scratch out

Select Single2: lasso

Duplicate: tap source and destination

Select Group1: hold and tap

Select Group2 and Select Group3: Use Select Single1 or Select Single2
on all items in the group.

Paste2: drag from offscreen

Paste3: Use Move2, with off-screen
source and on-screen destination.

Delete1: drag offscreen

Delete2: Use Move2 with on-screen
source and off-screen destination.

Reject: draw ‘X’

Reject2, Reject3: If rejecting an object/dialog

with an on-screen representation, use Delete1

or Delete2.

Zoom in (Zoom out)1: pull apart with hands

Zoom in (Zoom out)2-4: Use Enlarge (Shrink)2-4,
performed on background.

Open1: double tap

2x

Open2-5: Use Enlarge1-4, atop an
“openable” object.

Minimize1: drag to bottom of surface

Minimize2: Use Move2 to move object to the
bottom of the surface (as defined by user’s
seating position).

Select Single1: tap

Cut: slash

Cuts current selection (made via
Select Single or Select Group).

Menu: pull out

Finger touches
corner to rotate.

After duplicating, source object
is no longer selected.

Move2: jump

Object jumps to index
finger location.

Pan: drag hand

Figure 4. The user-defined gesture set. Gestures depicted as using one finger could be performed with 1-3 fingers. Gestures
not depicted as occurring on top of an object are performed on the background region of the surface or full-screen object. To
save space, reversible gestures (enlarge/shrink, zoom in/zoom out, next/previous) have been depicted in only one direction.

Wobbrock et al.: User-Defined Gestures for Surface Computing, CHI’09

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Discussion

• do ‘natural’ gestures exist?

26
Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide 27

Gestural Input vs. Keyboard+Mouse
• loosing the hover state
• gesture design
– ‘natural’ gestures

• dependent on culture

– multi-finger chords (what does that remind
you of?)

• memorability, learnability
– short-term vs. long-term retention

• gesture discoverability
• missing standards
• difficult to write, keep track and

maintain gesture recognition code
– detect/resolve conflicts between

gestures
• and how to communicate and

document a gesture?

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

gesture communication
• Feedforward mechanisms provide information

about a gesture’s shape and its association with
a command prior to execution (similar to self-
revealing gestures)
– physical help card
– pop-up cheat sheet

• take screen space

• Feedback mechanisms provide low-level
information about recognition process, either
during or after execution
– repetition and choice
– shape beautification

• modify users hand drawn input to illustrate perfect
instance of a given gesture class.

28

Bau et al.: OctoPocus: A Dynamic Guide for Learning Gesture-Based Command Sets, UIST’08

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Feedforward Mechanism
Classification
• Level of detail: a minimal hint - a portion of a

gesture - whole gesture
• Update rate: once prior to execution - discrete

intervals to continuously during execution

29

Bau et al.: OctoPocus: A Dynamic Guide for Learning Gesture-Based Command Sets, UIST’08

Marking Menu Hierarchical Marking Menu

Monday 10 November 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Example Feedforward Mechanism
• OctoPocus

30

http://vimeo.com/2116172

Monday 10 November 14

file:///Users/julie/Downloads/OctoPocus-SD.flv
file:///Users/julie/Downloads/OctoPocus-SD.flv
file:///Users/julie/Downloads/OctoPocus-SD.flv
file:///Users/julie/Downloads/OctoPocus-SD.flv
file:///Users/julie/Downloads/OctoPocus-SD.flv
file:///Users/julie/Downloads/OctoPocus-SD.flv
file:///Users/julie/Downloads/OctoPocus-SD.flv
file:///Users/julie/Downloads/OctoPocus-SD.flv
file:///Users/julie/Downloads/OctoPocus-SD.flv
file:///Users/julie/Downloads/OctoPocus-SD.flv
file:///Users/julie/Downloads/OctoPocus-SD.flv
file:///Users/julie/Downloads/OctoPocus-SD.flv
file:///Users/julie/Downloads/OctoPocus-SD.flv
file:///Users/julie/Downloads/OctoPocus-SD.flv
file:///Users/julie/Downloads/OctoPocus-SD.flv
file:///Users/julie/Downloads/OctoPocus-SD.flv
file:///Users/julie/Downloads/OctoPocus-SD.flv
http://vimeo.com/2116172
http://vimeo.com/2116172

