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Reminder Ted’s talk
• Ted Selker 

– “what is a human computer input sensor?”

• 2.15 pm, BU101 Öttingenstrasse 67
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Mobile Technologies
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context and task

theory

interaction techniques

in/output technologies
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Taxonomy of Gesture styles
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Literature: Baudel et al. Charade: remote control of objects using free-hand gestures, Communications of the ACM 1993

http://thomas.baudel.name/Morphologie/These/images/VI11.gif

• sign language
• gesticulation 

– communicative gestures made in conjunction 
with speech

– know how your users gesture naturally and 
design artificial gestures that have no cross-talk 
with natural gesturing
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• manipulative 
– gestures which tightly related movements to an object being 

manipulated
• 2D Interaction: mouse or stylus
• 3D Interaction: free-hand movement to mimic manipulations of 

physical objects

• deictic gestures (aimed pointing)
– establish identity or spatial location of an object.

• semaphoric gestures (signals send to the 
computer)
– stroke gestures, involve tracing of a specific path (marking 

menu)
– static gestures (pose), involving no movement
– dynamic gestures, require movement

4

Taxonomy of Gesture styles
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• pantomimic gestures: 
– demonstrate a specific task to be performed or 

imitated
– performed without object being present.

• iconic
– communicate information about objects or entities 

(e.g. size, shapes and motion path)
• static
• dynamic

5

Taxonomy of Gesture styles

Data Miming: Inferring Spatial Object Descriptions 
from Human Gesture 

Christian Holz1,2 and Andrew D. Wilson2
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ABSTRACT 
Speakers often use hand gestures when talking about or 
describing physical objects. Such gesture is particularly 
useful when the speaker is conveying distinctions of shape 
that are difficult to describe verbally. We present data mim-
ing—an approach to making sense of gestures as they are 
used to describe concrete physical objects. We first observe 
participants as they use gestures to describe real-world 
objects to another person. From these observations, we 
derive the data miming approach, which is based on a voxel 
representation of the space traced by the speaker’s hands 
over the duration of the gesture. In a final proof-of-concept 
study, we demonstrate a prototype implementation of 
matching the input voxel representation to select among a 
database of known physical objects. 

Author Keywords 
Gestures, shape descriptions, 3D modeling, depth camera, 
object retrieval. 

ACM Classification Keywords 
H5.2 [Information interfaces and presentation]: User 
Interfaces. Input devices & strategies. 

General Terms 
Design, Experimentation, Human Factors. 

INTRODUCTION 
In conversation we sometimes resort to using hand gestures 
to assist in describing a shape, particularly when it would 
be cumbersome to describe with words alone. For example, 
the roofline of a new car might be conveyed by a swoop of 
the outstretched hand, or a particular chair style might be 
indicated to a shopkeeper by a series of gestures that de-
scribe the arrangement of surfaces unique to that chair. In 
such cases, the speaker often appears to trace the precise 3D 
shape of the described object. Meanwhile, the listener ap-
pears to effortlessly integrate the speaker’s gestures over 
time to recreate the 3D shape. This exchange strikes us as a 
remarkably efficient and useful means of communicating 
the mental imagery of the speaker. 

 
Figure 1: Data miming walkthrough. The user performs ges-

tures in 3-space, as they might during conversations with 
another person, to query the database for a specific object that 
they have in mind (here a 3-legged stool). Users thereby visual-
ize their mental image of the object not only by indicating the 
dimensions of the object (a), but more importantly the specific 

attributes, such as (b) the seat and (c) the legs of the chair. 
Our prototype system tracks the user’s gestures with an over-
head camera (a) and derives an internal representation of the 
user’s intended image (d). (e) The query to the database re-

turns the most closely matching object (green). 

In this paper, we consider the use of gestures to describe 
physical objects. We present data miming as an approach to 
enable users to spatially describe existing 3D objects to a 
computer just as they would to another person.  

We make two contributions in this paper. First is an obser-
vation of how people use gestures in a natural way to de-
scribe physical objects (i.e., without telling them how to use 
a certain gesture to specify a certain part of an object). 
From these observations, we derive the data miming ap-
proach to making sense of gestures as they are used to de-
scribe physical objects (i.e., which object was described). 
Our second contribution is a prototype system, which al-
lows for walk-up use with a single overhead depth camera 
to sense the user’s gestures. Our system follows a query-by-
demonstration approach and retrieves the model in a data-
base that most closely matches the user’s descriptions. 

a

b c

ed

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada. 
Copyright 2011 ACM  978-1-4503-0267-8/11/05....$10.00. 

Literature: Holz et al. Data Miming: Inferring Spatial 
Object Descriptions from Human Gesture, CHI 
2011

Literature: Aginer et al.: Understanding Mid-air 
Hand Gestures: A Study of Human Preferences in 
Usage of Gesture Types for HCI, Tech Report 
Microsoft Research
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Taxonomy of Gesture styles

 

actor without any objects actually being present, such as 
filling an imaginary glass with water, by tilting an imaginary 
bucket. They often consist of multiple low-level gestures, 
e.g., (i) grabbing an object, (ii) moving it, and (iii) releasing 
it again. We code these as a single pantomimic gesture. 

 
Figure 4. The classification we used to analyze gestures in this 

research, including examples for each of the gesture types. 

Iconic 
Iconic gestures are used to communicate information about 
objects or entities, such as specific sizes, shapes, and 
motion paths.  

Static iconics are performed by static hand postures. In 
contrast to static semaphorics they do not rely on a 
commonly known vocabulary, instead they are rather 
spontaneous, such as forming an “O” with index finger and 
thumb, meaning “circle”. 

Dynamic iconics are often used to describe paths or shapes, 
such as moving the hand in circles, meaning “the circle”. 
Compared to concatenated flicks (which would be 
semaphoric strokes), the motions are usually performed 
more slowly. Another difference is that in strokes, the 
actual range of the movement does not hold information 
about the action, however in dynamic iconics it does.  

Manipulation Gestures 
Manipulation gestures are used to guide movement in a 
short feedback loop. Thus, they feature a tight relationship 
between the movements of the actor and the movements of 
the object to be manipulated. The criterion for 
distinguishing them from pantomimic and dynamic iconic 

gestures is the presence of the feedback loop. In the case of 
manipulation gestures, the actor waits for the entity to 
“follow” before continuing, instead of performing 
beforehand, only causing a reaction subsequently.  

RESULTS 
To review the results of our study, we begin with classifying 
each of the observed gestures used for each effect. 

Gesture Effects 
Three researchers collected approximately 5,500 gestures 
and categorized them using our classification scheme, 
constantly consulting each other in order to prevent from 
biasing and diverging interpretations. We also differentiated 
by unimanual and bimanual gestures. The overall results are 
depicted in Figure 5. This represents our primary 
contribution: the types of gesture chosen for each of the 
desired effects.  
Note that some gestures may include elements of more than 
one type, as actors displayed diverse creativity in 
composing gestures from different types. This is especially 
apparent in the case for bimanual gestures, since gestures 
might be combined, such as expressing “move the round 
block” by forming a round static-iconic gesture and then 
pantomiming a movement with that shape. Also, some 
movements were not gestures to convey meaning, such as 
when the actors hesitated or when they were irritated. As a 
result, the sums for any given effect may not add up to 
100%. 
As predicted, actors used a wide variety of gestures to 
accomplish the same effect. However, the type of gesture 
that they used was often consistent across time, and 
participant. Thus, while a classification of particular 
gestures might find a high degree of variance [28], our 
results suggest that classifying by type reveals a much 
greater degree of consistency. 

Select 
Selection was most often indicated with pantomimic 
gestures, primarily in the form of “grasping”. Bimanual 
gestures were rarely present for selection.  

Release  
Pantomimics, semaphoric strokes and iconic dynamics 
showed high proportions of bimanual acting. Pantomimic 
gestures were “releasing hand gestures”, thus the 
counterpart of the grasping gestures used for selection. 
Semaphoric strokes were usually flicks downwards, mostly 
with stretched palms facing down, indicating placement of 
the object down onto the table. 

Accept 
All gestures were semaphoric static, either by showing 
thumbs-up hand poses, okay-signs (foming an “o” with 
index finger and thumb), or the previously described 
pointing-like semaphoric gesture.  

Refuse  
97% were semaphoric dynamic gestures, either by waving 
sideward with one or two hands and palms facing down, 

Literature: Aginer et al.: Understanding Mid-air Hand Gestures: A Study of Human Preferences in Usage of Gesture Types for 
HCI, Tech Report Microsoft Research
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three gesture phases
• registration phase 
• continuation
• termination

• easy to detect for touch sensitive surfaces
• what about freehand gestures?

7
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Gestural Input vs. Keyboard+Mouse
• loosing the hover state
• gesture design
– ‘natural’ gestures

• dependent on culture

– multi-finger chords (what does that remind 
you of?)

• memorability, learnability
– short-term vs. long-term retention

• gesture discoverability
• missing standards
• difficult to write, keep track and 

maintain gesture recognition code
– detect/resolve conflicts between 

gestures
• and how to communicate and 

document a gesture?

Monday 10 November 14



Mobile

context and 
task

theory

bimanual 
interaction

pointing

gestures

interaction 
techniques

in/output 
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II  — WS2014/15                             Slide

Proton++
• declarative multitouch framework
• enables Multitouch gesture description as 

regular expression of touch event symbols
• generates gesture recognizers and static 

analysis of gesture conflicts
• note:

– “*” kleene star indicates that a symbol can appear 
zero or more consecutive times.

– “|” denotes the logical or of attribute values
– “ֺֺ ‧ ” ֺ wildcard, specifies that an attribute can take any 

value.

9

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012
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Proton++ - formal description language

10

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1 )(Ms:N

1 |Ms:S
1 )*(Us:N

1 |Us:S
1 ).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

• touch event: 
– touch action (down, move, up)
– touch ID (1st, 2nd, etc.)
– series of touch attribute values

• direction = NW, hit-target = circle

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012
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Proton++

• stream generator
– converts each touch event into a touch symbol of the 

form

11

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1 )(Ms:N

1 |Ms:S
1 )*(Us:N

1 |Us:S
1 ).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1 )(Ms:N

1 |Ms:S
1 )*(Us:N

1 |Us:S
1 ).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

where E ∈ {D,M,U}, attribute values A1:A2:A3, A1 
corresponds to first attribute etc.

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1 )(Ms:N

1 |Ms:S
1 )*(Us:N

1 |Us:S
1 ).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

move-with-first-touch-on-star-object-in-
west-direction

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012
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Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1 )(Ms:N

1 |Ms:S
1 )*(Us:N

1 |Us:S
1 ).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

where E ∈ {D,M,U}, attribute values A1:A2:A3, A1 
corresponds to first attribute etc.

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

consider attributes: 
hit-target shape, 
direction

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012
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Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1 )(Ms:N

1 |Ms:S
1 )*(Us:N

1 |Us:S
1 ).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

where E ∈ {D,M,U}, attribute values A1:A2:A3, A1 
corresponds to first attribute etc.

consider attributes: 
hit-target shape, 
direction

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

1 Minute Micro Task: 
Create the regular expression for this gesture

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012
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Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1 )(Ms:N

1 |Ms:S
1 )*(Us:N

1 |Us:S
1 ).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

where E ∈ {D,M,U}, attribute values A1:A2:A3, A1 
corresponds to first attribute etc.

consider attributes: 
hit-target shape, 
direction

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1 )(Ms:N

1 |Ms:S
1 )*(Us:N

1 |Us:S
1 ).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-
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Custom Attributes
• for example a pinch attribute:

– relative movements of multiple touches
– touches are assigned a ‘P’ when on average the touches 

move towards the centroid, an ‘S’ when the touches move 
away from the centroid and an ‘N’when they stay stationary

15
Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

1 Minute Micro Task: 
Create the regular expression for this gesture
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Custom Attributes
• for example a pinch attribute:

– relative movements of multiple touches
– touches are assigned a ‘P’ when on average the touches 

move towards the centroid, an ‘S’ when the touches move 
away from the centroid and an ‘N’when they stay stationary
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Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.
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• Direction Attribute
• Touch Area Attribute
• Finger Orientation Attribute
• Screen Location Attribute

17

Further Attributes

→ Let’s practice that in the exercise
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Discussion
• How would you come up with a gesture set 

for a drawing application on your tablet?

18
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Elicitation studies 
• type of participatory design

– come up with a gesture set 
– understanding mental modal

• guessability study methodology (theater 
approach) that presents the effects of a 
gesture to the participant and elicits the 
causes meant to invoke them.

• Wobbock and colleagues combined it with 
think-aloud protocol and video analysis
– detailed picture of user-defined gestures and mental 

model performance that accompany them

19

Wobbrock et al.: User-Defined Gestures for Surface Computing, CHI’09
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Procedure
• randomly present X referents to participants
• For each referent, ask participant to perform a 

1-handed and a 2-handed gesture (or other 
factors that you want to include...)

• show a Likert scale and ask them to rate
– goodness
– ease
– comfort
– etc.

20
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Procedure
• you collect

– user-defined gesture set
– performance measures
– subjective responses
– qualitative observations
– gesture taxonomy! 

• what are the aspects/patterns that are shared by 
different gestures for a referent?

21
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Taxonomy of Surface Gestures

22

REFERENTS REFERENTS 
 Mean SD  Mean SD 

1. Move a little 1.00 0.00 15. Previous 3.00 0.00 
2. Move a lot 1.00 0.00 16. Next 3.00 0.00 
3. Select single 1.00 0.00 17. Insert 3.33 0.58 
4. Rotate 1.33 0.58 18. Maximize 3.33 0.58 
5. Shrink 1.33 0.58 19. Paste 3.33 1.15 
6. Delete 1.33 0.58 20. Minimize 3.67 0.58 
7. Enlarge 1.33 0.58 21. Cut 3.67 0.58 
8. Pan 1.67 0.58 22. Accept 4.00 1.00 
9. Close 2.00 0.00 23. Reject 4.00 1.00 
10. Zoom in 2.00 0.00 24. Menu access 4.33 0.58 
11. Zoom out 2.00 0.00 25. Help 4.33 0.58 
12. Select group 2.33 0.58 26. Task switch 4.67 0.58 
13. Open 2.33 0.58 27. Undo 5.00 0.00 
14. Duplicate 2.67 1.53 MEAN 2.70 0.47 

Table 1. The 27 commands for which participants chose gestures. 

Each command’s conceptual complexity was rated by the 3 authors 

(1=simple, 5=complex). During the study, each command was 

presented with an animation and recorded verbal description. 

you are moving the view of the screen to reveal hidden off- 
screen content. Here’s an example.” After the voice 
finished, our software animated a field of objects moving 
from left to right. After the animation, the software showed 
the objects as they were before the panning effect, and 
waited for the user to perform a gesture. 

The Surface vision system watched participants’ hands 
from beneath the table and reported contact information to 
our software. All contacts were logged as ovals having 
millisecond timestamps. These logs were then parsed by 
our software to compute trial-level measures. 

Participants’ hands were also videotaped from four angles. 
In addition, two authors observed each session and took 
detailed notes, particularly concerning the think-aloud data. 

Procedure 
Our software randomly presented 27 referents (Table 1) to 
participants. For each referent, participants performed a 1-
hand and a 2-hand gesture while thinking aloud, and then 
indicated whether they preferred 1 or 2 hands. After each 
gesture, participants were shown two 7-point Likert scales 
concerning gesture goodness and ease. With 20 
participants, 27 referents, and 1 and 2 hands, a total of 
20 × 27 × 2 = 1080 gestures were made. Of these, 6 were 
discarded due to participant confusion. 

RESULTS 
Our results include a gesture taxonomy, the user-defined 
gesture set, performance measures, subjective responses, 
and qualitative observations. 

Classification of Surface Gestures 
As noted in related work, gesture classifications have been 
developed for human discursive gesture [4,11,15], 
multimodal gestures with speech [20], cooperative gestures 
[17], and pen gestures [13]. However, no work has 
established a taxonomy of surface gestures based on user 
behavior to capture and describe the gesture design space. 

TAXONOMY OF SURFACE GESTURES 
Form static pose Hand pose is held in one location. 

dynamic pose Hand pose changes in one location. 
static pose and path Hand pose is held as hand moves. 
dynamic pose and path Hand pose changes as hand moves. 
one-point touch Static pose with one finger. 
one-point path Static pose & path with one finger. 

Nature symbolic Gesture visually depicts a symbol. 
physical Gesture acts physically on objects. 
metaphorical Gesture indicates a metaphor. 
abstract Gesture-referent mapping is arbitrary. 

Binding object-centric Location defined w.r.t. object features. 
world-dependent Location defined w.r.t. world features. 
world-independent Location can ignore world features. 
mixed dependencies World-independent plus another. 

Flow discrete Response occurs after the user acts. 
continuous Response occurs while the user acts. 

Table 2. Taxonomy of surface gestures based on 1080 gestures. 

The abbreviation “w.r.t.” means “with respect to.” 
Taxonomy of Surface Gestures 
The authors manually classified each gesture along four 
dimensions: form, nature, binding, and flow. Within each 
dimension are multiple categories, shown in Table 2. 

The scope of the form dimension is within one hand. It is 
applied separately to each hand in a 2-hand gesture. One-
point touch and one-point path are special cases of static 
pose and static pose and path, respectively. These are worth 
distinguishing because of their similarity to mouse actions. 
A gesture is still considered a one-point touch or path even 
if the user casually touches with more than one finger at the 
same point, as our participants often did. We investigated 
such cases during debriefing, finding that users’ mental 
models of such gestures involved only one contact point. 

In the nature dimension, symbolic gestures are visual 
depictions. Examples are tracing a caret (“^”) to perform 
insert, or forming the O.K. pose on the table (“%”) for 
accept. Physical gestures should ostensibly have the same 
effect on a table with physical objects. Metaphorical 
gestures occur when a gesture acts on, with, or like 
something else. Examples are tracing a finger in a circle to 
simulate a “scroll ring,” using two fingers to “walk” across 
the screen, pretending the hand is a magnifying glass, 
swiping as if to turn a book page, or just tapping an 
imaginary button. Of course, the gesture itself usually is not 
enough to reveal its metaphorical nature; the answer lies in 
the user’s mental model. Finally, abstract gestures have no 
symbolic, physical, or metaphorical connection to their 
referents. The mapping is arbitrary, which does not 
necessarily mean it is poor. Triple-tapping an object to 
delete it, for example, would be an abstract gesture. 

In the binding dimension, object-centric gestures only 
require information about the object they affect or produce. 
An example is pinching two fingers together on top of an 
object for shrink. World-dependent gestures are defined 
with respect to the world, such as tapping in the top-right 

Wobbrock et al.: User-Defined Gestures for Surface Computing, CHI’09
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Agreement
• group gestures within each referent 
• agreement score A

– reflects in a single number the degree of consensus 
among participants.

– e.g. gesture agreement of “move a little” (2 hands) 
across 20 participants showed four groups of 
identical gestures: 12, 3, 3, 2

23

 

 
Figure 2. Percentage of gestures in each taxonomy category. From 
top to bottom, the categories are listed in the same order as they 
appear in Table 2. The form dimension is separated by hands for all 
2-hand gestures. (All participants were right-handed.) 

corner of the display or dragging an object off-screen. 
World-independent gestures require no information about 
the world, and generally can occur anywhere. We include in 
this category gestures that can occur anywhere except on 
temporary objects that are not world features. Finally, 
mixed dependencies occur for gestures that are world-
independent in one respect but world-dependent or object-
centric in another. This sometimes occurs for 2-hand 
gestures, where one hand acts on an object and the other 
hand acts anywhere. 

A gesture’s flow is discrete if the gesture is performed, 
delimited, recognized, and responded to as an event. An 
example is tracing a question mark (“?”) to bring up help. 
Flow is continuous if ongoing recognition is required, such 
as during most of our participants’ resize gestures. Discrete 
and continuous gestures have been previously noted [35]. 

Taxonometric Breakdown of Gestures in our Data 
We found that our taxonomy adequately describes even 
widely differing gestures made by our users. Figure 2 
shows for each dimension the percentage of gestures made 
within each category for all gestures in our study. 

An interesting question is how the conceptual complexity of 
referents (Table 1) affected gesture nature (Figure 2). The 
average conceptual complexity for each nature category 
was: physical (2.11), abstract (2.99), metaphorical (3.26), 
and symbolic (3.52). Logistic regression indicates these 

differences were significant (χ2
(3,N=1074)=234.58, p<.0001). 

Thus, simpler commands more often resulted in physical 
gestures, while more complex commands resulted in 
metaphorical or symbolic gestures. 

A User-defined Gesture Set 
At the heart of this work is the creation of a user-defined 
gesture set. This section gives the process by which the set 
was created and properties of the set. Unlike prior gesture 
sets for surface computing, this set is based on observed 
user behavior and joins gestures to commands. 

Agreement 
After all 20 participants had provided gestures for each 
referent for one and two hands, we grouped the gestures 
within each referent such that each group held identical 
gestures. Group size was then used to compute an 
agreement score A that reflects, in a single number, the 
degree of consensus among participants. (This process was 
adopted from prior work [33].) 
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In Eq. 1, r is a referent in the set of all referents R, Pr is the 
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an example, consider agreement for move a little (2-hand) 
and select single (1-hand). Both had four groups of identical 
gestures. The former had groups of size 12, 3, 3, and 2; the 
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Agreement for our study is graphed in Figure 3. The overall 
agreement for 1- and 2-hand gestures was A1H=0.32 and 
A2H=0.28, respectively. Referents’ conceptual complexities 
(Table 1) correlated significantly and inversely with their 
agreement (r=-.52, F1,25=9.51, p<.01), as more complex 
referents elicited lesser gestural agreement. 

Conflict and Coverage 
The user-defined gesture set was developed by taking the 
largest groups of identical gestures for each referent and 
assigning those groups’ gestures to the referent. However, 
where the same gesture was used to perform different 
commands, a conflict occurred because one gesture cannot 
result in different outcomes. To resolve this, the referent 
with the largest group won the gesture. Our resulting user-
defined gesture set (Figure 4) is conflict-free and covers 
57.0% of all gestures proposed. 

Properties of the User-defined Gesture Set 
Twenty-two of 27 referents from Table 1 were assigned 
dedicated gestures, and the two move referents were 
combined. Four referents were not assigned gestures: insert, 
maximize, task switch, and close. For the first two, the 
action most participants took comprised more primitive 
gestures: insert used dragging, and maximize used 
enlarging. For the second two, participants relied on 
imaginary widgets; a common gesture was not feasible. For 
example, most participants performed task switch by 
tapping an imaginary taskbar button, and close by tapping 
an imaginary button in the top-right corner of an open view. 
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Agreement for our study is graphed in Figure 3. The overall 
agreement for 1- and 2-hand gestures was A1H=0.32 and 
A2H=0.28, respectively. Referents’ conceptual complexities 
(Table 1) correlated significantly and inversely with their 
agreement (r=-.52, F1,25=9.51, p<.01), as more complex 
referents elicited lesser gestural agreement. 

Conflict and Coverage 
The user-defined gesture set was developed by taking the 
largest groups of identical gestures for each referent and 
assigning those groups’ gestures to the referent. However, 
where the same gesture was used to perform different 
commands, a conflict occurred because one gesture cannot 
result in different outcomes. To resolve this, the referent 
with the largest group won the gesture. Our resulting user-
defined gesture set (Figure 4) is conflict-free and covers 
57.0% of all gestures proposed. 

Properties of the User-defined Gesture Set 
Twenty-two of 27 referents from Table 1 were assigned 
dedicated gestures, and the two move referents were 
combined. Four referents were not assigned gestures: insert, 
maximize, task switch, and close. For the first two, the 
action most participants took comprised more primitive 
gestures: insert used dragging, and maximize used 
enlarging. For the second two, participants relied on 
imaginary widgets; a common gesture was not feasible. For 
example, most participants performed task switch by 
tapping an imaginary taskbar button, and close by tapping 
an imaginary button in the top-right corner of an open view. 
 

r is a referent in a set of all referents R
Pi is a subset of identical gestures from Pr
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Figure 3. Agreement for each referent sorted in descending order 
for 1-hand gestures. Two-hand gesture agreement is also shown. 

Our user-defined set is useful, therefore, not just for what it 
contains, but also for what it omits. 

Aliasing has been shown to dramatically increase input 
guessability [8,33]. In our user-defined set, ten referents are 
assigned 1 gesture, four referents have 2 gestures, three 
referents have 3 gestures, four referents have 4 gestures, 
and one referent has 5 gestures. There are 48 gestures in the 
final set. Of these, 31 (64.6%) are performed with one hand, 
and 17 (35.4%) are performed with two. 

Gratifyingly, a high degree of consistency and symmetry 
exists in our user-defined set. Dichotomous referents use 
reversible gestures, and the same gestures are reused for 
similar operations. For example, enlarge, which can be 
accomplished with four distinct gestures, is performed on 
an object, but the same four gestures can be used for zoom 
in if performed on the background, or for open if performed 
on a container (e.g., a folder). Flexibility exists insofar as 
the number of fingers rarely matters and the fingers, palms, 
or edges of the hands can often be used interchangeably. 

Taxonometric Breakdown of User-defined Gestures 
As we should expect, the taxonometric breakdown of the 
final user-defined gesture set (Figure 4) is similar to the 
proportions of all gestures proposed (Figure 2). Across all 
taxonomy categories, the average difference between these 
two sets was only 6.7 percentage points. 

Planning, Articulation, and Subjective Preferences 
This section gives some of the performance measures and 
preference ratings for gesture planning and articulation. 

Effects on Planning and Articulation Time 
Referents’ conceptual complexities (Table 1) correlated 
significantly with average gesture planning time (r=.71, 
F1,25=26.04, p<.0001). In general, the more complex the 
referent, the more time participants took to begin 
articulating their gesture. Simple referents took about 8 
seconds of planning. Complex referents took about 15 
seconds. Conceptual complexity did not, however, correlate 
significantly with gesture articulation time. 

Effects on Goodness and Ease 
Immediately after performing each gesture, participants 
rated it on two Likert scales. The first read, “The gesture I 
picked is a good match for its intended purpose.” The 
second read, “The gesture I picked is easy to perform.” 
Both scales solicited ordinal responses from 1 = strongly 
disagree to 7 = strongly agree. 

Gestures that were members of larger groups of identical 
gestures for a given referent had significantly higher 
goodness ratings (χ2

(1,N=1074)=34.10, p<.0001), indicating 
that popularity does, in fact, identify better gestures over 
worse ones. This finding goes a long way to validating this 
user-driven approach to gesture design. 

Referents’ conceptual complexities (Table 1) correlated 
significantly and inversely with participants’ average 
gesture goodness ratings (r=-.59, F1,25=13.30, p<.01). The 
more complex referents were more likely to elicit gestures 
rated poor. The simpler referents elicited gestures rated 5.6 
on average, while more complex referents elicited gestures 
rated 4.9. Referents’ conceptual complexities did not 
correlate significantly with average ratings of gesture ease. 

Planning time also significantly affected participants’ 
feelings about the goodness of their gestures 
(χ2

(1,N=1074)=38.98, p<.0001). Generally, as planning time 
increased, goodness ratings decreased, suggesting that good 
gestures were those most quickly apparent to participants. 
Planning time did not affect perceptions of gesture ease. 

Unlike planning time, gesture articulation time did not 
significantly affect goodness ratings, but it did affect ease 
ratings (χ2

(1,N=1074)=17.00, p<.0001). Surprisingly, gestures 
that took longer to perform were generally rated as easier, 
perhaps because they were smoother or less hasty. Gestures 
rated as easy took about 3.4 seconds, while those rated as 
difficult took about 2.0 seconds. These subjective findings 
are corroborated by objective counts of finger touch events 
(down, move, and up), which may be considered rough 
measures of a gesture’s activity or “energy.” Clearly, long 
lived gestures will have more touch events. The number of 
touch events significantly affected ease ratings 
(χ2

(1,N=1074)=21.82, p<.0001). Gestures with the fewest touch 
events were rated as the hardest; those with about twice as 
many touch events were rated as easier. 

Preference for Number of Hands 
Overall, participants preferred 1-hand gestures for 25 of 27 
referents (Table 1), and were evenly divided for the other 
two. No referents elicited gestures for which two hands 
were preferred overall. Interestingly, the referents that 
elicited equal preference for 1- and 2-hands were insert and 
maximize, neither of which were included in the user-
defined gesture set because they reused existing gestures. 
As noted above, the user-designed set (Figure 4) has 31 
(64.6%) 1-hand gestures and 17 (35.4%) 2-hand gestures. 
Although participants’ preferences for 1-hand gestures was 
strong, some 2-hand gestures had good agreement scores 
and nicely complemented their 1-hand counterparts. 
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user-defined gesture set
• take the largest groups of identical gestures 

for each referent.
• if same gesture was proposed for two 

commands, a conflict occurred
– resolve this, the referent with largest group won the 

gesture.
– they came up with a conflict-free set that covers 57% 

of all proposed gestures.
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Enlarge (Shrink)4: splay fingers

Accept: draw check

Enlarge (Shrink)3: pinchEnlarge (Shrink)2: pull apart with fingersEnlarge (Shrink)1: pull apart with hands

Move1: drag

Help: draw ‘?’

Next (Previous): draw line across object

Paste1: tap

Rotate: drag corner

Undo: scratch out

Select Single2: lasso

Duplicate: tap source and destination

Select Group1: hold and tap

Select Group2 and Select Group3: Use Select Single1 or Select Single2 
on all items in the group.

Paste2: drag from offscreen

Paste3: Use Move2, with off-screen
source and on-screen destination.

Delete1: drag offscreen

Delete2: Use Move2 with on-screen
source and off-screen destination.

Reject: draw ‘X’

Reject2, Reject3: If rejecting an object/dialog

with an on-screen representation, use Delete1

or Delete2.

Zoom in (Zoom out)1: pull apart with hands

Zoom in (Zoom out)2-4: Use Enlarge (Shrink)2-4,
performed on background.

Open1: double tap

2x

Open2-5: Use Enlarge1-4, atop an
“openable” object.

Minimize1: drag to bottom of surface

Minimize2: Use Move2 to move object to the 
bottom of the surface (as defined by user’s
seating position).

Select Single1: tap 

Cut: slash

Cuts current selection (made via 
Select Single or Select Group).

Menu: pull out

Finger touches 
corner to rotate.

After duplicating, source object
is no longer selected.

Move2: jump

Object jumps to index
finger location.

Pan: drag hand

Figure 4. The user-defined gesture set. Gestures depicted as using one finger could be performed with 1-3 fingers. Gestures 
not depicted as occurring on top of an object are performed on the background region of the surface or full-screen object. To 
save space, reversible gestures (enlarge/shrink, zoom in/zoom out, next/previous) have been depicted in only one direction.
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Discussion

• do ‘natural’ gestures exist?

26
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Gestural Input vs. Keyboard+Mouse
• loosing the hover state
• gesture design
– ‘natural’ gestures

• dependent on culture

– multi-finger chords (what does that remind 
you of?)

• memorability, learnability
– short-term vs. long-term retention

• gesture discoverability
• missing standards
• difficult to write, keep track and 

maintain gesture recognition code
– detect/resolve conflicts between 

gestures
• and how to communicate and 

document a gesture?
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gesture communication
• Feedforward mechanisms provide information 

about a gesture’s shape and its association with 
a command prior to execution (similar to self-
revealing gestures)
– physical help card
– pop-up cheat sheet

• take screen space

• Feedback mechanisms provide low-level 
information about recognition process, either 
during or after execution
– repetition and choice
– shape beautification

• modify users hand drawn input to illustrate perfect 
instance of a given gesture class.
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Feedforward Mechanism 
Classification
• Level of detail: a minimal hint - a portion of a 

gesture - whole gesture
• Update rate: once prior to execution - discrete 

intervals to continuously during execution 
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Bau et al.: OctoPocus: A Dynamic Guide for Learning Gesture-Based Command Sets, UIST’08
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Example Feedforward Mechanism
• OctoPocus

30

http://vimeo.com/2116172
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