
Ludwig-Maximilians-Universität Online Multimedia
LFE Medieninformatik WS 2015/2016

1

Assignment 7 (HF, major subject)

Due: Wed 09.12.2015; 12:00h

Goals
After doing these exercises,

• You know how to utilize the express-generator
• You can modify the basic set-up of an express app, in particular serving static directories.
• You have understood the principle of middleware.

Task 1: Set up your app Difficulty: Easy
We want to use the website from last week’s break-out and tutorial and serve it through NodeJS.
To achieve this, we will have to prepare an Express web application. The modifications are done
in Task 2 and 3 – here you only set up the basic web app and see if it starts.

Here’s how you can do this:

1. Use the express-generator to create a standard express web-app that we are going to
modify a little bit. Launch this command in a terminal from an empty directory:
express MusicApp

2. Navigate to the newly created directory MusicApp (cd MusicApp) and install the required
dependencies:
npm install
You now should have a directory called node_modules containing all necessary modules
that the express app requires.

3. Launch the app, and verify that it starts up correctly, e.g.:
node ./bin/www
Open a browser and go to http://localhost:3000/. You should see a default page from
Express.

Result:

Ludwig-Maximilians-Universität Online Multimedia
LFE Medieninformatik WS 2015/2016

2

Task 2: Create a Spotify module Difficulty: Intermediate
Now, we want to create a module that serves a static directory containing the HTML and CSS for
the Spotify search.

Follow these steps:

1. Create a directory “spotifysearch” inside MusicApp and copy the breakout.html and
style.css from GitHub in there.

2. Rename breakout.html to index.html to mark it as entry point for requests to this
directory.

3. Create a new file “spotify.js” inside the routes directory. This file acts as our Spotify
module that responds to the /spotify route.

4. Take a peek at routes/index.js. Its code is very similar to what you want to do in the
Spotify module. However, the middleware function on the root path is not necessary.
Instead, use the express.static middleware to serve the spotifysearch directory. Hint:
app.js does a similar thing with the public directory, so you can find out how it’s done.

5. Require the path module which is part of the node core. It allows you to easily resolve the
relative path of the spotifysearch directory by calling the .join() method, like so:
path.join(__dirname, '../spotifysearch')

Task 3: Use the Spotify module Difficulty: Easy
So far, the Spotify module is not used anywhere, so it is not possible to use the /spotify route
just yet. This is what we need to change now.

Follow these steps:

1. Require the Spotify module in routes/index.js and assign it to a variable spotify.
2. Tell the router object to use the Spotify module on the /spotify route.

That’s it. Since the index.js file acts as a central module for routing all requests, you can now
re-launch the app and open this URL in a browser:
http://localhost:3000/spotify

You should see the Spotify search then.

Ludwig-Maximilians-Universität Online Multimedia
LFE Medieninformatik WS 2015/2016

3

Task 4: Visit Counting Module (Optional) Difficulty: Advanced
We provided a module named “visitCounter” in the resource folder for this assignment on
GitHub. It already has some functionality that you don’t need to modify. It allows you to count
requests to certain routes and paths.

Your task is to include it in your app to count all incoming requests. That means you have to use
the middleware provided by the visitCounter in app.js.

Possible steps:

1. Require the module in app.js
2. Instantiate a VisitCounter object.
3. Use its middleware function countMiddleware very early in the middleware chain. In

particular, include it before express.static and the index.js modules are used.
4. Create a route /showVisits that displays the request statistics. Use the getCount()

method to retrieve an Object containing these statistics.
5. Send this object as JSON response.

In summary, you should have a structure like this:

Submission
Put the solution to Task1 – Task4 into a ZIP folder. However, to keep the submission small,
please do not include the node_modules directory. The correctors will do an npm install and
do not need the node_modules.

Ludwig-Maximilians-Universität Online Multimedia
LFE Medieninformatik WS 2015/2016

4

Please turn in your solution via UniWorX. You can form groups of up to three people.
After the submission deadline, push your solution to our GitHub repository.

Common Problems when first working with NodeJS

Permissions
Problem: Permission denied when installing the express-generator.
Potential reason: The permissions for the directory /usr/local have been changed, so that your
user cannot write anything in there.
Solution (for UNIX-based systems: change the owner of the directory with chown.
sudo chown -R {YOUR_USER_NAME} /usr/local
Confirm that the directory is now owned by your user with ls -la /usr/

Problem: Permission denied when running node app.js.
Potential reason: the executable flag is not set for the app file.
Solution: make the file executable, e.g.
chmod 775 app.js

NodeJS binary does not exist
Problem: the node app does not start because there is “no such command” (or similar).
Potential reasons:

1. NodeJS was not installed correctly.
2. The directory, in which the node program is located has not been added to the PATH

environment variable.
3. You are at the CIP pool and need to use nodejs instead of node

If any other problems occur, please write us an email so we can extend this list.

