
Ludwig-Maximilians-Universität Online Multimedia
LFE Medieninformatik WS 2015/2016

1

Assignment 13 (HF, major subject)

Due: Wed 03.02.2016; 12:00h (1 week)

Goals

After doing these exercises,

 You can handle AJAX requests declaratively

 Databinding is no longer a problem, in particular computed binding

 You’ll know more about HbbTV

Task 1: HbbTV 2 Difficulty: Easy

Read this article: HbbTV 2.0 spec released by Chris Dziadul

Briefly answer the following questions:

a) What are the most anticipated features of HbbTV 2.0?

b) Is HbbTV capable of UltraHD? Which codec is mentioned for in this context?

c) Name 2 implications of “synchronization between TV, tablets and smartphones”

d) Is HbbTV 2.0 downward-compatible with older versions of HbbTV?

Put your solution into the folder ‘task1’.

Task 2: Web Radio Browser Element Difficulty: Intermediate

Web radio is still alive and easy to use. Services like dirble.com allow you to browse stations and

listen to your favorites. Also, they provide an API that allows developers to request a list of

stations.

This API allows us to query a list of radios stations, but you need to get an API token first.

1. Sign up for dirble.com: https://dirble.com/users/sign_in

2. Create an API token: https://dirble.com/users/apikeys

3. Look at the documentation: https://dirble.com/api-doc

On GitHub, you’ll find a working custom element <webradio-browser>. We suggest you first

take a look at the entire code / mark-up that it contains.

Try to comprehend these points (you don’t need to submit the answers, this is just for you):

 What does the makeAjaxParams(…) function actually do and where is it called?

 In showPreviousPage() and showNextPage() only the page number is updated. In

other words, the code does not specifically mention that a new request to the API should be

launched. Why does the element fetch a new list of stations nonetheless through AJAX?

http://www.broadbandtvnews.com/2015/02/10/hbbtv-2-0-spec-released/
https://dirble.com/users/sign_in
https://dirble.com/users/apikeys
https://dirble.com/api-doc
https://github.com/MIMUC-MMN/assignments-ws-15-16/tree/master/assignment13

Ludwig-Maximilians-Universität Online Multimedia
LFE Medieninformatik WS 2015/2016

2

 The playRadio() function uses the HTML5 <audio> element. Make sure you understand

what’s happening there.

In the screenshot you see three radio buttons for the most popular, most recent and all stations.

So far, they don’t provide much functionality – this is going to be your part. Our goal is to show a

different list of stations depending on the selected radio button.

This is pretty easy, if you do this:

 Use databinding for the “selected” attribute of the radio group.

 Bind the value of the selected attribute to the “url” attribute of the iron-ajax element.

You’ll notice that at first, no stations are displayed:

Ludwig-Maximilians-Universität Online Multimedia
LFE Medieninformatik WS 2015/2016

3

You can solve this in XX ways:

 Option A: make the binding a property of the webradio-browser element. Then you can add a

default value

 Option B: use the ready() lifecycle callback function. Then you can set an initial value for

your bound variable there (see tutorial 13, slide 13).

That’s it!

Good to know: A lot of stations won’t play any music. We found that these work quite reliably:

 Ayitisakapfet Radio

 OXSELIVERADIO

 ITALY-RVRmusic

 Fresh Radio Leicester

 RFM Luxembourg

 rockSatelite-MadridONE

 24/7 MJ Radio (our definite favorite)

 EMFA Radio

If you want to do more, you can try any of these ideas:

 Use a computed property / binding for the url attribute in the iron-ajax.

 Add a paper-input element that allows filtering the currently displayed stations

 Find another Web-Radio API on the Web and adjust the <webradio-browser> element so

that it works with their API. We found these (but haven’t tried them, yet):

o http://www.streamfinder.com/internet-radio-api/

o http://developer.iheart.com/Api/login

o http://www.npr.org/api/stationFinder.php

Put your solution containing your bower.json, html and css files into the folder ‘task2’. Please do

not submit the bower_components folder!

Task 3: Send us your questions

Send the questions you would like to discuss in the final tutorial to tobias.seitz@ifi.lmu.de by

Sunday, 31.01.2016.

Submission

Put the solution to all tasks into a ZIP folder. Please turn in your solution via UniWorX. You can

form groups of up to three people. After the submission deadline, push your solution to our

GitHub repository.

http://www.streamfinder.com/internet-radio-api/
http://developer.iheart.com/Api/login
http://www.npr.org/api/stationFinder.php
mailto:tobias.seitz@ifi.lmu.de
https://github.com/MIMUC-MMN/assignments-ws-15-16

