
Practical	Course:	Web	Development

Good	Practice
Winter	Semester	2016/17

Tobias	Seitz

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 1

The	content	of	this	session	mostly	
originates	from	this	book:

Weniger Schlecht
Programmieren

Kathrin	Passig &	Johannes	
Jander

https://www.oreilly.de/bu
echer/120174/978389721
5672-weniger-schlecht-
programmieren.html

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 2

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 3

“Any	fool	can	write	code	that	a	
computer	can	understand.	Good	
programmers	write	code	that	
humans	can	understand.”

Martin	Fowler,	“Refactoring”	

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 4

Conventions	&	Style

Conventions

• Sticking	to	code-conventions	helps	maintaining	a	good	
atmosphere	among	team	members

• Follow	the	conventions	of
– your	chosen	language:	Inform	yourself	about	commonly	used	coding	

style	and	try	to	adapt	it.
– your	existing	team:	See	what	the	others	are	doing,	then	do	the	same.

• Language	conventions,	e.g.	JS	style	guides
– AirBnB:	https://github.com/airbnb/javascript
– Google:	http://google.github.io/styleguide/jsguide.html
– @felixge NodeJS:	https://github.com/felixge/node-style-guide

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 5

Conventions:	Code	Formatting

function getDivs() {

}

// versus

function getDivs ()
{

}

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 6

Conventions:	“Enforcement”

• Use	a	Linter	(e.g.	ESLint,	JSHint)
• Configure	your	IDE	/	editor	to	automatically lint	your	code
• Configure	short-cuts to	reformat	your	code
• Share	Lint-style	with	your	team	members,	in	the	root	of	your	

repository.

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 7

Example	.editorconfig

EditorConfig helps developers define and maintain consistent
coding styles between different editors and IDEs
editorconfig.org

root = true

[*]

Change these settings to your own preference
indent_style = space
indent_size = 2

We recommend you to keep these unchanged
end_of_line = lf
charset = utf-8
trim_trailing_whitespace = true
insert_final_newline = true

[*.md]
trim_trailing_whitespace = false

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 8

Example	.jscsrc

{
"preset": "google",
"disallowSpacesInAnonymousFunctionExpression": null,
"disallowTrailingWhitespace": null,
"disallowMultipleVarDecl": false,
"maximumLineLength": false,
"excludeFiles": ["node_modules/**"]

}

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 9

Example	.jshintrc

{
"node": true,
"browser": true,
"camelcase": true,
"curly": true,
"eqeqeq": true,
"immed": true,
"indent": 2,
"latedef": true,
"noarg": true,
"quotmark": "single",
"undef": true,
"unused": true,
"newcap": false,
"globals": {
"wrap": true,
"unwrap": true,
"app": true,
"google": true,
"zxcvbn": true,
"HeatmapOverlay": true

}
}

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 10

Adding	a	Linter	to	a	Task	Runner	(Gulp)

var gulp = require('gulp');
var $ = require('gulp-load-plugins')();

// Lint JavaScript
gulp.task('lint', [], function() {

return gulp.src([
'*.js',
'*.html'

])
.pipe($.if('*.html', $.htmlExtract({strip: true})))
.pipe($.jshint())
.pipe($.jscs())
.pipe($.jscsStylish.combineWithHintResults())
.pipe($.jshint.reporter('jshint-stylish'))

});

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 11

Break-Out:	Prettify	ugly-code.html

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 12

Break-Out:	Prettify	ugly-code.html

• Open	your	favorite	code	editor
• Look	for	the	Keyboard	short-cut	that	allows	you	to	

automagically	reformat	code
• Open	the	file	ugly-code.html from	the	course	material	

repository	(github /	gitlab)
• Make	the	code	pretty!

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 13

Naming

DOs
• function	names	should	describe	

what	the	function	does,	not	how	
it	does	it
validatePassword()

• Private	variables	are	usually	
prefixed	with	an	underscore
_untouchableThing

• Include	units:
delaySeconds

• Function	naming	structure
verbAdjectiveNounDatatype

DONTs
• don’t	use	any	other	

abbreviations	than	num,	
post,	len,	max,	min,	temp,	
val.

• don’t	be	funny	and	use	
incomprehensible	names
superCat =	1

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 14

Language

• German	/	Native	Language:
– easier	to	find	variable	names	
– fewer	typos
– bad	English	can	negatively	influence	the	readability	of	your	code

• ..	but:	Do	yourself	and	anyone	else	a	favor	and	use	English!
– statements	and	other	syntax	in	English	à otherwise	weird	mix
– the	community	in	your	country	might	not	be	as	big	as	the	whole	

world.	à asking	for	help	is	easier	with	code	snippets.

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 15

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 16

Comments	&	Documentation
“Always code as if the guy who ends up maintaining your code is a violent

psychopath who knows where you live.”
(origin unclear, probably one of: John Woods / Martin Golding / Rick Osborne)

Comments

• “Mangelhafter,	gründlich kommentierter Code	ist
mangelhaftem unkommentiertem Code	klar vorzuziehen
(Passig &	Jander)

• “Don’t	document	bad	code	– rewrite	it”	(Kernigham &	Pike)
• When	to	comment:

– If	there’s	unexpected	behavior
– if	you	“temporarily”	comment	out	code
– if	you	failed	with	a	solution:	say	in	the	comment	how	you	failed	and	

why
– if	you	found	a	good	solution	that	looks	scary	/	complicated
– if	you	assume	things	might	break
– if	you	paste	code	from	other	sources

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 17

Problematic	Comments	/	Heuristics

• If	you	need	more	than	3-4	sentences	to	describe	what	a	
function	does,	this	could	mean	it	does	too	much

• Comments	refer	to	parameters	/	variables	that	were	
renamed.	

• Comment	includes	non-standard	abbreviations
• Comment	should	actually	be	the	commit	message	(or	vice	

versa)
• Comment	does	not	address	the	readership

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 18

JSDoc - http://usejsdoc.org/

• Similar	to	JavaDoc.	Addresses	a	central	“problem”	of	
JavaScript:	dynamic	typing.

• Proper	JSDoc allows	editors	to	display	live-help	when	you	try	
to	use	the	function.

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 19

/**
* generates a div that displays a movie poster (or placeholder)
* a title, type and the year.
* @param {String} title of the movie
* @param {String} type of the move (movie/series/episode)
* @param {Number} year
* @param {String} posterURL
* @return {jQuery|HTMLElement} with class "movie flexChild card"
*/
function generateMovieDiv(title, type, year, posterURL) {}

TODO

• If	you	need	to	postpone	a	task,	mark	it	with	a	TODO
• Example
// TODO reformat this code

• Usually,	code	editors	allow	you	to	scan	and	find	TODOs,	or	
even	highlight	them

• Before	you	commit:	resolve	TODOs	
(not	always	possible,	but	at	least	try)

• Important:
Stick	to	TODO	/	FIXME	/	CHANGEBACK	/	XXX	/	!!!!!!

• Don’t:	TODO	Fix	this.

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 20

Truck	Factor

How	many	of	your	team	would	have	to	be	run	over	by	a	truck to	
make	the	project	stand	still?

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 21

https://commons.wikimedia.org/wiki/File:Kenworth_W900_semi_in_red.jpg

Solutions	to	Increase	the	Truck	Factor

• Issue	Tracker	(built	into	GitLab)
• Responsibilities:	Who	is	responsible	for	what?
• Agile	Process:	everybody	at	least	has	a	high-level	

understanding	of	what’s	going	on	in	other	“departments”
• Good	Documentation
• Code	Reviews	/	Extreme	Programming
• Decide	up	front	who	your	replacement	is.

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 22

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 23

Debugging

Debugging	Approaches	(Sample)

• Usually	useful:
– Debugger	to	pause	program	during	execution
– Rubber-Duck	Debugging	http://www.developerduck.com/
– Other	inspection	tools	(HTML,	CSS)

• Sometimes	useful:
– Console.log Debugging	(Printline Debugging)
– Stackoverflow-Debugging	(next	slides)
– Sophisticated	logging	(multiple	levels)
– Code	reviews	/	pair	programming	/	Think	aloud

• After	all:	Take	a	break.	Get	some	sleep.	

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 24

Common	Stupidities	
(we’ve	all	been	there)

• The	file	that	I	edit,	is	not	the	file	I	execute	/	view.
• I	use	a	feature	that	is	unsupported	by	older	browsers

(http://caniuse.com/)
• I	accidently	use	a	variable	name	for	a	local	variable	that	

collides	with	higher-scope	variable.
• I	treat	undefined,	‘undefined’,	null	and	false	as	the	same	thing	

(hint:	they	are	not)
• Off-By-One	Errors.

“There	are	two	hard	problems	in	computer	science:	cache	
invalidation,	naming	things,	and	off-by-one	errors”	
(Leon	Bambrick)

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 25

Checklist	for	when	to	get	Help

• Did	you	copy	paste	the	error-message	into	a	search	engine?
• Did	you	use	the	English	version	of	the	error	message?
• Did	you	lint	your	code?
• Did	you	enable	error	messages	in	your	programming	

environment?
• Did	you	check	the	official	documentation	for	what	you	are	

trying	to	achieve?
• Did	you	look	on	stackoverflow.com?

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 26

?

Stackoverflow Debugging

1. What	is	your	goal?
2. What	have	you	done?
3. What	have	you	tried?	
4. What	were	the	results?
5. What	did	you	expect?

If	you	can	honestly	answer	these	five	questions	and	have	not	
found	the	answer	during	this	process,	go	and	ask	the	question	
on	stack	overflow.

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 27

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 28

Bad	Code

A	Bad	Programmer’s	7	Arguments

1. Nobody	else	is	going	to	see	my	code
2. The	software	isn‘t	going	to	be	used	by	anyone	else	but	me.
3. I‘ll	redo	it	properly	later.
4. It‘s	a	complex	problem.	I	can	only	solve	it	with	8	stacked	

loops.
5. I	simply	remember	not	to	enter	that.
6. I‘m	going	to	uncomment	that	again.
7. It‘s	just	a	small	project.

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 29

Bad	Code	Heuristics	– Part	1

• Files	too	big
• Function	bodies	too	long
• High	indentation	level
• Control	statements	with	more	than	5	checks
• Magic	Numbers
• complex	arithmetic	without	a	comment
• Global	variables
• Code	that	introduces	a	„hack“	to	make	things	work.

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 30

Bad	Code	Heuristics	– Part	2

• Third	party	functions	are	implemented	again
• Inconsistent	code	style
• Functions	with	more	than	5	parameters
• Code	duplication	/	Redundancy
• Suspicious	file	names
• Reading	labyrinth	(instead	of	top	to	bottom)
• Many	methods	and	member	variables
• Old,	commented	out	code	blocks
• Suspicious	keyboard	sounds.

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 31

Break	Out:	Past	Behavior

• Step	1:	From	the	things	you	have	heard	about	today,	what	
have	you	done	”wrong”	in	the	past?

• Step	2:	Use	a	style	guide	and	spot	things	that	you	have	done	
wrong	in	the	past.	

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 32

Hands-On:	Refactor	Foreign	Code

• Clone	/	Fork	this	repository:	
https://github.com/MIMUC-MMN/assignments-16-17	

• pick	one	of	the	folders,	e.g.
04	- jquery basics	or	06	- jquery ajax

• Take	a	look	of	the	code	in	there	and	try	to
– understand	it
– write	down	things	that	you	don’t	understand	
– improve	it
– document	what	you	improved.

• Time	frame:	15	minutes,	discussion	afterwards.

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 33

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 34

You	don't	learn	to	walk	by	
following	rules.	You	learn	by	
doing,	and	by	falling	over.	

(Richard	Branson)

Links	‘n’	Stuff

• http://jscs.info/overview
• http://jshint.com/docs/
• http://eslint.org/
• http://editorconfig.org/
• https://blog.codinghorror.com/new-programming-jargon/
• http://www.journaldev.com/240/my-25-favorite-

programming-quotes-that-are-funny-too

Ludwig-Maximilians-Universität	München Practical	Course	Web	Development	WS	16/17	- 07	- 35

