
Practical Course: Web Development

Angular JS – Part III
Winter Semester 2016/17

Juliane Franze

Ludwig-Maximilians-Universität München Practical Course Web Development WS 16/17 - 01 - 1

Today’s Agenda

• Lessons learned from Homework

• Advanced Angular Things
– Data Binding & Watchers

– Factory / Services

– Inject

– Controller As

• Testing

• Homework

Ludwig-Maximilians-Universität München Practical Course Web Development WS 16/17 - 01 - 2

Lessons learned from Homework

Have a look at your group members code.

What do you like and what would you do differently?

– Controller
• How is it structured?

• What tasks are conducted within one controller? Should they be moved?

• Are all modules named and integrated properly?

– Structure
• How do you like the current code structure?

• How would you structure your final group project?

• How and where would you create your HTML layout?

– Routing
• How can you guarantee that I all routes lead to a valid page?

Ludwig-Maximilians-Universität München Practical Course Web Development WS 16/17 - 01 - 3

Let‘s dive into some
Advanced Angular!

Ludwig-Maximilians-Universität München Practical Course Web Development WS 16/17 - 01 - 4

Data Binding & Watchers

• Data binding

– Uses watchers ($watch API)

– Watchers observe changes and model mutations on scope

– Watchers are registered through directives

– Each change triggers a digest cycle that automatically updates the DOM

– Seen in ng-model=„test“

– This may lead to performance issues if high amount of watchers reached

• Count Watchers to be aware of them

– Plugin in Chrome

– „Angular watchers“

– https://chrome.google.com/webstore/search/angular%20watchers?hl=de

Ludwig-Maximilians-Universität München Practical Course Web Development WS 16/17 - 01 - 5

https://chrome.google.com/webstore/search/angular watchers?hl=de

One Time Binding

One-time expressions will stop recalculating once they are stable,
which happens after the first digest…

• Available since Angular 1.3

• New syntax: starting an expression with ::

• Works for all typical Angular expressions

– <h2> von: {{::todo.user}}</h2>

Ludwig-Maximilians-Universität München Practical Course Web Development WS 16/17 - 01 - 6

Test it yourself

<input ng-model="test"></input>
<div>{{test}}</div>

• What happens when you add one time binding?

Ludwig-Maximilians-Universität München Practical Course Web Development WS 16/17 - 01 - 7

Factories / Services

• Defer logic in a controller by delegating to services and
factories.
– Logic may be reused by multiple controllers

– Logic in a service can more easily be isolated in a unit test

– Hides implementation details from the controller

– Keeps the controller slim, trim, and focused

– Factories and services are singleton

Ludwig-Maximilians-Universität München Practical Course Web Development WS 16/17 - 01 - 8

Injection to minify code

• Dependency injection is used everywhere in Angular

• Use „$inject“ to manually identify your dependencies
– ControllerName.$inject = [what controller depends on]

– Don‘t forget to put items in ‘ ‘

• This safeguards your dependencies from being vulnerable to
minification issues

• Code:
TodoController.$inject = ['$scope', 'getDataFactory'];

Ludwig-Maximilians-Universität München Practical Course Web Development WS 16/17 - 01 - 9

Controller As

• $scope can be replaced –e.g with this - since Anguar 1.2
– Controller as syntax does not give controller a new name

– but the instance of the controller
– In controller:

var ctrl = this;
ctrl.todo = ...

– In HTML:
<div ng-controller="TodoController as vm“>
<h2> von: {{::vm.todo.user}}</h2>

• Or use it within the StateProvider
– Then it wont show up in html Code
– <div>

• https://angularjs.de/artikel/controller-as-syntax

Ludwig-Maximilians-Universität München Practical Course Web Development WS 16/17 - 01 - 10

https://angularjs.de/artikel/controller-as-syntax

Now it‘s time for Testing....

Ludwig-Maximilians-Universität München Practical Course Web Development WS 16/17 - 01 - 11

Why testing?

• It is good practice

• JS comes with almost no help from compiler

• Best way to prevent software defects

• If features are added or removed potential side effects can be
seen

• You will have a good feature documentation

• Angular
– Is written with testability in mind

– Dependency injection makes testing components easier

Karma

• Command line tool
– Results are listed in command line as well

• Tests several browsers
– Good to know that application runs in all browsers

• A NodeJS application

• A direct product of Angular team

• http://karma-runner.github.io/0.12/intro/installation.html

http://karma-runner.github.io/0.12/intro/installation.html

Jasmine

• Popular JS unit testing framework

• Not tied to a particular framework
– But popular for testing Angular applications

• Tests synchronous and asynchronous JS code

• Used in BDD (behavior-driven development)
– focus on business value not on technical details

• 2 important terms
– Suite & spec

Suite and Spec

Suite
• A group of (related) test cases
• Used to test a specific behavior of JS code (function)
• Starts with call of Jasmine global function:

– „describe“
– with 2 parameters (<title of suite>, function implementing test suite)

Spec
• Represents an individual test case
• Begins with Jasmine global function:

– „it“
– With 2 parameters (<title>, function implementing test case)

• Contains one or more expectations
• Expections

– Represent an assertion that can be true or false
– To pass a spec: all expactions inside the spec have to be true
– If one or more expectations are false the spec fails

• There are pre-defined matchers

Test

• Load application module

• Load a special test module to overwrite setting (configuration)
in tests with a mock version
https://docs.angularjs.org/guide/module

• Use underscore notation
– For variable names in tests: „_$rootScope_“

– It is an Angular convention

– $injector strips them out if they apply at start and end with exactly
one underscore

https://docs.angularjs.org/guide/module

Homework

• Extend your current homework
– Write an own filter for your user-overview app

– Write a test that tests the filter and the request

• Have a looke at Grunt and Gulp
– Discuss advantages and Disadvantages for your final app

– Decide within the team what you want to use

• Use Bluemix for Deployment or sth similar...

• Have a look at this:
– https://github.com/johnpapa/angular-

styleguide/blob/master/a1/README.md#modules

Ludwig-Maximilians-Universität München Practical Course Web Development WS 16/17 - 01 - 17

https://github.com/johnpapa/angular-styleguide/blob/master/a1/README.md

Next year...

• Present second version of your application

• Coding review if wanted in first week

Ludwig-Maximilians-Universität München Practical Course Web Development WS 16/17 - 01 - 18

For boring evenings....

• Angular Best Practice: https://github.com/johnpapa/angular-
styleguide

• Code a project: https://docs.angularjs.org/tutorial

Ludwig-Maximilians-Universität München Practical Course Web Development WS 16/17 - 01 - 19

https://github.com/johnpapa/angular-styleguide
https://docs.angularjs.org/tutorial

