
Udit – A Graphical Editor For Task Models
Gerrit Meixner

German Research Center for Artificial
Intelligence (DFKI)

Trippstadter Str. 122
D-67663 Kaiserslautern

+49 631 205-3707

Gerrit.Meixner@dfki.de

Marc Seissler
University of Kaiserslautern

Gottlieb-Daimler Str.
D-67663 Kaiserslautern

seissler@rhrk.uni-kl.de

Marcel Nahler
University of Applied Sciences Trier

Schneiderhof
D-54293 Trier

nahlerm@fh-trier.de

ABSTRACT
Nowadays, the commercial success of an electronic device
significantly depends on its usability. The demand for devices
with intuitively usable interfaces is growing. This enforces
developers to use user-centered development processes to
guarantee a high usability for their product. The Useware Markup
Language (useML) 2.0 is a user-centered task-oriented modeling
language, which is used in the Useware-Engineering process for
developing intelligent user interfaces. With version 2.0 some
major changes have been made to increase the expressiveness of
useML, i.e. with adding temporal operators the language has been
equipped for semi-automatic dialog model generation. To support
developers, an intuitively, graphical useML-Editor has been
developed. This paper introduces the changes in useML 2.0, the
useML-Editor and in part the transformation processes for
deriving the dialog model from the use model.

Categories and Subject Descriptors
H5.2 [Information Interfaces and Presentation]: User
Interfaces, User-centered design; H.1.2 [Models and Principles]:
User/Machine Systems

General Terms
Design, Human Factors

Keywords
Model-Based User Interface Development, MBUID, Usability,
useML 2.0, Graphical Task-Model Editor, Udit

1. INTRODUCTION
The improvement of human-machine-interaction is an important
field of research reaching far back into the past. Yet, for almost
two decades, Graphical User Interfaces (GUI’s) have dominated
their interaction in most cases. In the future, a broader range of
paradigms will emerge, allowing for multi-modal interaction
incorporating, for example, visual, acoustic and haptic input and
output in parallel [15]. But also the growing number of
heterogeneous platforms and devices utilized complementarily—
such as PC’s, smartphones, PDA’s etc.—demands for the
development of congeneric user interfaces for a plethora of target
platforms; their consistency ensures their intuitive use and their
users’ satisfaction [5].

To meet the consistency requirement, factors such as reusability,
flexibility, and platform-independence play an important role for
the development of user interfaces. Further, the perseverative
development effort for every single platform, single device or
even single use context solution is way too high, so that a model-
based approach for the (abstract) development of user interfaces
(MBUID) appears to be favourable [11]. The pivotal model of a

user-centric model-based development process is the task model
[6]. Task models—developed during a user and use context
analysis—are explicit representations of all user tasks [9]. Over
the last years, various task-oriented modeling languages for
designing user interfaces have been introduced. One of the main
purposes of a task model in MBUID is to automatically generate
user interfaces for different modalities and platforms. Due to this
automatic generation, the development process must be improved
by developing and using software tools regarding development
time and usability.

Section 2 describes the improvement of the Useware Markup
Language 2.0. To support developers’, section 3 introduces a
graphical useML-Editor. In section 4 we give a first review about
our current transformation process for deriving dialog models
from use models and in section 5 we conclude and give further
outlooks.

2. USEWARE MARKUP LANGUAGE 2.0
While the basic structure of use models has not been changed
since [8], certain enhancements have been incorporated into
useML 2.0, which was originally developed in its first version for
the definition of use structure of user interfaces in the field of
production environments. According to [1], the use model must
differentiate between interactive user tasks (performed via the
user interface) and pure system tasks requiring no active
intervention by the user. System tasks encapsulate tasks that are
fulfilled solely by the system which, however, does not imply that
no user interface must be presented, because the user might
decide, for example, to abort the system task, or request
information about the status of the system. Interactive tasks
usually require the user(s) to actively operate the system, but still,
there can be tasks that do not have to be fulfilled or may be
tackled only under certain conditions. In any case, however,
interactive tasks are usually connected to system tasks and the
underlying application logic, which has been addressed recently
by the newly introduced differentiation of user tasks and system
tasks in useML 2.0.

To specify that a certain task is optional, the semantics of use
objects and elementary use objects has been enhanced to reflect
their importance. Their respective user actions can now be marked
as “optional”, “recommended”, or “required”.

Similarly, only useML 2.0 is able to attribute cardinalities to use
objects and elementary use objects. These cardinalities can
specify minimum and maximum frequencies of utilization,
ranging from 0 for optional tasks to ∞. Further, respective logical
and/or temporal conditions can now be specified, as well as
invariants that must be fulfilled at any time during the execution
(processing) of a task. Invariants are especially needed for

defining security aspects, e.g. during interaction with industrial
robots.

Consequently, temporal operators (see Fig. 1) have been added to
useML, which is the most important and most comprehensive
enhancement in version 2.0.

Figure 1: The enhanced useML 2.0

These operators allow for putting tasks within one hierarchical
level into certain temporal orders explicitly; implicitly, temporal
operators applied onto neighboring levels of the hierarchical
structure can form highly complex, temporal expressions. In order
to define the minimum number of temporal operators allowing for
the broadest range of applications, other task modeling languages’
temporal operators were analyzed and compared. Among others,
Tombola [13], XUAN [4] and CTT [10] were examined closely.
Based on their temporal operators’ relevance and applicability in a
model-based development process, the following binary temporal
operators were selected for useML 2.0:

 Choice (CHO): Exactly one of two tasks will be
fulfilled.

 Order Independence (IND): The two tasks can be
accomplished in any arbitrary order. However, when the
first task has been started, the second one has to wait for
the first one to be finalized or aborted.

 Concurrency (CON): The two tasks can be
accomplished in any arbitrary order, even parallel at the
same time (i.e. concurrently).

 Sequence (SEQ): The tasks must be accomplished in
the given order. The second task must wait until the first
one has been fulfilled.

Since the unambiguous priority of these four temporal operators is
crucial for the derivation of a dialog model from a use model,
their priorities (i.e. order of temporal execution) have been
defined as follows (see also [5]): Choice > Order Independence >
Concurrency > Sequence.

3. UDIT – THE USEML EDITOR
To improve the model-based development process, specialized
tool support is required [1]. Therefore, a graphical useML-Editor
(Udit), for editing useML 2.0-models, has been developed. Udit
supports the whole expressiveness of useML 2.0 and allows users
to edit any model consistent to the useML 2.0-specification.

When starting a new useML-project, Udit creates a serialized
useML-file, and a project-specific attributions style sheet file.
Regardless, if the project has been loaded or created, Udit always

ensures, that saved projects are valid to the useML 2.0-
specification.

Figure 2: Screenshot of the graphical useML Editor

An integrated toolbar, located above the model-editor window
(see Fig. 2), contains all essential functions for editing the
structure of use models. Additionally to the toolbar, a context-
sensitive menu, which can be accessed via a right click, lists all
available functions, which can be performed on a selected object.

If a new elementary use object is added to the use model, a
window, for editing the elementary use objects properties,
automatically opens. This enables users to immediately set the
elementary use objects information. A left double click on a use
model, use object or elementary use object opens the properties
window, too. To be ISO 9241-110 conforming, common
properties are identically arranged in the properties window,
which enhances the suitability for learning. Object-dependent
properties, are grouped together by topic and placed in own tabs.
Figure 3 shows the properties window for use objects.

Figure 3: Window for editing use object properties

Udit displays the use model as a tree structure from left to right
(see Fig. 2). The tree root, which represents the use model, is
always located at the left window side and colored black. The
direct successors of the root have to be, according to the useML
specification, use objects. All siblings with same tree hierarchy
share a column in Udit. Use objects are always colored orange.
Each use object can be the father of a random number of use
objects or elementary use objects. The elementary use objects also
have a unique color representation. All elementary use objects
which are interactive user tasks, like “Change”, “Release”,
“Select” and “Enter” are colored green. “Inform”, which implies
no direct user action is colored blue. To guarantee consistency of

the information presentation, all use objects, elementary use
objects and the use model have the same graphical structure. Due
to the graphical representation of use models a better user
experience should be guaranteed. In general, an object consists of
a header, and a white label for its name. The object header
consists of the abbreviated object-type and the unique object id,
which is denoted in the upper right corner of the header. If the
multiple execution-attribute of the use object is set, the number of
iterations is enclosed by two brackets, placed before the object-
type. An asterisk, illustrated by the right use object in Fig. 4,
represents infinite executions, which means, that the execution has
to be aborted by the user.

Temporal operators, which were introduced with useML 2.0
enable modeling temporal relationships between (elementary) use
objects, are displayed as thin, vertical arrows. The type of the
temporal operator, Sequence (SEQ), Concurrency (CON), Choice
(CHO) or Order Independence (IND) is also denoted with a label
in the middle of the arrow.
Complex projects tend to a flood of information, which have to be
managed by the developers. But usually only a small cut-set of
these information, are relevant for handling the current task. To
support them in focusing on important parts of the model, Udit
implements various features, which support developers to set the
granularity of the displayed models’ information. Via expand
nodes the children of each use object can be displayed or hidden.
This feature allows hiding sub-tasks, which are independent from
the current task, for example. Additionally, Udit supports three
different modes, for tailoring information of use objects. Figure 4
depicts those three detail levels for a use object. From left to right:
“Simple view”-, “Show attributions”- and “Show all”-
representation. For the next update of Udit it is proposed to
implement filters. This feature would allow filtering all use
objects, which are available for a certain user group, for example.

Besides editing use models, Udit also has an integrated style
sheet-editor, which allows changing the project specific
attributions style sheet. Those attributions are defined in a
separate style sheet and can be adjusted to special project
requirements. The “user group” element for example is such an
attribution, which might vary in different (industrial) projects and
therefore has to be adjustable. After saving the style sheet,
developers can immediately use the new attribution values in the
current project.

For international use, Udit implements a multilingual designed
interface. The application language can be easily changed via a
simple language selection box, while the latest version of Udit is
localized in German and English. Due to the .NET resource
manager, it is easy to add new languages, if they'll be demanded
in the future. Udit also supports exporting use models into various
image formats, or to print them. These exports can be used for
documentation purposes or for structural system evaluation.

In the current version, Udit fulfills most of the specified
requirements and is successfully used and tested in a large scale
industrial project. Because of ongoing research progress, Udit is
maintained to guarantee consistency to the useML specification
and to increase the usability of the tool itself.

4. MODEL-MAPPING PROCESS
In this section we want to give a first overview about our mapping
approach from use models, specified with useML 2.0 into
Abstract User Interfaces (AUIs). The underlying transformation

process is currently under research. Since useML 2.0 is a task
modeling language it corresponds to the task & concepts layer of
the CAMELEON Reference-Framework [2]. According to this
framework the task & concepts models can be transformed into an
Abstract User Interface (AUI).

The AUI can further be decomposed into a presentation model
and dialog model. While the presentation model specifies the
structure of Abstract Interaction Objects (AIOs) [14] the dialog
model is used for describing the interaction between the AIOs and
the user [11]. The dialog model is also used to describe the
navigation between the presentation sets of the UI [5]. Both
models facilitate a platform and modality independent description
of a user interface. The challenge finding an appropriate mapping
between abstract and concrete models is also known as “the
mapping problem” [11].

Our current mapping process is decomposed into the following
steps:

Task-user mappings: The task model can be tailored towards
specific requirements. Filters enable developers to create a dialog
model e.g. for a specific user group (Personalization) by removing
tasks, which are not available on the target UI. Since filters can be
specified for any type of assertion – e.g. user group –, the task
model can be tailored in many different ways and is not limited to
the user model.

Task-dialog mappings: The task-dialog mapping is used to
obtain the navigational structure of the task model [5]. This is
expressed by the structure and temporal relationships between the
tasks.
Our approach is based on Enabled Task Sets (ETSs), introduced
in [10]. An ETS is a set of tasks, which can be executed at the
same time. Different algorithms have been presented, like in [10]
and [3], to calculate these ETSs. Both use a top-down approach to
identify the tasks, which share the same ETS. To specify the
behavior, transitions are detected, which connect the ETSs with
each other. Those transitions describe the “inter-window”
relations as stated in [5]. Since we are interested in a more
detailed dialog model, our approach could be considered as an
“intra-window” [5] method, which describes the dialog within a
“window”. This implies, that for each task in an ETS, a transition
has to be generated, which is linked to another ETS. The linked
ETS represents the tasks that can be executed, after the
transitional task has been finished.
Instead of separating the ETSs identification and finding the
corresponding transitions, we use an algorithm – influenced by the
simulator algorithm of CTTE [7] – which integrates the detection
of ETSs and transitions:
First, the algorithm identifies the initial ETS. This is done
traversing the task model top-down, using a function which
identifies the first tasks on each hierarchy, according to the
semantics of the temporal operators. This function can be

Figure 4: The three level of detail for use objects

compared to the “first”-function, used in [10], [3] and [5].
After the initial ETS has been identified, all tasks of the ETS are
executed. When a task of an ETS is selected for execution, a new
simulation cycle starts. The algorithm checks, which tasks of the
task model have been executed – those are labeled “finished” –
and which still can be executed. The tasks, which can be executed
next – according to the temporal operators –, are grouped together
within a new ETS. Then a new transition is created, labeled with
the executed task, and linked to the new ETS.
The last step is, to label the executed task as “finished”. This
process is repeated, until all tasks of any ETS are executed, which
implies that the root task of the task model is marked as
“finished”. The whole dialog model can therefore be derived from
the task model by generating all possible simulation traces. After
the dialog model has been generated, it can be used to simulate
the dynamical aspects of the task model, within a simulator.
Simulation is important for the dynamic evaluation of use models.

Task-presentation mappings: With a task-presentation mapping,
Abstract Interaction Objects (AIOs) are identified for each
interactive user task in the task model. In case of useML 2.0
interactive user tasks are represented by elementary use objects.
Since we are using the Dialog and Interface Specification
Language (DISL) [12], a platform and modality independent
UIDL, for AUI description, those elementary use objects have to
be mapped onto corresponding generic widgets. A simple look-up
table is used for this mapping. On this abstraction level, we don’t
consider grouping of AIOs. This should be done within the
concrete presentation model. The task model can be used to obtain
information about how to group or organize the interaction
Objects within a Concrete User Interface (CUI).

The results of the dialog and presentation mappings can be used to
generate an AUI, described with the DISL. Export functionalities
will be integrated into Udit.

5. SUMMARY & OUTLOOK
This paper introduced the major changes which have been
incorporated into useML 2.0. With these changes, the
expressiveness of useML has been strongly increased. The most
important enhancement is the introduction of temporal operators.
This also enables useML for a semi-automatic model
transformation, into a dialog model. A preview of the
transformation process we are using to transform useML models
into DISL dialog models was first introduced in this paper. To
support developers with a practical tool, the graphical use model
editor Udit has been introduced. In the current version, useML has
been successfully tested in a large project. With the help of a
consistent color-schema, a well structured design and context-
sensitive function-menus, the tool is designed to guaranty the best
usability when editing use models. Further steps in the
development of a MBUID tool chain will be the implementation
of the introduced transformation processes for automatic
derivation of dialog models from use models.

ACKNOWLEDGMENTS
The work presented in this article is being supported in part by the
Stiftung Rheinland-Pfalz für Innovation.

REFERENCES
[1] Bomsdorf, B. and Szwillus, G. 1998. From task to dialogue:

Task based user interface design. SIGCHI Bulletin, 30(4):40-
42.

[2] Calvary, G.; Coutaz, J. and Thevenin, D. et al. 2003. A
Unifying Reference Framework for multi-target user
interfaces. In: Interacting with Computers, 15(3):289-308.

[3] Coninx, K.; Luyten, K. and Vandervelpen, C. et al. 2003.
Dygimes: Dynamically Generating Interfaces for Mobile
Computing Devices and Embedded Systems. In: Proc. of the
5th International Symposium on Human-Computer
Interaction with Mobile Devices and Services, 256-270.

[4] Gray, P., England, D. and McGowan, S. 1994. XUAN:
Enhancing UAN to capture temporal relationships among
actions. Proc. of the Conference on People and Computers
IX, Cambridge University Press, 301-312.

[5] Luyten, K. 2004. Dynamic User Interface Generation for
Mobile and Embedded Systems with Model-Based User
Interface Development. PhD thesis, Transnationale
Universiteit Limburg.

[6] Meixner, G. and Görlich, D. 2008. Aufgabenmodellierung
als Kernelement eines nutzerzentrierten
Entwicklungsprozesses für Bedienoberflächen. Workshop
"Verhaltensmodellierung: Best Practices und neue
Erkenntnisse", Fachtagung Modellierung.

[7] Mori, G.; Paternò, F. and Santoro, C. 2002. CTTE: Support
for Developing and Analyzing Task Models for Interactive
System Design. In: IEEE Transactions on Software
Engineering, 28(8): 797 – 813.

[8] Mukasa, K. and Reuther, A. 2004. The Useware Markup
Language (useML) – Development of user-centered
Interfaces using XML. Proc. of the 9th
IFAC/IFIPS/IFORS/IEA Symposium on Analysis, Design,
and Evaluation of Human-Machine Systems.

[9] Paris, C., Lu, S. and Vander Linden, K. 2003. Environments
for the Construction and Use of Task Models. In: The
Handbook of Task Analysis for Human-Computer
Interaction, D. Diaper and N. Stanton (ed.), Lawrence
Erlbaum Associates, 467-482.

[10] Paternò, F. 1999. Model-based design and evaluation of
interactive applications. Springer, London.

[11] Puerta, A.; Eisenstein, J. 1999.: Towards a General
Computational Framework for Model-Based Interface
Development Systems. In: Proc. of the 4th international
conference on Intelligent user interfaces, 171-178.

[12] Schaefer, R.; Bleul, S. and Mueller, W. 2006. Dialog
Modelling for Multiple Devices and Multiple Interaction
Modalities. In: Proc. of the 5th International Workshop on
Task Models and Diagrams for User Interface Design, 39-53.

[13] Uhr, H. 2003. TOMBOLA: Simulation and User-Specific
Presentation of Executable Task Models. Proc. of the
International HCI Conference, 263-267.

[14] Vanderdonckt, J.; Bodart, F. 1993.: Encapsulating
Knowledge for Intelligent Automatic Interaction Objects
Selection. In: Proc. of the 1st Annual CHI Conference on
Human Factors in Computing Systems, 424-429.

[15] Zuehlke, D. and Thiels, N. 2008. Useware-Engineering: a
methodology for the development of user-friendly interfaces.
Library Hi Tech, 26(1):126-140.

