
Deriving User Interfaces from Task Models
Andreas Wolff, Peter Forbrig

University of Rostock
Albert Einstein Str. 21

D-18069 Rostock

{Andreas.Wolff, Peter Forbrig}@uni-rostock.de

ABSTRACT

This position paper presents our view on model driven user

interface development and relates it to other approaches. Our

methodology is based on task models that are attributed and

merged with a navigational model to derive user interface models.

A toolset to support this development approach is introduced

which is well-integrated and itself based on the eclipse modeling

framework EMF.

1. INTRODUCTION
Model-based software development is becoming more and more

popular because of its advantages in managing different versions

of software for different platforms. The term model-based is today

often only identified as a part of the object-oriented development

strategies related to UML. However, the origins of using model

specifications during software development were task-based

ideas. Originally such task models were used to specify the

behavior of people.

For several years our group has been working on combining

object-oriented and task-based methods. Our research is especially

focused on using patterns for this purpose.

Model-to-Model transformations based on Eclipse Foundation’s

EMF [5], an implementation of W3C MOF meta-model, have

been used in many fields of research and business. This paper

illustrates another appliance. Two EMF models are used as

transformation source. One is describing the application as a task

model and another EMF model describes the possible and allowed

navigation through an envisioned UI of this application. Typical

WIMP-style user-interfaces may, reasonably well, be described in

this manner. The tools developed for our approach use

openArchitectureWare (oAW) [9] workflow templates to combine

task model and dialog graph and transform those models into a

working mock-up of a user interface prototype or into a abstract

user interface.

Abstract user interfaces can still be represented as EMF models.

For concrete user interfaces another type of model is used. UIs

can be described, defined or programmed in many different ways.

Closely related to model-based development are any types of

XML-based UI-languages. Their main advantage is a well-defined

grammar and their hierarchical structure.

While several XML-based UI languages are wide-spread; XAML

(Microsoft .NET), UsiXML[11] and XUL [13](Mozilla) certainly

are of major importance. Transformations of this paper produce

XUL-models as target model.

2. METHODOLOGY
Our software development methodology is based on task models

of psychologists and manpower studies. According to these

studies, a task has to be performed on an artifact by a person in a

certain role using tools. Additionally, some tasks have to be

executed on devices with certain features only. In an abstract way

a task can be considered as specification of the following form:

Task=(Goal, Sub-tasks, Temporal Relations, Pre-conditions, Post-

conditions, Artifact, Tool(s), Role(s), Device). The notation of

concurrent task trees (CTT) has nearly become a standard in

representing tree structures of tasks. We also make use of an

extended CTT-specification for designing applications as task

models.

Our development strategy is focused on WIMP-style user

interfaces and possibly limited to those. Support for multi-modal

or 3-dimensional systems is not actively researched. A core aspect

of window-based user interfaces to interactive systems is their

navigational structure.

We specify this navigation structure by a special graph, which is

called dialog graph. Dialog graphs consist of nodes, mostly

interpreted as views, and of transitions between those nodes.

There are different node types that distinguish views in

complexity, hierarchy and modality. Transitions are directed

relations from an element of a view to another view or element.

Transitions reflect navigational aspects of user interfaces. Typical

elements of a view are tasks.

The concept of dialog graphs may reflect different abstraction

levels. It is not limited to platform independent models (PIM) or

abstract user interfaces either. Therefore we use dialog graphs as

one transition point from PIM to platform specific models (PSM).

Allowing the assignment of differing dialog graphs to one task

model is one possibility of adaptation to context-of-use within our

development methodology.

The combination of task model and navigational structure is the

basis to generate an abstract user interface model (AUI). AUIs

describe the internal layout of each view, i.e. the relative

positioning of tasks within it. Furthermore the class of user

interaction elements for every task is assigned, e.g. ‘1:n’ input

(choose from list) or hierarchical selection (tree) or string output

(label). Note that explanations in parentheses are only illustrative,

but not definitive assignments.

An abstract user interface can be transformed to a concrete user

interface (CUI). For this model-to-model transformation the

abstract definitions of layout and user interaction elements are

mapped to a precise layout. User interaction object classes are

replaced by definitive implementing widgets. This model is

eventually used by code generators to deliver an application or a

final user interface respectively.

As mentioned before, we strive to automate the whole workflow

from task models to final user interfaces. While we found that

fully automatic generation does not produce feasible user

interfaces, i.e. acceptable from a usability point of view, a

combination of automatisms and human designer assisted

transformations yields sensible results.

Table 1: Available adaptations during development process

Model Adaptation to context-of-use

Task model sequence, iteration, concurrency

Dialog graph
(semantic) grouping of tasks into views,

transitions and navigational flow

Abstract UI
basic screen layout,

widget class per task

Concrete UI

implementing widgets

graphical design (coloring, images, labels)

positioning of elements

Table 1 summarizes the models used in our approach and

indicates which kind of adaption is possible on each level.

3. TOOL SUPPORT
To support our user interface development process a number of

tools was developed. Most of them started as separate tools which

communicated using proprietary XML-based languages. While

the number and variety of tools evolved this became a stalling

factor in development. Therefore we decided to port them into the

EMF environment and use XMI for communication.

For that purpose meta-models for task model and dialog graph

were developed, other like those of abstract and concrete user

interface were reverse engineered from their respective XML

schema definitions. For model-to-model transformations we now

use e.g. openArchitectureWare workflows.

3.1 Defining task model and dialog graph
Task models in CTT notation form the basis of our modeling

approach. Besides standard CTT our graphical editor is capable of

handling advanced concepts as for example prioritization or

instance iteration. Also artifacts needed and presentation defaults

may be defined with this tool.

Next step in our methodology is the navigational structure. The

previously existing dialog graph editor was converted into an

EMF/GMF editor. It allows manual creation of views and

assignment of tasks to views. Its features include hierarchical

dialog graphs, i.e. views can be composites of sub-view[s] and

tasks; this was developed as adaptation concept to reduce

complexity and repetition in dialog graphs.

Automatic generation of dialog graphs from task models is not a

trivial task. There are basic approaches as: “put every task in its

own view” or “put all tasks in a single view”, which of course are

not satisfying. Enabling task-sets, as known from CTTE [3],

might be a promising approach, but for now we attempted a semi-

automatic procedure.

We require that the modeler annotates tasks of his task model with

markers. Those marks enable an interpreter to decide which tasks

belong into the same view, in our case the interpreter is the dialog

graph editor. Modelers can either manually attach the additional

information within the task editor or they can specify general

profiles for operators that are used during the transformation

process. Any task may be marked as:

• ICV – Integrate Children into View: A task and its first level

children are attached into the same view

• IN – Ignore Node: Task and all its children are ignored for

navigational model

• PUNM – Pick Up for Navigation Model: Abstract tasks are

included into the navigation model

• VL – View List: Explicit grouping and ordering of children

In Figure 1 partial screenshots from two tools can be seen. The

upper part is from our task editor and shows a very simple CTT-

alike task model. In this notation the enabling node has the same

meaning that separate enabling transitions between children nodes

would have. Also the effective grouping annotations for each task

are displayed. Here all grouping is defined in the “enabling” node,

via its marker VL.

During the model-to-model transformation the abstract task is

ignored and its children are grouped according to the explicit

ordering specification “{0}{1,2}{3}”. Activating e.g. ICV instead

of VL would result in one view only with all tasks within it.

The lower part is an excerpt from our dialog graph editor. This is

how it displays the resulting model of three simple views with

sequential transitions between them.

Marker profiles are preset configurations that may be applied to

all or only selected nodes of task models; as such they may be

platform independent. Manually attached information is

considered to be platform specific as well. The concept and the

corresponding tool support are discussed in depth in Diebow [4].

3.2 Generating a user interface
Figure 2 shows the meta-model of dialog graphs. Stereotypes

Model and ModelElement refer to their respective EMF meta-

model types, as well as EBoolean is EMF’s Boolean type. Classes

Task, DeviceType and UserRole are defined in other packages;

those are non-displayed as their actual declaration is of no

importance for this paper.

Any view of a dialog graph is modeled as DialogView object. A

view object has references to each task it contains and if needed to

artifacts of those tasks. Navigation between views is controlled

and specified using the port-metaphor. A port is either source or

target of a transition.

Figure 1, Transformation of an annotated task model

The completion of a certain task may result in or trigger a

transition. Transitions are specified within objects of class

TaskToTransitionMapEntry. Conditional transitions referring to

ports of a view are stored in its DialogView.taskentry attribute.

The meta-model provides means to define hierarchical dialog

specifications. Class DialogViewGroup is used entirely for

hierarchical dialog graphs. A parent-child relationship is

established between instances of Dialoggraph and DialogView,

navigatable as parent or rather subgraph.

As discussed in section 2 it is possible to generate an abstract

interface from a dialog graph. We want the AUI to serve as mock-

up of an application. Thus it can be used to discuss the application

workflow with any stakeholder in a very early development phase.

User interface prototypes, for WIMP-interfaces, can e.g. be

defined in a number of XML languages. We decided on a

combination of HTML and XUL for that purpose. A suitable

viewer would be every Gecko-based web-browser; Firefox is

probably the most well-known example. Actual UI generation is

done by openArchitecureWare workflows who transform the

EMF model of a dialog graph into XUL.

For the generation at first the application starting or entry point

has to be identified. Our basic WIMP-style application consists of

views and simple interaction objects arranged into those views.

Each application, per definition, has a start view configured in its

dialog-graph.

Dialog graph view-to-view transitions are defined using a port-to-

port metaphor. Application start- and end-nodes fit into this

system as well. There is a port defined as application-start, type

outgoing and named ‘start’, and there is an opposite port, type

incoming and named ‘in’, denoting the end of the application.

Objects of type Dialoggraph contain references to those entry and

exit ports within their attribute DialoggraphPort.

For generating our application’s startup mask the transformation

begins in the context of the root dialog graph. Here the

application’s entry port is identified by OCL and an

openArchitectureWare transformation workflow is invoked.

3.3 CUI and patterns
After developing and testing the dialog structure on the level of

simple prototypes and abstract user interfaces the next step would

be the concrete user interface. We mainly use XUL for this model

level, for the same reason as for section’s 3.2 prototypes. Also we

have generators for UsiXML and are working on XAML.

But still most advanced support is available for XUL as CUI

model. There is an EMF editor and the GEF XUL editing tool

(XUL-E). It is a typical editor for graphical user interfaces and

features drag and drop layout and WYSIWYG-layout as far as it

is possible for XUL.

Beside its graphical editing features its main purpose is to

integrate into our development approach and to provide an engine

for user interface pattern application.

XUL-E may be used to refine or re-layout the prototypes

generated in section 3.2 while leaving their navigational structure

intact. Thus it is possible to keep the application’s prototype

character while improving its graphical representation. This is

achieved by tracking UI elements that are modified or replaced.

This modification information is used to attach the correct model

references to new user interface elements.

Another source for concrete user interfaces are AUI descriptions

from the USG process [14], which we map in semi-automatic

transformations to XUL.

Another of our main research topics is the integration of HCI

patterns into MDD. The object-oriented patterns introduced by

Gamma et.al. [16] are widely known as valuable aid and we

consider HCI patterns to be of the comparable value. Therefore

we try to integrate those patterns into our model-based UI

development process.

We focus our pattern integration on the CUI level, but consider

task and navigational patterns as well. We try to translate the idea

of a certain pattern into an algorithm or a layout template and

define this as a pattern instance component (PIC) [15]. A PIC is a

machine readable definition and may be employed semi- or fully

automatically to a user interface model.

PICs are stored as EMF models making our main tool chain

completely based on eclipse’s [graphical] modeling and as such

well integrated.

If a modeler is satisfied with its designed CUI, whether by pure

editing or using PICs, he may use the source code generator and

produce Java Swing source code of it.

4. RELATED WORK
A lot of tools and methodologies for model-based development of

interactive systems have been developed. In this section we

concentrate on approaches that we consider as most typical and

promising.

These are TERESA [10] developed within the Cameleon [1]

project and UsiXML [11] which is a language, a set of models and

a tool set. Both approaches do not provide explicit navigation

specifications like dialog graphs. This information is, if available

at all, distributed over different other models.

In general TERESA generates the user interface based on its

models by presenting all tasks active at the same time in one

window, but it is possible to use additional heuristics.

Figure 2, Meta model of dialog graph models

TERESA and UsiXML do not really consider the abstraction level

of a dialog graph. They have the level of abstract user interface,

which is a little bit more concrete than our approach. Our dialog

graphs are more concrete than task models but more abstract than

their AUIs. Unlike TERESA and UsiXML our dialog graph gives

the opportunity for an explicit design process of the navigation

structure. Our approach may be offered as an alternative strategy

to software developers, if the generation process does not deliver

the expected results. It might depend on the application domain

and especially on the number of tasks in the model, which

approach fits best. Especially for larger task models our approach

might fit better because not all tasks are presented that could be

executed in a certain moment.

The approach proposed by Costa et. al. [2] uses a kind of task

trees represented in UML notation for dialog modelling. Each task

element is detailed by the Dialog Model using a UML-compliant

adaptation of the CTT notation. Tool support is available by

DialogSketch [8]. Canonical abstract prototypes are used to

specify the first level of user interfaces. In this way it does not

have this level of abstraction we want to support too. It is focused

on Web interfaces and related papers do not discuss the problem

of different roles and a variety of platforms.

Most publications related to navigation specifications seem to be

related to the area of web applications. This was the result of a

current survey of the literature. Leung et. al. [7] specify the

navigation for web applications by state charts. They present

specification solutions for intra-page, inter-page and frame-based

navigation by hierarchical states. They already raise the problem

of multiple windows that are specified in dialog graphs as

multiple views. Their solution suggests separate state charts for

each window. The authors identified dynamic content as a special

problem of their kind of specification. From our point of view the

readability is another problem. The notation is much more

complex than our dialog graphs. It also does not allow different

kinds of transitions. Roles and devices were not considered.

Koch [6] as well focuses her work on web modelling. She bases

her specification on UML. UWE (UML-based Web Engineering)

is a model-driven development approach. Class diagrams with

special profiles specify the navigation model. More or less only

the menu structure is represented by the specification. It is the

goal of this approach to transform navigation models together

with business specifications in form of activity diagrams and state

charts to service-oriented applications.

5. SUMMARY
In this paper we briefly described a set of tools for model-driven

user interface development. Those tools form a tool chain which

is embedded into the eclipse modelling framework and uses

standardized XML dialects for specification and user interface

models.

The presented methodology is based on task models and uses

specialized navigational models to derive abstract and concrete

user interfaces and to eventually generate source code. It is

adaptive on any model level and able to integrate HCI pattern into

the development process.

Future work will especially focus CUI integration of UsiXML, the

model representation of pattern instance components and pattern

for task model to dialog graph transformations based on our newly

introduced marker concept.

6. REFERENCES
[1] Cameleon: http://giove.cnuce.cnr.it/cameleon.html (visited

November 29, 2008)

[2] Costa, D., Nóbrega, L., Nunes, N.: An MDA Approach for

Generating Web Interfaces with UML ConcurTaskTrees and

Canonical Abstract Prototypes, TAMODIA 2006, Hasselt,

Belgium, October 23-24, 2006.

[3] CTTE: The ConcurTaskTree Environment.

http://giove.cnuce.cnr.it/ctte.html (visited November 2008)

[4] Diebow, Ch.: Entwicklung eines Konzeptes zur interaktiven

Trtansformation von Aufgabenmodellen in Navigations-

modelle, Master Thesis, University of Rostock, 2008.

[5] EMF: http://www.eclipse.org/modeling/emf/?project=emf

(visited November 4, 2008)

[6] Koch, N.: Transformation Techniques in the Model-Driven

Development Process of UWE, ICWE’06 Workshop, Palo

Alto, 2006

[7] Leung, K.R.P.H., Hui, L.C.K., Yiu, S.M., Tang, R.W.M.:

Modeling Web Navigation by Statechart, Proc.

COMPSAC’00

[8] Nóbrega, L., Nunes, N. J. and Coelho, H.: DialogSketch:

Dynamics of the Canonical Prototypes, TAMODIA’2005,

Gdansk, Poland, September 26-27, 2005.

[9] openArchitectureWare:http://www.openarchitectureware.org/

(visited November 4, 2008)

[10] TERESA: http://giove.cnuce.cnr.it/teresa.html (visited

November 4, 2008)

[11] UsiXML: http://www.usixml.org/ (visited November 4,

2008)

[12] Tool Support for an Evolutionary Design Process using User-

Interface Patterns

[13] XUL: http://www.xul.org (visited November 4, 2008)

[14] Müller, Andreas: Spezifikation geräteunabhängiger

Benutzerschnittstellen durch Markup-Konzepte, PhD

dissertation, University of Rostock, 2003

[15] Wolff, Forbrig,Reichart: Tool Support for Model-Based

Generation of Advanced User Interfaces. MDDAUI '05,

Proc. of the MoDELS'05 Workshop on Model Driven

Development of Advanced User Interfaces, CEUR Workshop

Proc. 159. CEUR-WS.org, 2008.

[16] Gamma, Helm, Johnson, Vlissides: Patterns-Elements-

Reusable-Object-Oriented-Software, Addison-Wesley, 1994,

ISBN 0-201-63361-2

