
Semantic Integration and Language Access to Mobile Data
Raimondas Lencevicius

Nokia Research Center Cambridge
3 Cambridge Center

Cambridge, MA 02142

Raimondas.Lencevicius@nokia.com

Alexander Ran
Nokia Research Center Cambridge

3 Cambridge Center
Cambridge, MA 02142

Alexander.Ran@nokia.com

ABSTRACT
Real-world data can significantly enhance the functionality of
mobile services. For this, real-world data needs to be collected,
stored and integrated with other information available on mobile
devices. A flexible and user-friendly interface to the data is also
needed. This paper describes an experience in collecting real-
world data and integrating it into a semantic data repository. We
use an innovative Natural Query language and engine to
automatically connect the resulting repository to the natural
language user interface. The resulting system on S60 mobile
platform successfully answers user questions about Personal
Information Management (PIM) data extended with real-world
data.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval], H.5.2 [User
Interfaces]: Natural language

Keywords
Data access, query language, natural language.

1. INTRODUCTION
Mobile devices make a perfect user interface to the real-

world environment. They are constantly carried with the user [2]
enabling gathering of user location information. Mobile devices
are equipped with more and more sensors including GPS
receivers, Bluetooth transmitters and receivers, RFID receivers
and others. They also receive and store information about such
real-world events as messages, phone calls, meetings, application
usage and access to digital services. It is therefore natural to
expect that this real-world data should be collected and made
accessible on mobile devices. However, there are some open
questions that need to be resolved in order to make this kind of
data useful and accessible both to the programs and to the mobile
device users. Collected real-world data must be structured and
integrated with other information available on mobile devices
such as, for example, the information found in the user’s phone
book or calendar. There also needs to be an intuitive interface that
allows flexible access to collected information.

In this paper we present a framework that collects real-world
data, structures it according to an extended PIM ontology,
augments and integrates it with earlier collected data, and stores it
in an RDF repository.

To access the data, an intuitive interface is needed. Natural
language based information access is increasingly viewed as a
promising alternative to graphical user interfaces (GUIs),
especially in the domain of mobile devices. We have developed a
Natural Query language and engine that can automatically map

meaning representation produced by language systems into formal
database queries. This enables us to provide a natural language
interface to the integrated real-world and on-device data.

The paper describes our data gathering framework (Section
2) and explains our solution to data storage (Section 3). Natural
Language Interface to the stored data is simplified via using
Natural Query system (Section 4). Then we describe our
experience with the system (Section 5). We finish with the related
work and conclusions.

2. DATA GATHERING
Data collection on mobile devices is an active field of

research [3][8]. We have extended one of the frameworks
available within Nokia to collect events that occur on a mobile
device: phone calls, SMS messages, nearby Bluetooth devices,
and GSM locations. All of these events are tagged with a
timestamp when they occur. For phone calls the device records
the phone number called (or the phone number that called the
phone user) and the call length. For messages, the phone number
and the message text is recorded. A GSM location change event is
recorded when the cell tower associated with the phone changes.
Finally, the phone periodically scans for Bluetooth devices in its
vicinity and records their names and IDs.

Although the real world data gathered is interesting by itself,
it becomes even more important when connected to the data
already available inside the device. Mobile devices store a rich set
of structured information. The address book or phone book
application contains names, phones, addresses and affiliations of
personal contacts. The calendar application contains entries for
meetings with participants, meeting location and time. All these
data are related. Retrieving these data based on their relation
could be very useful for device owners. With such retrieval
capabilities they could learn who called them when they were in
California, or when is their next meeting with Ann from
Accenture. Unfortunately, the relations between different data
items are not explicit when the events occur or information is
entered in some application. Therefore it is important to integrate
the collected data by explicating its relation to data available on
the device. To achieve this goal, we have developed an extended
PIM ontology that covers all relevant types of information
available on the mobile device: from observed events, information
from external data stores, to on-device data from several mobile
applications. Once the data was structured and augmented with
relations, it is stored in RDF [10] repository.

3. STRUCTURED DATA STORAGE AND
ONTOLOGY

We created the PIM ontology to cover all data available in
the device. We considered using such standard ontologies as W3C

foaf [4] and vcard [15]. However, the information available on the
mobile device was richer than the types supported by standard
ontologies. Main classes in our ontology are Person,
Organization, CalendarEntry, EmailAddress, Location,
Observation, Message, Call, and PhoneNumber. Part of the
ontology is shown in Figure 1.

Figure 1. Part of Mobile PIM ontology

There are about ten more secondary classes and class
attributes. The real-world data observations are stored in the
objects of Observation subclasses: BTDeviceObserved,
CallObserved, MessageObserved, and LocationObserved. The
attributes of these objects connect with other objects of the
repository. For example, the phoneNumber attribute of a
CallObserved is of type PhoneNumber, which is also used in the
attribute phoneNumber of a Person or Organization class.
Therefore the gathered real-world data directly integrates with the
on-device data.

For some other data, programs or users have to add
information to facilitate integration. For example, a Bluetooth
device ID and name attributes have to be added to the Person
class and filled in with concrete values in order to associate the
BTDeviceObserved observation to a specific person carrying a
Bluetooth device.

Another area where observed data integrates with on-device
data is the location information. A significant part of ontology
deals with locations at various granularity levels: from meeting
rooms, to office buildings, cities, and countries. We use the
partOf relation between different objects to represent geographic
or organizational inclusions. For example, a relation can indicate
that Boston is a part of Massachusetts, which in turn is a part of
the USA. This attribute is also used to describe the GSM location
containment within a certain geographical object. Since GSM
locations are somewhat imprecise, we have chosen to associate
them with town or city level geographical entities. This provides
sufficient information in most cases.

Overall, we found that our RDF repository is significantly
more flexible than a relational database. For example, it naturally
supports multiple classes of contacts, multiple affiliations per
person, and supports a sophisticated typing system.

4. NATURAL LANGUAGE INTERFACE
Although the repository of integrated real-world and in-

device data can be used in variety of ways, for example, via
querying it using SPARQL [14], we were interested to provide an
intuitive and flexible user interface to it. We decided that a

general natural language interface to a rich data set could be more
effective than a GUI based application.

As a rule, information bases and language systems are
developed independently of each other. Therefore information
bases are not designed for interaction using natural language and
their integration process is mostly ad hoc, manual process. Figure
2 is a sketch of a typical architecture that is used to provide a
natural language interface to databases and other back-end or
native services.

Figure 2. Architecture sketch of Natural Language Interface
to Services

The speech recognition and generation components translate
between text and speech modalities. The language understanding
component converts the text into a formal representation of
meaning sometimes called semantic frame [12]. The language
generation component converts the formal meaning representation
to a natural language text [1]. The dialog manager uses the
context of conversation to complete frames received from the
language understanding module or created by the custom
integration code from responses of backend services. The custom
integration code also translates meaning representation frames it
receives from the dialog manager into a standard database query
or backend specific API requests.

We have designed and implemented the Natural Query (NQ)
language and engine [9] that removes the need for custom
integration code. NQ can automatically map meaning
representation produced by language systems into precise
database queries. NQ employs two mechanisms: language tags
and data graph search to return requested data using only the
information in the meaning representation of the user request.

Language tags are words, expressions, and linguistic tokens
attached to database elements such as classes and properties.
Multiple tags can be attached to a single element and a single tag
can be attached to multiple elements. Language tags are the names
of the corresponding categories used by the language system(s).

Figure 3 illustrates language tags associated with a part of our
PIM ontology. A generalization like “Contact” can be attached to
specific classes like “Person” and “Organization”. Tags like “in”
can be attached to all location elements. A general reference like
“Name” can be attached to multiple elements like “givenName”,
“familyName”, and so on. In our RDF repository of real-world
and in-device data, we added language tags to the RDF objects
using a subproperty of RDFS label field.

First name

Address

City

Last nameName

Contact

in

Figure 3. Language tags for database elements
While ad hoc integration needs to have the information about

the organization of the database, NQ avoids the need for such
information by using a graph search to achieve the same objective.
Given a question “Who are my contacts at IBM in Ulm?”, NQ
finds paths connecting the nodes known from the meaning
representation, such as “Person”, “name”, “Organization”,
“City”, “Ulm”, and “IBM”. One of such paths is highlighted in
Figure 4.

Joe Lee homeAddress workAddress affiliation

title organization

address

streetpcodelocalityregioncountry

streetpcoderegioncountry

streetpcodelocalityregioncountry

Person

Joe Lee homeAddress workAddress affiliation

title organization

address

streetpcodelocalityregioncountry

streetpcoderegioncountry

streetpcodelocalityregioncountry

Person

Ulm
IBM

Figure 4. Answering query via graph search

We have created a proof of concept implementation of NQ in
Python [7] that runs on S60 [11] mobile phones. Full description
of the Natural Query system is presented in [9].

5. EXPERIENCE WITH THE SYSTEM
We tested our system on a PIM test data set containing 550

contacts with about 150 meetings and 250 phone calls, which is
normal for executives with a lot of contacts and meetings. The
repository contained over 11000 RDF triples. We asked over 50
natural queries corresponding to over 600 parameterized

questions. We did not count various parameters, such as different
cities or names, since these numbers can be made arbitrarily large
and the resulting number of questions does not really reflect the
capabilities of the system.

The system can answer questions ranging from “What is the
email of John?” to “Where does Ann work?” to “My meetings next
week with John” and “Who called me yesterday”. Some of these
questions would convert to quite complex relational or SPARQL
queries. For example for the query “Who called me yesterday”, we
need to find all telephone numbers of calls that occurred yesterday
and then find all people who have these telephone numbers. NQ
query for this is very simple: “fromClass = 'Person', select =
['givenName', 'familyName'], where = [(["ReceivedPhoneCall",
'start'], TimeInterval ('yesterday'))]”.

If we classified questions according to domains, one domain
would contain questions about the personal information data from
an address book application, for example “Who works as a real
estate broker?”. Another set of questions is about meetings, for
example, “When are my meetings next month at MIT?”. Yet
another set is about calls and messages, for example, “Who called
me last Friday?”. Finally there are questions spanning multiple
domains, for example, “What are emails of people who
participated in a meeting on Monday?”, “Who called me when I
was in Finland?”, and so on.

All these types of queries (Figure 5) were successfully
created and executed on the extended PIM data store.

Figure 5. Example questions

We found out that we could easily ask questions both about
the in-device data and the collected real-world data. Integration of
the two enhanced our question answering capability significantly,
allowing such questions as “Who called me when I was in
Helsinki?”, “Which messages did I receive during the meeting
with Juha?”. Although the detection of someone’s Bluetooth
device is a weak indication the phone user met other person with a
Bluetooth device, in our experiments we assumed such
implication. This allowed us to ask questions such as “Who did I
meet last week?”.

Test NQ queries mostly returned expected answers (96%
recall, 92% precision) (Figure 6) including the approximate
answers where the exact answers were not available. For example,
the question “When was my meetings with Sam last month?” had
no exact answers, so the system returned approximate answers of

meetings with Sam that did not occur last month as well as the
meetings that occurred last month, but did not include Sam.

The performance of the system was acceptable with answers
taking from less than a second to several seconds. The system
implementation is a prototype in Python that was not optimized
for memory or speed. The detailed evaluation of system
performance is outside the scope of this paper. We are planning to
optimize the system performance in the near future.

Figure 6. Example question and answer

6. RELATED AND FUTURE WORK
Real world data has been gathered on mobile devices by a

number of projects including Context [8] and Reality Mining [3].
In our work, we have extended one of the data gathering
frameworks available at Nokia.

Mobile data storage in RDF repositories is investigated by
ConnectingMe [5] project at Nokia Research Center. We are
collaborating with ConnectingMe in the ontology and repository
development.

We have not discovered any research directly corresponding
to the Natural Query approach. The Precise system by Popescu et
al. [6] attaches language tokens to database elements in a way
very similar to language tags of NQ. Also the query derivation
approach of Precise is based on database graph search. NQ uses a
more flexible data model, supports incomplete answers, and
collects data for explanations.

In the future, we plan to connect our system to such natural
language and speech systems as TINA [12] and Galaxy [13]. We
plan to perform user trials to evaluate our system and its user
interface to real world data. We will collect additional data such
as email messages, songs listened, and pictures viewed and taken.
We will also optimize the current prototype implementation.

7. CONCLUSIONS
Mobile devices are now able to continuously collect real

world data and present it to the users. In addition to real world
data, mobile devices host structured and semi-structured

information bases. We have demonstrated integration of such data
with the collected real world data using a flexible and powerful
RDF repository and a common ontology. We have designed and
implemented a query language and engine NQ that can
automatically map meaning representation produced by language
systems into formal database queries. We have used NQ to access
extended PIM (Personal Information Management) data on
mobile phone. Our experience indicates that real-world data
gathering and integration with in-device data, together with a
natural language interface is a valuable addition to capabilities of
mobile devices.

8. REFERENCES
[1] Baptist L. and S. Seneff, "Genesis-II: A Versatile System for

Language Generation in Conversational System
Applications," Proc. ICSLP '00, Vol. III, pp. 271-274,
Beijing, China, Oct. 2000.

[2] Chipchase, J., “Why do People Carry Mobile Phones?”,
http://www.janchipchase.com/blog/archives/2005/11/mobile
_essentia.html, 2005.

[3] N. Eagle, "Machine Perception and Learning of Complex
Social Systems", Ph.D. Thesis, Program in Media Arts and
Sciences, Massachusetts Institute of Technology, June 2005.

[4] FOAF Vocabulary Specification 0.9,
http://xmlns.com/foaf/0.1/, 2007.

[5] Lassila, O. et al, “ConnectingMe”,
http://research.nokia.com/research/projects/connectingme/ind
ex.html, 2007.

[6] Popescu, A., Etzioni, O., and Kautz, H. 2003. Towards a
theory of natural language interfaces to databases. In
Proceedings of the 8th international Conference on
intelligent User interfaces (Miami, Florida, USA, January 12
- 15, 2003). IUI '03. ACM Press, New York, NY, 149-157.

[7] Python for S60, http://sourceforge.net/projects/pys60, 2007
[8] Mika Raento, “Context software - A prototype platform for

contextual mobile applications”. In Proceedings of the
International Proactive Computing Workshop. University of
Helsinki, 2004.

[9] Ran, A., and Lencevicius, R., “Automating Access to
Structured Data from Natural Language”, Submitted for
publication, 2007.

[10] Resource Description Framework, http://www.w3.org/RDF/ ,
2007.

[11] S60 platform, http://www.s60.com, 2007
[12] S. Seneff, "TINA: A natural language system for spoken

language applications," Computational Linguistics, vol. 18,
no. 1., pp. 61-86, March 1992.

[13] S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue,
"GALAXY-II: A Reference Architecture for Conversational
System Development," Proc. ICSLP 98, Sydney, Australia,
November 1998.

[14] SPARQL Query Language for RDF,
http://www.w3.org/TR/rdf-sparql-query/, 2007.

[15] Vcard, http://www.w3.org/TR/vcard-rdf, 2007.

