
Context Modeling for Device- and
Location-Aware Mobile Web Applications

Michael Hinz Zoltán Fiala
Dresden University of Technology, Department of Computer Science

Heinz-Nixdorf Endowed Chair for Multimedia Technology
D-01062, Germany, +49-351-463-38516

{michael.hinz, zoltan.fiala}@inf.tu-dresden.de

ABSTRACT
Ubiquitous Web systems have to deal with varying context
information in order to support context awareness. Accomplishing
this requirement necessitates gathering, processing and
representing that information, so that it can be used for adapting
Web applications. In this paper we propose a mechanism for
modeling dynamically changing context information like user’s
device capabilities and location. Furthermore we show how this
modeling mechanism can be integrated into context-aware system
architectures. With the aid of this approach we are able to perform
a device- and location-aware online document generation of Web
documents for mobile appliances.

Categories and Subject Descriptors
H.5.4 [Hypertext/Hypermedia]: Architectures. H.3.4 [Systems
and Software]: User profiles and alert services.

General Terms
Management, Measurement, Design.

Keywords
Context modeling, context-awareness, device independence,
ubiquitous computing, location-based services

1. INTRODUCTION
Today’s WWW emerges to a medium of communication and
cooperation. A multiplicity of users with different requirements
uses the Web as a ubiquitous information store. In this way
several trends such as personalization [1] and device
independence [2] have raised that require the adjustment of Web
applications to the user and its client device. Furthermore, with
the emergence of location-based services, the client location
becomes important context information, too. Still, today’s
location-based services (e.g. navigation system, location-aware
museum guides) are fast-paced but usually stand alone
applications not suited for the common Web. Furthermore their
development is primarily driven by the mobile telecommunication
industry and is therefore limited to applications on mobile phones.
We claim that the main reason for this shortcoming is the still
lacking support for automatically gathering and representing
device and location context data. By improving the access to such
context information the richness of communication in human-
computer interaction increases, and makes it possible to produce
more useful Web services [6]. To meet this challenge, this paper
introduces context modeling mechanisms which enable the

development of personalized device- and location-aware Web
applications at the same time.

The paper is structured as follows. After addressing general
context modeling aspects (section 2), modeling mechanisms for
device capabilities (section 2.1) and the user’s location (section
2.2) are illustrated. Beyond that, methods and techniques for
sensing and representing that context information are presented.
The described mechanisms were successfully integrated into a
Web system performing a dynamic generation of context-aware
Web pages (section 3).

2. CONTEXT MODELING
In the literature several definitions of the terms context and
context-awareness can be found (e.g. [3], [4]). However, adding
context to Web applications requires on the one hand the
acquiring and modeling of context information such as location
[5] as well as device context [2]. On the other hand that
information has to be stored in a standardized representation.
Without this application developers are left to develop ad hoc and
limited schemes for storing and updating context information.
However, the evolution of more sophisticated representations
enabling a wider range of capabilities and a true separation of
sensing context from the programmable reaction to that context is
still an unsolved challenge [6]. To ensure this, the proposed
modeling mechanisms represent the gathered information in a
profile-based extensible context model ([14]) which relies on the
W3C standard CC/PP [7]. Modeling components (e.g. for device,
location and user modeling) guarantee a permanent monitoring of
context and updating of the corresponding context profiles.

2.1 Device Modeling
Because of the requirements of mobile phones and resource
restricted handheld computers their in- and output interfaces are
limited e.g. in display size or number of buttons. Therefore they
are far away from suitable interfaces to the Internet. Overcoming
this burden requires the creation and publication of content that is
tailored to users’ platform capabilities and dynamically changing
device properties. Therefore device capabilities have to be
acquired, represented and provided to the document generation
engine in the context aware system. In the next chapters those
aspects will be explained more detailed.

Context Model

Acquiring Device Capabilities

Device Profile

Context
Modeling

(Device)DELI framework

updated device
capabilities (UAProf)

UserAgent

Update Device Context

client side code (e.g.
JavaScript, JAVA, JScript)

Client/Server
Communication

device profile request

device profile response

Device Repository

UAProf enabled device

Figure 1: Modeling device capabilities

2.1.1 Acquiring Device Capabilities
Several strategies exist to acquire device capabilities for device
sensitive Web applications. The most popular method is to
analyze the HTTP user-agent parameter that comes with the
HTTP request and map this parameter to a device or browser
repository on the server side. However, this works only for nearly
static device properties. Using the User Agent Profile
specification (UAProf [8]) basing on the CC/PP framework [7]
establishes a more effective mechanism for gathering dynamically
changing device properties on the server by analyzing the UAProf
enabled request. However, this specification only provides a
common vocabulary for WAP devices. But most of the
vocabulary can be adopted for other non WAP devices like
normal Web browsers on desktop computers, notebooks or PDAs.
In our work we extended the vocabulary in order to support those
device classes. Further on for those device classes we provide a
mechanism to transfer the gathered device capabilities within the
HTTP request to the server.
In this way our device modeling mechanism illustrated in Figure
1 distinguishes between UAProf enabled devices, devices
providing the user agent and devices giving support for client side
code fragments like JavaScript, Jscript and Java (combinations are
possible). Those client side code fragments are included during
the Web document generation on the server and directly gather
device properties on the client. The gathered information is
encoded in a UAProf like representation and integrated in the
HTTP request by a client/server communication component for
processing that information on the server.

2.1.2 Processing and Representing Device Context
According to the gathered capabilities from the client, the server
processes the corresponding device context. The processed
context is represented as the device profile in the context model
(see Figure 1 and Figure 3). The representation is based on the
above mentioned extended UAProf format. The processing of the
device context on the server depends on the obtained request.

1. If the request only includes the user-agent parameter this
parameter is mapped to the according device profile in a device
repository. Note that by using only this mechanism dynamically
changing device properties (e.g. bandwidth or size of the browsers
window) can not be taken into account.

2. If a UAProf enabled device sends a user-agent profile or a
difference profile within the request, that information is handled
by DELI [9] on the server side which provides an API for Java
servlets to determine client capabilities using CC/PP and UAProf.
The output of the DELI component makes a profile representing
UAProf properties available.

3. Whereas today nearly only WAP 2.0 devices support UAProf,
our system is also able to autonomously collect the devices
properties of other end devices (e.g. Notebook, PDA) via the
above mentioned client side code. The on the client gathered
properties are sent within the HTTP request. Our server processes
that information and merges it with an existing or by DELI
generated device profile.

Together these mechanisms enable to acquire permanently
changing device properties. The result is an always up-to-date
device profile of the context model on which the document
generation is based on.

2.2 Location Modeling
The trends of offering wireless networks and mobile internet
access for a wide variety of mobile devices establish new areas of
Web applications taking the location of the user into account.
Since the location is important context information that changes
whenever the user moves, reliable mechanisms for location-
tracking are needed. Since normally all contents of a hypermedia
Web application are delivered by Web servers, the location
information is needed by the server which adjusts the contents
according to the user’s location. Generally there are two different
strategies for obtaining the user location. It can be tracked by
processing location data on a server (e.g. third party location
server like Openwave Location Manager [13]). Another strategy
is to obtain location information from a device-based application
and transfer it to the server. Our concept for modeling the location
of a client device supports both strategies. Figure 2 shows both
scenarios using a location server abstracting from complex
locating hardware for obtaining the client location.

2.2.1 Locating Methods
Locating methods can be categorized according to many aspects.
Today many mobile devices (PDAs and Notebooks) use satellite
supported technologies like GPS modules, which are either built
in or available as extensions. Other devices like cellular phones
(GSM and UMTS) or devices powered by radio networks
(WLAN) are always connected to a base station handling a cell
for mobile devices. So another technology for sensing the location
is the use of network supported cell information. Generally it
strongly depends on the application category which type of
location processing should be used. E.g. because of the low signal
intensity the conventional GPS does not work indoors (e.g. for
museum guides or exhibition navigators) and is therefore
restricted to outdoor applications [6]. Other aspects for a location
method categorization are the supported dimension, accuracy,
reliability and the positioning model of the method.

This shows that supporting location-based services in Web
applications that are not limited to only one location method
strongly requires the use of standard location protocols. Therefore
in our concept for modeling the user location we use the Mobile
Location Protocol (MLP [10]) standardized by the Open Mobile
Alliance (OMA). This protocol enables a communication between
location-based services and location infrastructure by means of
XML interfaces. Figure 2 shows our architecture concept for
modeling location information and storing that in the environment
profile of our context model.

Context Model

Acquiring Position or
Mobile Identification

Environment Profile

Context Modeling
(Location)

Location
Requester

updated client
location (MLP)

Location Server
(locating / authentication /

authorization)

Mobile Identification
(MSID, TSID, PSID, OSID)

location response (MLP)

Location Context Update

Location
Requester

Client/Server
Communication

location request (MLP)

location response (MLP)

location request (MLP)

mobile
identification

location response (MLP)

extended location response

Landmark Server

Figure 2: Modeling location and location context

2.2.2 Acquiring location information
As one possibility the architecture supports the acquisition of user
location on client devices supporting the J2ME location API (JSR
179 [11]). This location API defines an optional package
(javax.microedition.location) that enables developers to write
wireless location-based applications and services for resource
limited devices such as mobile phones, and can be implemented
for any common location method [12]. Because the API
implementation works on the client device the obtained location
information has to transfer to the server for a server based
generation of location-aware Web pages. This can be done by
integrating that information in the HTTP request through the
client/server communication component.
Another possibility to gather location information on the client is
to receive the position of the user from a location server which
analyzes network supported cell information according to the
client mobile identification. In our proposed architecture (Figure
2) a location requester generates an MLP-request containing the
mobile identification either in form of a North American Mobile
Identification Number (MIN) or a GSM Mobile Subscriber ISDN
(MSISDN) which are simply the mobile telephone numbers of the
mobile subscriber. The following code snippet shows an example
of a possible MLP-request generated by the location requester:

<svc_init ver="3.0.0">
 <hdr ver="3.0.0">
 <client><id>…</id><pwd>… </pwd></client>
 </hdr>
 <slir ver="3.0.0">
 <msids><msid type="MSISDN">1234567</msid></msids>
 …
 </slir>
</svc_init>

The MLP-response of the location server (e.g. OpenWave [13]) to
the client could look like the following XML representation:

<svc_result ver="3.0.0">
 <slia ver="3.0.0">
 <pos>
 <msid type="MIN">3035551003</msid>
 <pd>
 <time utc_off="+0000">20050108014000</time>
 <shape>
 <CircularArea>
 <coord>
 <X>39 51 14.399N</X>
 <Y>105 02 53.858W</Y>
 <Z>5280</Z>
 </coord>
 <radius>1000</radius>
 </CircularArea>
 </shape>
 <speed>42.42640687119285</speed>
 <direction>45.0</direction>
 </pd>
 </pos>
 </slia>
</svc_result>

The determined position information is included in the next
request to our server, which can use this information for
generating location-aware Web documents. Again, this is done
with the same mechanism of the client/server communication
component that was already mentioned in Section 2.1.1.
Moreover the designed architecture supports the location
acquisition on the server with a similar mechanism. In this case
the client transmits its mobile identification directly to the server,
which is responsible for the communication with the location
server itself.

2.2.3 Processing and Representing Location
The location representations gathered either from the client or the
server are stored in the environment profile of our context model.
However, the location is represented by coordinate system-based
position information which is difficult to use for adaptation
processes because the author of a Web page who has to specify
the adaptation rules is normally not familiar with it.
The solution is a landmark server storing landmarks which are
locations associated with names and descriptions. The granularity
of the landmarks depends on the Web application type. An
outdoor route planner application for instance has the granularity
of addresses (streets, house numbers) whereas an indoor
application like a museum guide has a finer granularity.
The landmark server maps the location contained in the MLP-
response to associated names and descriptions of that location. By
grouping of locations different location granularities are taken
into account. After the mapping the extended response is used to
update the environment profile of the context model (Figure 2).

For that purpose the MLP extension mechanism is used. The
following example shows how the response is extended:

<svc_result ver="3.0.0">
 <slia ver="3.0.0">
 <pos>…</pos>
 <LocationExtension>
 <LocationMark>
 <Group>MMTChair</Group>
 <Name>Room 202</Name>
 <Description>Projekt Amacont</Description>
 </LocationMark>
 </LocationExtension>
 </slia>
</svc_result>

The extended MLP-data is represented in the context model and
can be used for performing adaptation processes.

3. INTEGRATION INTO A CONTEXT
AWARE SYSTEM ARCHITECTURE
The proposed context modeling mechanism assures an always up-
to-date context model containing information about the user’s
device and location. Furthermore the context model includes
additional information about the user which can be used for
personalization aspects. For a detailed introduction in those
aspects and user modeling process the reader is referred to [14].

Request

Pipeline-based Document Generation

Transform
adaptation
to context
model
properties

Rendering
XHTML.full
XHTML.basic
XHTML.MP
WML

Transform
adaptation
according to
user
preferences

 </alay:LayoutManager>
 </ amet:LayoutProperties>
</ aco:MetaInformation>
<aco:Variants>
 "va<aco:Variant riant name= 1" la
 < aco:MetaInformation>
 <amet:LayoutPropertie
 <alay:LayoutMana
 <alay:Overlay
 <alay:Co
 <alay:Co
 </alay:Overla
 </alay:LayoutMan
 </amet:LayoutPropertie
 < /aco:MetaInformation>
 < aco:SubComponents>
 <aco:AmaImageCompo
 <aco:MetaInforma
 <amet:MetaD
 <amet:MetaD
 Ope
 </amet:MetaD
 </aco:MetaInforma

Component
Repository

Input Doc.
contains all
variants and
adaptation
options

Context Model

Location Profile User ProfileDevice Profile

updateupdate

Context Modeling
Location
Modeling

User
Interactions

Device Modeling

Device Properties
(UAProf)

User Modeling

Figure 3: Context aware system architecture

Figure 3 shows how the proposed context modeling mechanisms
can be integrated in an architecture for generation of context-
aware Web pages. Note that the device and location modeling
mechanisms (see Section 2) are located in the highlighted
architecture components (compare Figure 1 and Figure 2). For
each user request, a complex document is retrieved from a
component repository. According to the context model, this
document is adapted to user, device and location properties and
rendered to a specific output format (XHTML, cHTML, WML
etc.). Proving feasibility that overall architecture was
implemented on the basis of the XML publishing framework
Cocoon.

4. CONCLUSION AND FUTURE WORK
The work we proposed enables Web system architectures to
generate context-aware Web pages adapted to users’ device
capabilities and location information. Therefore we presented a
mechanism for modeling that dynamically changing context

information and show how it can be integrated in a context-aware
system architecture. Future work will concentrate on distributing
the context model to enable the user to decide which of the
gathered information she/he is willing to share with the server
architecture. Another aim is the performance enhancement of the
proposed architecture since generating context-aware Web
documents makes high demands on online Web publishing
systems.

5. REFERENCES
[1] Fink, J., Kobsa, A. A Review and Analysis of Commercial

User Modeling Servers for Personalization on the World
Wide Web. User Modeling and User-Adapted Interaction 10
(2–3), 2000, pp. 209-249.

[2] Butler, M., Giannetti, F., Gimson, R., Wiley, T. Device
Independence and the Web. IEEE Internet Computing, Vol.
6, No. 5, Sep.-Oct. 2002, pp. 81-86.

[3] Dey, K., Abowd, G. D. Towards a better understanding of
context and context-awareness. In Workshop on “The What,
Who, Where, When, and How of Context-Awareness”,
Conference on Human Factors in Computer Systems
(CHI2000), 2000.

[4] Dey, A. K. Understanding and using context. Personal and
Ubiquitous Computing, Special issue on Situated Interaction
and Ubiquitous Computing 5, 1, 2001.

[5] Abowd, G., Mynatt, E. Charting past, present and future
research in ubiquitous computing. ACM Transactions on
HCI, Special issue on HCI in the new Millenium, 7(1),
March 2000, pp. 29-58.

[6] Abowd, G., Mynatt, E., Rodden, T. The Human Experience.
IEEE Pervasive Computing Magazine, 1(1), January-March
2002.

[7] Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J.,
Butler, M., Tran, L. Composite Capability/Preference
Profiles (CC/PP): Structure and Vocabularies 1.0. W3C
Recommendation, January 2004.

[8] Wireless Application Group. User Agent Profile
Specification. Open Mobile Alliance WAP Forum, 2001.

[9] Butler, M. DELI: A DElivery context LIbrary for CC/PP and
UAProf. HP, External Technical Report HPL-2001-260
(revised version 02/08/2002), 2002.

[10] Open Mobile Alliance. Mobile Location Protocol (MLP).
Enabler Release Definition for Mobile Location Protocol
(MLP) Candidate Version 3.1, March 2004.

[11] Location API for J2ME (JSR 179). Java Specification
Request, September 2003.

[12] Mahmoud, Q. J2ME and Location-Based Services. Technical
Articles of the Sun Developer Network, March 2004.

[13] OpenWave. Location Studio SDK
http://developer.openwave.com/dvl/tools_and_sdk/openwave
_mobile_sdk/location_studio/

[14] Hinz, M., Fiala, Z., Wehner, F. Personalization-based
Optimization of Web Interfaces for Mobile Devices. In
Proceedings of the MobileHCI 2004, Glasgow, Scotland,
September 2004.

