
Service Discovery in TinyObj: Strategies and Approaches
Pavel Poupyrev, Takahiro Sasao, Shunsuke Saruwatari,

Hiroyuki Morikawa, Tomonori Aoyama
The Graduate School of Frontier Science, Tokyo University

7-3-1 Hongo, Bunkyo-ku,
Tokyo, 113-8656 Japan

{pavel, sasao, saru, mori, aoyama}@mlab.t.u-tokyo.ac.jp

Peter Davis

Adaptive Communications
Research Laboratories, ATR

2-2-2 Hikaridai, "Keihanna Science City"
Kyoto, 619-0288 Japan

davis@atr.jp

ABSTRACT
In this paper, we describe TinyObj service discovery model,
which uses short wireless packet broadcasts for service discovery
within a user’s vicinity. We present a prototype implementation
for the discovery model including the hardware and software
development of a wireless discovery device. The developed
wireless device, called Buoy, can be used as an independent
service discovery device or as an attachment for cellular phones.
The aim of the design is to provide the basic functionality for
service discovery in ubiquitous environment. The developed
software includes a uniform user interface that makes the system
expandable and customizable. Indeed, a user can easily add,
advertise, discover and remove any services in the system.

1. INTRODUCTION
Discovery of information is an essential problem in our daily
lives. One of the easiest ways of finding information is using an
Internet search engine that replies to user’s queries with global
search results. However, this way of information discovery
provides little connectivity with the user’s surrounding world
since the search is conducted over a worldwide information
database.

A new discipline, called ubiquitous computing, has been proposed
[1-2]. Ubiquitous computing provides to a user a better
connection with its surrounding world. In fact, this is achieved by
embedding small computing devices in every object of the
physical world. These devices can be equipped with short range
wireless modules making the discovery of other devices and their
services accessible to a user. We define this discovery as a real-
world service discovery in proximity.

The real-world service discovery in proximity is different from
the conventional ways of discovering services. Currently, a user
discovers services upon request on the Internet or using other
media such as newspapers. However, discovery in ubiquitous
environment is performed in the background. Indeed, a user
discovers services while moving from one place to another. This
allows a user to find services in new locations or even newly
advertised services in common visited places. The real-world
discovery very well fits with the concept of ubiquitous computing
where a user interacts with the real-world using background
wireless computing devices.

A good example of a real-world service discovery in ubiquitous
environment is the discovery of an ATM service. In this scenario,
a user wants to find an ATM that belongs to a particular bank or
provides VISA credit card operations. In order to do that a user
has to define the ATM service discovery preferences specifying

discovery details such as the bank name. When a user comes in
proximity of an ATM, the user’s device discovers the presence of
the ATM. If a discovered ATM matches the specified preferences
then the device alerts the user about its discovery.

The main contribution of this paper is the proposal of the TinyObj
model for real-world service discovery in a ubiquitous
environment and its prototype implementation. Since wireless
ubiquitous devices have scarce resources, such as battery and
processing power, we use a broadcast protocol eliminating the
necessity for a complex routing protocol.

The prototype implementation has been developed including both
software and hardware modules. We developed a wireless device
for service discovery that can be used as an attachment with
cellular phones or as an independent wireless discovery device.
The developed discovery device is based on an original
CSMA/CA-based MAC protocol.. The designed software
provides to a user the ability of adding, advertising, discovering
and removing new services using a uniform graphical user
interface, unlike other discovery systems, which require
knowledge of a programming language.

We will describe our prototype implementation covering three
elements of the system:

Service matchmaking: The number of provided services usually
greatly exceeds the number of services a user needs. The system
should provide a mechanism for receiving focused search results.
Also, service matchmaking should have a general way to
represent any service. A user should be able to easily add and
remove services from the system.

User Interaction: Our service discovery is meant to support two
types of mobile users: a user with a cellular phone and a user with
a wireless discovery device. One of the requirements is to provide
easy user interaction with the device for both types of users.

Broadcast Protocol: Broadcasting is an important component of
the system and should provide efficient data dissemination and
consume as less power as possible. In this paper, we only discuss
the requirements for the broadcast protocol.

The rest of the paper is organized as follows: In the next section
we will present related works followed by an explanation about
the TinyObj discovery model. In section 4 we will explain our
implementation prototype, covering three major service discovery
elements: service matchmaking, user interaction and network
protocol approaches. In the last section we will conclude our work
and describe directions for future work.

Fig 1: Three variations of the wireless discovery device: the
wireless device with an add-on component, a cellular phone

and cradle

2. RELATED WORKS
A few systems, which support service discovery, based on short
wireless communication, have been proposed such as nTAG [3],
SpotMe [4], IntelliBadge [5], Conference Assistant [6], and
Proxy Lady [7]. The goal of these systems is to empower users
with additional features at conferences and meetings such as the
discovery of friends, events or announcements, etc. Unlike these
systems, which comprise pre-defined set of services, we target the
development of extendable service discovery system where a new
service can be easily added, advertised, discovered and removed.

Other research works, SLP [8] and JINI [9], provide a platform
with an API for service discovery. However, implementation of
service discovery requires knowledge of the programming
language, such as Java or C/C++. In comparison, we focus on the
development of a service discovery system that will provide a
uniform graphical user interface as well as an API. Moreover,
SLP and JINI systems are based on TCP/IP protocol, which
requires computing devices with powerful processor, large
memory and sufficient battery. Ubiquitous devices have strict
limitations on available resources. Thus, it makes it more
complicated to use these solutions.

Other research, such as ECA [10] and Smart-its [11], focuses on
building hardware and software for ubiquitous computing. These
projects provide a solution for quick implementation of new
applications in ubiquitous environment where wireless devices are
equipped with sensors and actuators to perceive context
information. However, these projects do not particularly focus on
service discovery issues in the ubiquitous computing.

3. DISCOVERY IN TINYOBJ
In this section we describe the TinyObj discovery model. We will
use the same ATM service scenario to present TinyObj discovery.
The TinyObj discovery model consists of four elements: 1) data
initialization; 2) wireless data exchange 3) service matchmaking
and 4) discovery alerts.

First, a user performs data initialization. A user can initialize two
types of data: advertisements and preferences. For example, when
a user wants to find an ATM service, a user specifies preferences
(a filter) for service discovery as follows: only ATMs which
support VISA credit card with a withdrawal fee of less than $1.5.
In the meanwhile, a service provider, who advertises a service,
may define a service advertisement like: Citibank ATM service,
credit cards supported are VISA, MasterCard, and the withdrawal
fee is $1.05.

Secondly, after the data has been initialized the wireless data
exchange processes may begin. The wireless data exchange is
based on sending periodic data broadcasts. It is not necessary for
all participants to broadcast data.

Participants can be either active or passive. Active participants
periodically broadcast data in proximity and passive ones save
data on the wireless device without broadcasting. Normally, a
service advertiser and a user can select whether they want to use
active or passive discovery strategy.

In the ATM scenario, the bank uses an active strategy because it
is interested in service delivery to the users. The users may

instead use a passive strategy and store a filter on the device. The
device tracks all services which match the stored filter.

However, it is possible to broadcast not only advertisements but
also preferences. In this case, an advertiser receives preferences,
which are compared with all advertisements stored in the device’s
database. Therefore, both a service advertiser and a discoverer can
accomplish the discovery.

TinyObj concept is based only on broadcast transmissions. Thus,
when a wireless device discovers a service it does not provide a
method to reply to the sender using the same media. A user can
access the sender via other media such as e-mail, phone, or web,
using the contact information included in the packet.

Thirdly, after participants decide whether to be an active or
passive discoverer, the service matchmaking process matches all
received broadcast packets with the locally stored data. When a
device receives an advertisement it is compared with all stored
filters. Similarly, if a device receives preferences it is applied to
advertisements stored on the device. The service matchmaking
engine provides a function that takes an advertisement and
preferences as parameters, and returns a comparison result in the
form of a true or false value. If the returned result is true then a
service matchmaking engine has succeeded in discovering.

Forth, after service matchmaking detects a match a device notifies
a user with a discovery alert such as sound, vibration, etc. After
viewing the content of the discovered service a user can access a
sender using the contact information included in the data packet.

4. PROTOTYPE
Currently, the TinyObj system is implemented as a working
prototype. We have built a wireless discovery device, called Buoy
(Fig. 1). Also we have developed the device interaction software
for cellular phones and personal computers.

4.1 Buoy
The Buoy device provides minimum functionality for service
discovery. This includes storing/removing advertisements and
preferences to/from the Buoy local database, performing service-
matchmaking, communicating with a cellular phone or a PC, and
broadcasting data.

Service name: ATM Category: Finance Bank
Description: ATM service discovery
Attribute

Name
Type Default

Value
Displa

y
Required

Bank name String VISA, Master, Plus
Credit cards Select
Availability Select Open, Closed
Charge fee Currency
Location String

Fig 3: A service descriptor example for an ATM service

a) b)

Fig 4: A cellular phone screen shots of TinyObj application
a) a list of services registered with cellular phone b) an ATM

service filter creation
Fig 2: Buoy device schematics

The discovery wireless device consists of two components
namely a wireless module and an add-on component (Fig. 2). The
wireless module includes the following components: a battery, an
antenna, an Atmel ATmega128L processor, a Chipcon CC1000
wireless module, and two serial interfaces where one can be used
by a cradle and another can be used by a cellular phone. The add-
on component connects to the wireless module to provide a
primitive input/output user interface equipped with a buzzer, two
LEDs, a button and an Infrared port. The dimension of the device
is 62x40x15mm.

4.2 Service Matchmaking
The service matchmaking is a vital component for successful
discovery. The service matchmaking defines a format for service
data and provides an algorithm for comparing advertisements and
preferences. The format includes a list of name-value attributes to
describe the service. This format enables the creation of services.
However, our proposed system does not provide any access
methods to the service but provides only service availability
information. For example, if a user discovers a printer service, it
may contain an IP address that can be used to reach the printer.
The service matchmaking algorithm should provide narrowed
search results because it is important to minimize the number of
false alerts. For example, in an ATM service scenario, a user
wants to discover ATM services satisfying some search
preferences.

The system uses a service descriptor (Fig.3) that serves as a
template to define advertisements and preferences. Also, the
service descriptor includes information so that the TinyObj
software knows how to represent data in a common way.

Fig. 3 shows an example of a service descriptor for an ATM
service. The general parameters for a service descriptor are a
service name, a description and a category. Attributes are optional
parameters, which allow a user to provide more detailed
information about a service. The attributes are useful for
narrowing search results since they can specify search preferences
more precisely. An attribute includes a name, a type, default
values, a display and required options.

The type defines a data format used by the software to verify data
input correctness and to represent the data. The type can be
selected from the available types. The supported types in the
current implementation are: Integer, Currency, Boolean, Select,

and String types. The default value provides initial values when a
new advertisement or filter is created.

A display option is used by the software for partial representation
of advertisements. For example, Fig. 4a represents a list of
discovered advertisements. Two ATM advertisements, Citibank
and Mizuho, have partial representation depicting only three
attributes: Bank name, Availability and Charge fee. In this case,
TinyObj software represents only attributes, which have the
display option enabled in the service descriptor.

Thus, each service has a service descriptor that serves as a
template for the creation of advertisements or preferences.
TinyObj software allows a user to create a new service descriptor
using a graphical user interface specifying a service name, a
category, a description and a list of attributes.

4.3 User Interactions
The TinyObj system is designed mainly for two types of users: a
cellular phone user and a user that uses only the Buoy device
without attaching it to a cellular phone. In this section we will
describe interaction for both types of users.

4.3.1 Cellular phone user interaction
In Fig. 1, the Buoy wireless module is attached to a cellular
phone. In order to advertise or discover a service, a user first has
to store a service descriptor on the Buoy device so that the Buoy
software knows how to handle a service.
In the current version of the TinyObj prototype, all created
service descriptors are stored in the web-enabled database. A user
can search for a necessary service descriptor using keyword
searches or category searches.
After discovery of the service descriptor a user can create

advertisements or preferences. When using service descriptors,
the software can represent a form to assist the user in the creation
of an advertisement or preferences. For example, Fig. 4b
represents the case when a user creates a filter for discovering any
ATM services that belongs to Citibank. After inputting the data,
the user then specifies whether to choose an active or passive
discovery mode. Finally, a user uploads and stores the input data
and the service descriptor. Uploading a service descriptor is
necessary if a user wants to create or edit the data later. Fig. 4a
represents an example of stored service descriptors on the Buoy
device including Friends, ATM and Music.
After all these steps, a user is able to start discovering. When a
new service is discovered, the phone alerts the user through sound
or vibration depending on the phone’s settings.

4.3.2 Buoy device user interaction
A user who does not have a cellular phone is still able to discover
services in proximity using only Buoy. However, the interaction
requires an additional device, such as a PC or a cellular phone,
only when initializing data or viewing discovered services. The
actual discovery does not require the use of any extra device.
Buoy consists of two modules (Fig. 2): a wireless module and an
add-on component. The add-on component has a primitive
input/output interface with two LEDs, a button and a buzzer.
Since the interface is very limited the use of an extra device
becomes necessary in order to initialize the device as well as to
view the discovered data. A user is provided with web-enabled
PC software that can be accessed from the Internet. To initialize
and view data with a computer, the Buoy uses the Infrared port..
Thus, the user interaction with Buoy works as follows. First, a
user, using the web-enabled PC software, searches for a service
descriptor. After finding the necessary service descriptor, a user
creates an advertisement or a filter based on its content. Then, a
user specifies whether to use active or passive discovery. Unlike
cellular phone user interaction, a user selects an alert, such as
flashing LEDs or a buzzer sound, for discovery notifications.
Finally, a user uploads and stores these settings on Buoy using the
Infrared port interface.
When Buoy discovers an advertisement, it notifies a user with the
predefined alert associated with the service so that a user knows
which type of service has been discovered. In order to view the
discovered data a user has to use a desktop PC or a cellular phone.

4.4 Broadcast protocol
The TinyObj model is based on a broadcast packet exchange.
Broadcast packets can be received by all neighboring nodes,
which are in range of the transmitter. In our system the broadcast
protocol does not provide a two-way communication scheme like
usual routing protocols based on the query/reply model. This
model has been selected to overcome the complexity and the
limited scalability of typical packet routing protocol
implementation especially in the case of highly dynamic mobile
networks.

Broadcasting is a simple protocol that can be easily tuned to the
application requirements. We define two requirements for our
broadcast protocol, which are: 1) efficient packet dissemination
and 2) minimization of power consumption. Efficient packet
broadcasting is necessary because with the increase in the number
of broadcasts the collision rate increases that leads to a poor

packet delivery rate. The current prototype is based on CSMA/CA
protocol that consumes large amount of power while listening to a
channel. If we assume a constant current drainage of 110 mAh,
the battery would last for approximately 6 hours.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we described TinyObj service discovery model,
which uses short wireless packet broadcasts for service discovery
within a user’s vicinity. The broadcasting provides a simple way
for data exchanges. We have presented a prototype
implementation of the TinyObj model including both the software
and the hardware. The hardware comprises the Buoy device that
provides minimum functionality for service discovery. We also
described user interactions with the Buoy device. The TinyObj
software has been designed in order to provide a uniform
graphical interface so that a user can easily add, remove, advertise
and discover new services.

Future work would include studies on the implementation of
power-efficient broadcast protocol and power-saving
mechanisms. Moreover, the user interactions with the service
discovery software should be improved to provide a generic
platform. In order to do so, we are planning to conduct scenario
field studies, adding new features to the system required by the
different scenarios.

6. REFERENCES
[1] Mark Weiser, "Hot Topics: Ubiquitous Computing" IEEE

Computer, October 1993.
[2] Mark Weiser, "Some Computer Science Problems in

Ubiquitous Computing," Communications of the ACM, July
1993.

[3] http://www.ntag.com/, 2005
[4] http://www.spotme.ch/, 2005
[5] Donna Cox, Volodymyr Kindratenko, and David Pointer,

“IntelliBadge™: Towards Providing Location-Aware Value-
Added Services at Academic Conferences,” in UbiComp
2003, Seattle, WA, USA.

[6] Anind K. Dey, Daniel Salber, Gregory D. Abowd and
Masayasu Futakawa, “The Conference Assistant: Combining
Context-Awareness with Wearable Computing,” In 3rd
International Symposium on Wearable Computers, 1999.

[7] Per Dahlberg, Fredrik Ljungberg, and Johan Sanneblad,
“Supporting Opportunistic Communication in Mobile
Settings,” in CHI 2000 Extended Abstracts on Human
Factors in Computing Systems, 2000.

[8] Guttman E., Perkins C. and Kaplan S., “Service Location
Protocol,” RFC 2608

[9] Edwards W. K., “Core Jini,” Prentice-Hall, 2001.
[10] Tsutomu Terada, Masahiko Tsukamoto, Keisuke Hayakawa,

Tomoki Yoshihisa, Yasue Kishino, Atsushi Kashitani, and
Shojiro Nishio, “Ubiquitous Chip: A Rule-Based I/O Control
Device for Ubiquitous Computing,” Pervasive 2004, pp.
238-253, 2004

[11] M. Beigl, and H. Gellersen, “Smart-its: An Embedded
Platform for Smart Objects,” Smart Objects Conference
(sOc), 2003.

