

Practical Issues in Physical Sign Recognition with Mobile Devices

Christof Roduner and Michael Rohs

Institute for Pervasive Computing Department of Computer Science ETH Zürich

Introduction

Background

- Annotation of physical objects using mobile devices (PERMID 2005)
- Prototype based on camera phones and 2D barcode (Visual Codes)
- Can we do it without barcodes, purely based on image matching?
- Focus on feasibility rather than computer vision

Outline

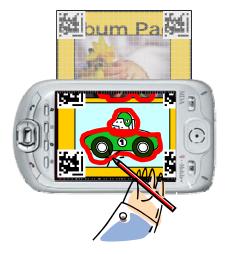
- Sign annotation use case and motivation
- Sign recognition based on image matching
- Comparison of matching algorithms
- Practical problems

No of Balland

Digital Annotations to Physical Objects

- User-generated digital media linked to physical objects
- Embed digital information into the real world
- Can be shared across space and time
- Can take multiple forms
 - Text, graphics, audio, video, hyperlinks, vCard, vCalendar

No RELEASED


Content of Digital Annotations

- What questions do annotations answer?
 - what are similar objects?
 - what are complementary objects?
 - what similar objects are better / worse?
 - who else likes this object?
- Ratings
 - using attributes that are specific for the object class
 - using attributes of a taxonomy or ontology

NA NA BANAD

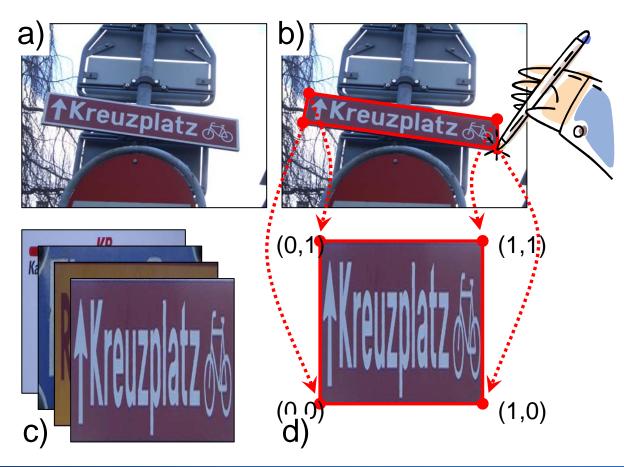
Techniques for Anchoring Digital Annotations with Physical Objects

- Marker types
 - Numbers (e.g., YellowArrow)
 - Barcodes (e.g., Semapedia)
 - RFID
- Problems
 - Attaching markers is not always feasible
 - Object is not under the annotator's control
 - Visual markers are obtrusive
- A different approach...
 - Marker-less annotation
 - Recognize objects based on their unmodified visual appearance

No statistica and

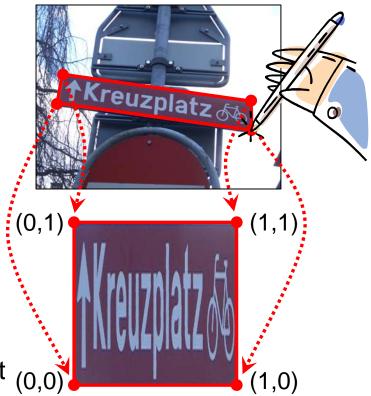
Annotations by Visual Appearance

- Many regular / quadrangular shapes in urban environments
 - street signs, shop signs, indication panels
 - facades of buildings
- Use signs as annotation anchors
 - interactively supported image matching



MANA BARAN

Annotating Signs using Camera Phones with Pen Input


- a) captured photo
- b) framing a sign with the pen
 - object selection
 - segmentation
- c) set of templates
- d) mapping framed area to unit square ("warping")

WING BERTEN

Dealing with Distortion

- Perspective distortion of sign in camera image
- Four-point correspondences
- Frame corners correspond to corners of unit square
 - Unique planar homography (projective transformation matrix)
 - Project framed part into unit square
 - Scale unit square to fixed-size request (0,0)
 image of 128x128 pixels

No Range ause

Image Matching

- Request to backend server
 - request image
- Backend server
 - executes matching algorithm
 - stores shared annotations and templates

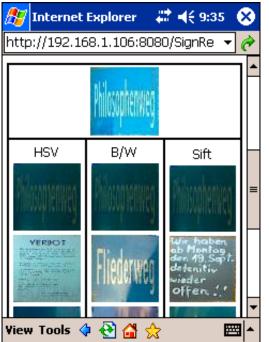
MINES BARNES

Request image

Set of templates

Prototype System

- Smartphone (T-Mobile MDA III)
 - Windows Mobile 2003
 - Pen-based input


GSM/GPRS WLAN

NAMES OF STREET, STREE

- Camera: 640 x 480 pixels, no optical zoom, relatively poor image quality
- Software: Visual C++ application and web browser
- Server with Servlets and MySQL db to store templates and annotations
- Four different algorithms for image matching:
 - HSV
 - Black / White
 - SIFT (Scale Invariant Feature Transform)
 - (Wavelet)

Annotation Process

AN REAL PROPERTY

- Warped image is compared with each template
- Five best matches are presented to user as candidates
- User selects correct sign or decides to add warped image as template

Image Matching Algorithms

- HSV
 - Sum of pixel-by-pixel differences of hue value of request image and templates
- B/W
 - Correlation coefficient between monochrome request and template images
- Wavelet
 - Jacobs et al., 1995 Java implementation based on Eikon engine
 - Signature for each image
- SIFT (Scale Invariant Feature Transform)
 - Lowe, 1999
 - Extraction of stable features (insensitive to changes in viewpoint)
 - Euclidian distance between feature vectors

an willig anten

Eperimental Setup

- Initialization: database with 95 template images of different objects
 - Street signs
 - Building facades
 - Company logos
 - Posters
- Evaluation: second snapshot for every object in database
 - Different perspective, lighting, and distance
 - For each matching algorithm: select 5 most similar templates from database
- Recognition successful if correct object is among the top 5 hits returned by algorithm

NA WARTEN

Results: Overview

Algorithm	HSV	Wavelet	B/W	SIFT
# snapshots	95	95	95	95
# recognized	81	69	86	89
% recognized	85.3%	72.6%	90.5%	93.7%
mean rank	1.54	1.62	1.37	1.37
% rank 1	74.1%	76.8%	86.1%	77.5%

- SIFT's offers the best recognition rate
- Despite their simplicity, HSV and B/W perform relatively well
- Wavelet algorithm seems less suitable
- Recognized objects are usually ranked first or second in the candidate list

Name and a state of the state o

Results: Street Signs

- Street signs are special
 - Omnipresent
 - Similar appearance
 - Material very susceptible to reflections and glare

Man all and a state of the stat

Results: Street Signs

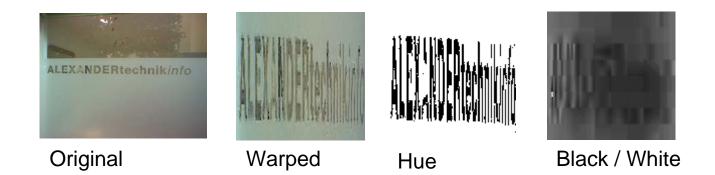
Without street signs

Algorithm	HSV	Wavelet	B/W	SIFT
# snapshots	83	83	83	83
# recognized	72	65	75	78
% recognized	86.8%	78.3%	90.4%	94.0%
% gained / lost	+1.5%	+5.7%	-0.2%	+0.3%

n

Street signs only

Algorithm	HSV	Wavelet	B/W	SIFT
# snapshots	12	12	12	12
# recognized	9	4	11	11
% recognized	75.0%	33.3%	91.7%	91.7%
% gained / lost	-10.3%	-39.3%	+1.1%	-2.0%


MANAL PROPERTY OF

- Subtle features
 - Few distinguishable features after warping
 - Negative impact of small tanslations on pixel-based algorithms

Na Wallawa

- Large width and small height
 - Warping changes aspect ratio leading to few clear features

MANAL BARREN

- Perspective
 - Only problematic with pixel-based algorithms, not with SIFT

Manda By Game

- Blurred images
 - Mainly problematic for SIFT
 - Minor issue as blur can be corrected by user
- Reflections
 - Reflecting surfaces introduce spurious features
- Non-rectangular objects
 - Not a problem for SIFT

No Range and

- Lighting conditions
 - Colors changes (problematic for HSV) and reflections (problematic for B/W)

Summary

- Sign recognition works well with very simple pixel-based algorithms and best with SIFT
- Corner marking can be done accurately
- Corner marking could be omitted with SIFT
 - User still needs to select object to annotate
 - Pen input required
- Possibilities for improvement:
 - Limit search space by considering context parameters (cell id, time, weather conditions)
 - Use of more suitable data structures

No Rolling and

Thank you! Questions?

www.vs.inf.ethz.ch

Camera Phones with Pen Input for Generating Digital Annotations to Real-World Objects

- Interaction possibilities of camera phones with pen input
- Techniques for anchoring digital annotations with physical objects
 - Visual codes for annotations of items in printed photos
 - Suitability of camera phones as annotation devices
 - Annotation of signs using four-point correspondences

