Automatic Test Data Generation From VDM-SL
Specifications

A dissertation submitted at The Queen’s University of Belfast

by

Richard Atterer
April 7, 2000

Revision: 1.43

Acknowledgements

| would like to thank my supervisor, Dr Ivor Spence, for his help and support, as well as for
giving me a demanding, but also very interesting task.

This project is based on previous work by Christophe Meudec, and would not have been
possible without the theoretical foundations provided by his Ph.D. thesis.

Additionally, 1 want to express my thanks to the Faculty of Computer Science at the Tech-
nische Universat Miunchen and especially Mrs Angelika Reiser for letting me study abroad in
Belfast for one year.

Abstract

Testing is an important aspect of software development and plays a major role in detecting errors
in implementations. Tests are often performed manually and at random, which is problematic
because it is time-consuming and there is no way of telling how well a software component has
been tested. Additionally, the “random” test inputs are determined by a human, which can mean
that the corner case that has escaped the implementor’s attention may well also not be noticed by
the tester.

It seems obvious that testing should also (at least in part) be done by computers. However, this
proves difficult when only the program source is available, as any tool analysing it will hardly be
able to tell what the codis supposedo do. For this reason, one approach to automatic test data
generation is not to use the source code, but an additional, high-level and abstract specification
which describes the behaviour of a component. The program developed for this project is a partial
implementation of such a test data generation tool.

Revision: 1.43

CONTENTS CONTENTS
Contents

1 Introduction 1

2 Specification 2

3 Design 5

3.1 Lexical Analysis e 5

3.2 Parsing e e e 6

3.3 Generation and Outputof TestData. 7

3.3.1 Processingthelnput 7

3.3.2 Partitioning EXpressionso e e e e 8

3.3.3 Generation of EquivalenceClasses. 14

4 Implementation 19

4.1 Lexical Analysis e 19

4.2 PaArsiNg o o e 21

4.2.1 Creationofthe LALR(1)grammar. 21

4.2.2 Representationofthe ParseTree. 25

423 ScopeHandling. 28

4.3 Generation and Outputof TestData. 31

4.3.1 Functions For Partitioning 32

4.3.2 Representation of the PartitonTree. 35

4.3.3 Building the Test Case Predicates. 37

4.3.4 TheBigInt Integer Abstraction 38

4.4 Further Components of the Implementation. 38

441 TheSmartPtr Template 39

442 ErrorHandling. e 41

443 DebuggingAids. e 41

4.5 Testsofthe Program Components. 42

46 TestsoftheFinalProgram 43

4.6.1 Portability. 43

4.6.2 RobuUStness 45

5 Conclusion 50

Revision: 1.43

CONTENTS CONTENTS

A User Manual For vdmpart 52
A.l Installation e e 52
A2 Programusage. e e 53
A.3 IATEX Macro Definitions For Use Witkdmpart 54

B Example of Input/Output For a Small Problem 56

C LR(1) Grammar For VDM-SL 60

D Program Code 69
D.1 TheSmartPtrtemplate. e 69

References 74

Revision: 1.43

1 INTRODUCTION

1 Introduction

The Vienna Development Model 1) and its specification language PWi-SL) provide means

for software developers to ensure the software they create is of very high quality, containing far
fewer bugs than with more conventional software development methods. This is achieved by
giving a high-level, possibly implicit specification whateach component does rather thew

it is implemented, and giving a formal proof that the behaviour of a component does not change
when implicit expressions are replaced with a more concrete, executable version.

Unfortunately, it is impossible to account for all circumstances which can lead to incorrect
behaviour of an implementation, so tests of the final software are as important as for programs
developed less rigorously.

With conventionally developed programs, testing is mostly performed manually, not very
rigorously and takes up a significant amount of the total development cost — without there being
any guarantee that the tests even approach to cover all possible cases.

On the other hand, with the high-level specification of programs developed using iV/is
possible to some degree to automatically generate input samples for each software component.
Even though the technique used is largely based on heuristics, it is far superior to manual testing
in that the tests are more likely to contain critical cases. Additionally, no human interaction is
required to perform tests, making development cheaper.

The program developed for this Software Engineering Project implements a test data genera-
tor, based on the algorithm suggestedite[idec9§

Revision: 1.43

2 SPECIFICATION

2 Specification

The aim of this Software Engineering Project is to produce a program which, given a formal
specification in the ¥M specification language (in the form of arsgil text file), performs an
analysis of certain parts of the specification and generates data which can subsequently be used
to test an implementation of that specification.

This is to be achieved in three major stages: First, the streansafi&haracters is turned
into a stream of tokens by a lexical analyser (scanner). Next, a parser uses the tokens to build
a tree representation of the language constructs. Finally, this tree is traversed and analysed to
produce the test data.

Since the program is a command line utility, its user interface is very simple. Command line
switches allow the user to influence its behaviour, eggartition to output an intermediate
result of the test generation process in addition to the test data.

Here is a \bM-SL specification with an example for a function that the program can process:

functions
examplex: int) r: bool ——integer argument X, boolean return value r
pre X<>5 ——the function will never be called with=x5
post r<=>(x>1) ——return true if x greater than 1

The creation of test data during the final stage constitutes the most important part of the pro-
gram. The fundamental idea behind the algorithm is to provide sets of values for the arguments
given to a function (and for what it returns) in such a way that each set of values, i.e. each test
case, represents one particular “sub-case” of the problem that the function is supposed to handle,
and also that all test cases taken together represent the problem as a whole.

Each test case’s set of variable valués correct in the sense that it does not violate the
specified pre- and post-conditions: If the pre-condition statgs then none of the generated
test cases will assign the value 5¢orhis does not only apply to pre/post-conditions, but also to
other constraints, e.g. those imposed by type invariants (although the program only supports the
basic data typelsool andint, which do not have invariants).

There is a strong similarity between the way the problem is described by the set of all test
cases and the way a function with boolean input/output can be described using its disjunctive
normal form (DNF). In fact, if only boolean variables and operators are used, the two are the
same; joining the test cases using logiwabperations yields the DNF.

1In this and the following paragraphs, “variable” refers to both the function arguments and the return value.

2 SPECIFICATION

To make the test case generation possible, it is first necessary to creatétian for the
expression representing a function. The term “partition” is used to emphasize thiefthie
tion domain— for example,Z x B for one integer argument and a boolean return value — is
subdivided into disjoint partsléfinition domain subsets sub-partition$, each of which is con-
sidered to be independent from the others for the purpose of testing, so that only one sample
variable value needs to be taken from each. For example, the function’s pre-corgitteads
to a subdivision ok € Z into the sub-partitiong < 5 andx > 5.

For the example above, the expression#5Ar < (x> 1), and the corresponding partition
could be written as

X<5 " {r} x{x>1}
X>5 {—r} x{x<1}
With this notation, sub-partitions are enclosed{inif their union is the whole definition
domain . The %’ operator is used to connect the domains represented by two sub-expressions

if both of them must be true at the same time. From a more abstract point of view, the operator
performs an intersection of its left-hand and right-hand domain arguments.

A test data generation program creates the individual variable values by combining sub-
partitions into a predicate (also calleduivalence class [Meudec9®) and then solving that.
If there is more than one possibility for a variable value, one of the possible values is chosen at
random, since any value represents its sub-domain equally well. For the above exaafple
the first sub-partitionx < 5, might lead tax being assigned the value46 for a first test case,
and the second ong > 5, to a value of 7 for a second test case, or indeed any other value greater
than 52

If sub-partitions have been created for several parts of the original expression, the only way to
ensure that all aspects of the problem are taken into account is to combine these sub-partitions in
all possible ways, and to create one test case for each of the permutations. In the example, there
are two subdivisions of the domain &f The pre-condition subdivides into x < 5 andx > 5,
and the post-condition leads to the generation of the sub-partitions> 1 and—-r A x < 1.
Combining the sub-partitions in all possible ways results in four equivalence classésar A
X>1,X>5ATAX>1,Xx<5A-rAx<landx>5A-rAx<1. The last of these predicates is
contradictory, so no test cases are created for it.

To summarize, the program must perform the following tasks:

2In practice, the program will use the four sub-partitions 4, x = 4, x = 6, x > 6 to catch corner cases.

Revision: 1.43

2 SPECIFICATION

Read the input characters and separate them into symbols in the scanner.

In the parser, analyse these symbols and build a parse tree which represerms/tl VvV
specification.

In the parse tree, find the function/operation definition that is to be analysed and create a
partition from the expressions it contains.

Create equivalence classes from the partition and output them.

Revision: 1.43

Revision: 1.43

3 DESIGN

3 Design

The program is written in the C++ programming language and makes use of its standard library
as described indtroustrup9J. It is expected that the ®M-SL input given to it is syntactically

and semantically correct — however, the program gives an error message and exits for all those
cases of invalid input that do not allow it to continue processing.

3.1 Lexical Analysis

The scanner is supplied a filename on the command line and reads characters from the specified
file, grouping them together and either ignoring them (comments and whitespace) or passing
them on to the parser as terminal tokens.

Because many symbols used imM-SL are not available with Acii the Interchange Con-
crete Syntaxas defined in section 10 of§O93 is used. The code of the scanner is generated
with thelex or flex tool from a description file, which needs to be written with care to deal with
the following issues:

e Provide regular expressions in such a way that¥SL language constructs as described
by the ISO standard are recognized. Reject with an error message any character sequences
that cannot form part of WM-SL language constructs. Silently process comments, without
passing on any information about them.

e Where necessary, e.g. for integer or string constants, process the recognized characters and
pass the additional information to the parser.

e Maintain a count of the current line number, for use with error and warning messages.
Along with each terminal token (whether consisting of just a single character or of several
characters), also pass the current line number to the parser.

Data Model and Functions

The scanner code (a function callgdex()) is generated from the description file which is passed
to thelex or flex utility.
The scanner maintains a hash table in which it stores a pointer to each identifier it encounters.

Revision: 1.43

3 DESIGN 3.2 Parsing

3.2 Parsing

From the terminal tokens, a tree structure is built by means of a parser. This task is performed
by a program generated by tlecc or bison tool after the grammar of ®M-SL described in
section 9 of [SO93 has been transformed into the LR(1) grammar accepted by it. The operator
precedence rules from section 9.8 are incorporated with spectabison extensions.

The grammar transformation is made very difficult by the fact that the supplied grammar is
not LR(1) and contains numerous ambiguities and errors, all of which need to be resolved to
make the parser work. It is likely that many of them will have been corrected in the final version
of the ISO \bM-SL standard, but that version is not available for free.

Even though later stages of the program only need to dealpaitis of the VDM-SL source,
the program recognizesl of the language (with the exception of statements) and provides a tree
representation for it, as it is intended to provide a basis for further projects dealing pathSL .

Data Model and Functions

The part of the program which builds a tree out of the terminal tokens can be subdivided into
the grammar description for the parser generator, the parser code generated from it (consisting
mainly of a functionyyparse()) and the data structures for the parse tree.

In order to ease debugging and extending the program, the tree is not represented by instances
of a single “node” type. Instead, advantage is taken of the C++ type checking mechanism by
providing a separate class definition for each nonterminal rule in the grammar. The class name
(declared in thélree namespace) is very similar to the name of the nonterminal ruleclesg.
ExplicitFunctionDefinition for the ruleexplicit-function-definition.

A hierarchy of classes is derived from the virtual base class for a nonterminal tdken,
Tree::N. If one of the classes is only intended for use as a base class, it is made abstract — for
example, this is the case fdass N or for class FunctionDefinition, from whichExplicitFunction-
Definition andImplicitFunctionDefinition derive.

The constructor of each class takes arguments in the order in which the respective sub-
terminals or nonterminals appear in the grammar rule. Whenever one of these symbols is optional
in the grammar and is not present in the current input, this is indicated by passing a null pointer
to the constructor.

The destructor of each class deletes all subtrees and symbols they contain, with one exception:
Identifiers are not deleted because other pointers to them exist in the hash table.

Copying and assigning tree node objects is disallowed.

After the object has been constructed, references to the subtrees of a nonterminal node can

Revision: 1.43

3 DESIGN 3.3 Generation and Output of Test Data

be obtained through calls to member functions whose names are closely related to the type of
tree they return, e.dxplicitFunctionDefinition::preCondition() for the expression representing
the pre-condition of a function. If the sub-symbol is optional, the caller must first check for its
presence with, e.ghasPreCondition().

A nonterminal representing a list a (derives publicly from the) standard libravgctor.

The parser supports the concept of name scopes, since knowledge about where variables are
defined must be accessible in order to correctly determine whether identifiers in pre-conditions
refer to “old” variable values even though they are spelled without a trdiling

3.3 Generation and Output of Test Data

Once the tree of a ®M-SL specification has been created, it is analysed according to the algo-
rithms explained in chapter 4 and 5 éfi¢udec9§ For the function that the user has indicated,

the pre-condition and post-condition are examined, and a partition representing them is generated.
Subsequently, the partition is used to produce predicates which need to be passed to an external
solver to find out whether they are satisfiable, and, if they are, to choose a random sample from
each partition. The predicate expressions are printed to the screen or to a file.

It is assumed that it is possible for the tester not only to pass certain parameters to a function
when performing tests on an implementation, but also to instantiate a given state in advance, e.g.
by modifying global variables in the program.

The test data generation tool does not address the problem of data type transformations, such
as the necessity of storing the members of a set in a particular order in any implementation of a
specification.

Although the algorithm used is based on that describeteujdec9§ this implementation
is slightly different from the one proposed in chapter 5.3 of that work. The following sections
explain the differences and give justifications for the changes.

3.3.1 Processing the Input

In sections 5.3.1 and 5.3.4 of his thesis, Meudec describes his idea of using different parsers
to process the input tokens differently depending on the operators by which expressions are
combined into larger expressions. In practice, this is not feasible because the available parser
generator tools only have one lookahead token, which, in the case of infix operators, makes it
impossible to switch over to the correct parser before the left-hand operand is processed.

3 DESIGN 3.3 Generation and Output of Test Data

One possible solution for this problem would be to make multiple passes over the input to-
kens, but a preferable way of achieving the same result is to build a “conventional” parse tree first
and create the operator-dependent information (which describes the partitions of the expression)
during a second pass over this tree.

Apart from being more efficient, this also allows for moving the partitioning code to a differ-
ent compilation unit, to stress the fact that parsing and partitioning are two major different parts
of the program. Finally, experience shows that having the parse tree available for later inspection
is essential for all but very simple compiler-like programs.

3.3.2 Partitioning Expressions

The process of generating the nested partition description is performed as outlined in 3ection
with minor differences toleudec985.3.4, p.134].

The term “nested partition description” is to be understood as: None of the equivalence class
“full combination” operators (denoted by the symbel'’} have yet been applied to any of their
arguments — in other words, the partition description tree has not been flattened.

The behaviour of the program differs from the algorithm proposed by Meudec in the following
ways:

e Whereas Meudec’s algorithm suggests the use of parsers, this program uses a set of possi-
bly recursive methods, each one associated with a different node type of the parse tree.

e Instead of providing .. True and. .. Undef along with aNegate function, the program
usespartTrue(), partFalse() andpartUndef() functions — obviously, this does not make a
difference, except that a calbrtFalse(x) instead ofpart True(Negate(x)) leaves less work
to any expression simplification or solving which might take place later on.

e There are no separaf®arse andRefine versions of the partitioning rules/code. This is not
necessary because closer examination shows that the distinction is only condepitsal (
for path expressionRefine for path and non-path expressiohgnd that the subset of
the Refine partitioning rules applying to path sub-expressions is identical toCthuese
partitioning rules.

e In [Meudec984.2.2, p.93], the author remarks that it makes sense to provide partitions
not only for non-logical expressions, but also for expressions with a non-boolean result.
In particular, the possibility of division by zero should be addressed. This is implemented

3[Meudec984.1.1, p.73] definepath expression® denotef andcases expressions and logical expressions.

Revision: 1.43

3 DESIGN 3.3 Generation and Output of Test Data

using apartDef() method instead of the two methogdsrtTrue() and partFalse() for all
operators whose result is not boolean.

It seems appropriate to introduce a more flexible notation to express combinations, with more
options than justx’ for “all combinations” — from now on, this dissertation will use a bipartite
graph as an infix operator between two sets of equivalence classes to indicate how the classes
should be combined. For example,

a d a d
b % e is equivalent to b »x<¢ e
C f C f
and

and
a d ane
b Z e is equivalent to cAnd
C f cAe

cAf

The distributed union operatqry. ..}, is (incorrectly) omitted for the sake of a more concise
notation.

The program written for this project only deals with the followingpM-SL operators: The
logical operatorsiot, and, or, =>, <=>, the relational operators, <>, >, <, >=, <= and the
arithmetic operators, - , *, div. Variables can be of the typésol andint only#

Here are the partitioning rules for the operators. They are basically the same as Meudec'’s,
but have been altered in accordance to the modifications described above. daliote sub-
expressions.

The behaviour of the logical operators is determined lym\é three-valued logic, see
[Meudec98table 4.1, p.85]:

partTrue(not ;) = partFalse(e;)
partFalse(not 1) = partTrue(ey)
partUndef(not e1) = partUndef(e;)

partTrue(e; and &) = partTrue(ey) x partTrue(ep)

“Notice that this simplification implies that invariants of user-defined types never need to be taken into account.

9

Revision: 1.43

Revision: 1.43

3 DESIGN 3.3 Generation and Output of Test Data

partTrue(ey) partTrue(e)

partFalse(e; and ep) = ¢ partFalse(e;) é partFalse(e)

partUndef(er) partUndef(ep)

| partTrue(ey) partTrue(ep)

partUndef(ey and &) = { partUndef(er) X partUndef(ey)
partTrue(e;) partTrue(e)
partTrue(ey or &) = ¢ partFalse(er) % partFalse(e)
partUndef(er) partUndef(ep)

partFalse(e; or e2) = {partFalse(e1) x partFalse(ez)}

[partFalse(er) partFalse(ey)
partUndef(e; or &) = { partUndef(ez) X partUndef(ey)

partTrue(ey) partTrue(e)
partTrue(ep => e) = ¢ partFalse(er) % partFalse(e)
partUndef(er) partUndef(ey)

partFalse(e; => &) = partTrue(ep) X partFalse(ey)

_ [partTrue(er) partFalse(ez)
partUndef(e; => &) = { partUndef(e;) X partUndef(ep)

_ _ | partTrue(er) x partTrue(€p)
partTrue(ey <=> &) = { partFalse(er) x partFalse(ep)
~ [partTrue(e;) x partFalse(e)
partFalse(e; <=> &) = { partFalse(e1) x partTrue(ep)

partTrue(ey) partTrue(e)
partUndef(e; <=> &) = ¢ partFalse(er) % partFalse(ey)
partUndef(eq) partUndef(e)

The rules for the relational operators are not “set in stone” like those for the logical oper-
ators above. Instead, they are heuristics which aim at finding the cases where errors are most
probable in an implementation. The following rules suggesteteujdec98 p.139ff] are likely
to catch corner cases. Note that thetUndef(...) rules can be made slightly simpler than
Meudec’s version because of the assumption that the input to the program is semantically cor-
rect. partUndef(e; o &) is identical for allo € {<,> <= >= = <>}:

B partDef(ey) partDef(er)
partUndef(e10€2)—{ partUndef(e) X partUndef(ey)

10

3 DESIGN 3.3 Generation and Output of Test Data

p””“dﬁ<%9=mﬂmﬂabwwwé@ﬂx{21122}

partFalse(ey < ep) = partTrue(e; >= &)

partTrue(ey > &) = partDef(e1) x partDef(e2) x { Zizii }

partFalse(e; > &) = partTrue(e; <= &)

partTrue(e; <= &) = partDef(e;) x partDef(ey) x { €L=€ }
<&

partFalse(e; <= &) = partTrue(e; > e)

partTrue(e; >= &) = partDef(e;) x partDef(er) x { 6L=€ }
€>€

partFalse(e; >= &) = partTrue(e] < &)

partTrue(er = &) = partDef(e;) x partDef(ez) x { e1 =& }
partFalse(e; = ep) = partTrue(e; <> &)

ep=¢e+1
e >e+1l

e+l=e
at+l<e

partTrue(e; <> &) = partDef(e1) x partDef(ey) x

partFalse(e; <> &) = partTrue(e; = &)

The arithmetic operators, - and* simply combine the partitions of their arguments, whereas
division by zero necessitates some additional possibilities for that operator. Again, because the
input specification is assumed to be semantically correct, certain cases which would lead to the
expression becoming undefined can be omitted. Faralf+,- * }:

partDef(ej o e2) = partDef(e1) x partDef(ep)

_ [partDef(er) partDef(e2)
partUndef(eloez)—{ partUndef(e;) X partUndef(ey)

partDef(e; div ep) = partDef(e1) x partTrue(ex <> 0)

11

Revision: 1.43

3 DESIGN 3.3 Generation and Output of Test Data

partTrue(ex <> 0)
partUndef(e; div &) :{ partDef(e1) }X { partTrue(ex = 0) }

partUndef(er) partUndef(ey)
If e, is an integer variable or constant, the partitioning is straightforward:
partDef(e1) = true

partUndef(er) = false

For boolean variables or constants, the following must be provided instgadtbkf() and
partUndef():

partTrue(er) = {ex}

partFalse(er) = {not e}

The program applies dynamic programmingechnique; it avoids generating partitions for,
say,part True(x), more than once: IpartTrue(x) is encountered a second time during generation
of the nested partition description, the previously generated version is re-used.

As an example, here is the nested partition description generated for the exppession
0 or y<5in[Meudec985.4.1, p.148].

(truextruex x=0+1 \ (truextrue y+1:5 \
x>0+1 y+1<5

x=0 y=5
true X true X true X true
X<0 y>5
true true true true
L { false }X{ false }) \ { false }X{ false } J

The obvious simplifications of eliminatingue andfalse are performed by the program during
the building of the partition, so the result will correspond to:

{x:0+1} {y+1:5}
x>0+1 y+1<5
x=0 SZ y=>5
x<0 y>5
SThe reason whytrue andfalse are not enclosed i} here is that ndlree::Expr or Part::Partition object is

generated for them, in contrast to everything insfde Instead, elimination of this specialue/false takes place
immediately during the tree construction.

12

Revision: 1.43

3 DESIGN 3.3 Generation and Output of Test Data

However, the implementation does not have a representation for the partial combination op-
erator, consequently its three different possibilities are enumerated in a partition set, the final
output being:

([x=0+1 y+1=51)
x>0+1}x{y+1<5}
x=0+1 y=>5

\ x>0+1}x{y>5}
x=0 y+1=5

\ {x<0}x{y+1<5})

Data Model and Functions

partTrue(), partFalse(), partDef() and partUndef() can be called in several ways: First, each
Tree::Expr® class provides virtual member functions of that name, so that akjfartDef()
(without any arguments) can be used to generate the partition for an expresgsion{fowever,

the member functions just make calls to normal functions inRire namespace, for example
Part::Def::less(Tree::Expr*, Tree::Expr*). This system allows both for using the operator and
subexpression(s) stored in Brpr object and for supplying two subexpressions to functions for
specific operators. The latter is useful for cases fikeFalse(e; = e) = partTrue(e; <> &),
where an object for the> would otherwise have to be created just to make the partitioning call.

The nested partition description is represented by a tree of nodes whose classes are derived
from the abstract base claBsrt::Partition. There are five such classes:

e FullComb represents the full combination operator and consists of two sub-partitions which
are to be combined in all possible permutations.

o PartSet is a set of equivalence classes — several sub-partitions enclogguhithe descrip-
tion above. The effect of the partial combination “bipartite graph” operator is achieved in
the program by enumerating the possibilities iPaatSet.

e ExprSet is equivalent tdPartSet, except that it contains pointers Teee::Expr objects in-
stead of furthePartition objects. Thus, it represents the leaves of the partition tree.

e ConstTrue and ConstFalse are used to denote dfxprSet with just one entry which is
the boolean constantue or false. In contrast toExprSet, however, they are eliminated

6Tree::Expr is derived fromTree::N and is the abstract base class of all nodes which represent expressions.

13

Revision: 1.43

Revision: 1.43

3 DESIGN 3.3 Generation and Output of Test Data

during partition generation, so they will not occur in the final partition unless that partition
evaluates tdtrue} or {false}. Only one instance is ever created for each class.

ThePartition classes have additional member functions, which are described later on.

3.3.3 Generation of Equivalence Classes

Now that the partition description is available, a set of expressions must be created, each repre-
senting one test case. This is where the program differs most fvaudec9§

The technique used by Meudec is as follows: Recursively replace all combination operators
with a set of equivalence classes:

1. For each combination operator, first the left and right operand are turned into sets of equiva-
lence classes (or predicate expressions) by means of recursive application of the technique.

2. The new equivalence classes are generated by picking one expression from the left-hand
and one from the right-hand set argument for each possible permutation, and applying a
logical and to the expressions.

If the left and right argument are independent from each other in the sense of the description
in [Meudec98 5.3.3, p.133], not all permutations are tried. Instead, the algorithm only
ensures that each element of the left and each element of the right operand has been picked
at least once.

3. The new, larger equivalence class is passed to a solver which eliminates contradictory
cases.

It must be noted that this approach contains a flaw: Suppose a partition

e pdagfee

is to be reduced to equivalence classes, and the arguments of the bipartite graph operator are
independent. Meudec’s algorithmight (it is non-deterministic) decide to drop the permutation
a/Acand turn this into

and ‘e
bAc
On the other hand, it might also turn out to be

{} xe

14

Revision: 1.43

3 DESIGN 3.3 Generation and Output of Test Data

because botaAd andb A c are contradictory, whereas the discarded may have been soluble.
Thisis easily correctable: Just check which expressions cannot be solved and ifarty obr
d is eliminated completely, try the discarded permutations as a last resort.

However, assuming thatA d andb A c do have solutions, the following final partition would
be generated:

{ andAe }
bArchAe
At this point, it is possible that botaAd andb A ¢ are soluble, but that neitherA d A e nor
bAcAeis soluble, whereaas c A e could have been soluble — and this may happen at any level
of depth, so it is impossible to account for.

To summarize, by throwing away certain combinations early, the algorithm may fail to gen-

erate important test cases later on. In the worst case, it might generate no test cases at all — and
even worse, an implementation could run for a very long time before this happens.

The algorithm used by the program has several advantages over Meudec’s technique even
though it does not take independence into account at all. It has disadvantages that may render
it as inapplicable to large problems as the original algorithm, but is believed to get closer to an
application that can be used in practice, i.e. for large input specifications.

The changes were motivated not only by the flaw in the first technique, but also by the follow-
ing consideration: Whatever algorithm is used, passing large expressions will cause the program
to run for a very long time (maybe months) because of the exponential explosion of the number of
combinations. In this light, it is completely unacceptable to first generate all equivalence classes
and then output them — not only will it take too long before they are output, they will also all
have to be stored in memory at one point, which might be impracticable because of the size of
the data.

Consequently, the algorithm should not be in O(NP) for both space and time — and while
polynomial complexity for time cannot be achieved, this is possible for the space requirements.
Furthermore, even if the program runs for months fits¢equivalence class should be output (al-
most) immediately, so that testing can take place in parallel with the test data generation. Because
it may well be impossible to wait until all test cases have been generated, an additional require-
ment is that two subsequent test cases should be as different from each other as possible. By
swapping cases semi-randomly, the chances are higher that if the program is terminated prema-
turely, the equivalence classes generated so far represent the problem reasonably well. Moreover,
the semi-random swapping avoids cases of the program running into a branch of the partition

15

Revision: 1.43

3 DESIGN 3.3 Generation and Output of Test Data

where all generated expressions turn out to be contradictory — making the output of valid test
cases stop for some (possibly quite long) time.

The basic idea is outlined by the following paragraphs. Notice that in contrast to the solution
proposed inlleudec9§ the program only works with the initial nested partition description; the
tree representing it is not modified by the algorithm.

It seems that this approach only allows fither semi-random generation of test cases
taking independence relations between partitions into account, or it will suffer from the same
problem as Meudec’s version! Since it is expected that for large problems the program will
be terminated after only a small fraction of all combinations has been generated, semi-random
generation seems to be more important.

1. For each sub-partitior, recursively calculate the number of combinations of expressions,
c(x), that need to be generated with it. For a full combination operation on the partitions
x1 andxo (which will be sets of partitions in many cases)x) = c(x1) - ¢(x2), and for sets
of partitions withn membersc(x) is S ;c(x). For the “bipartite graph” combination
operator applied to two partition sdt@ndr, c(x) = ¥; jc(li) - c(r;) for all combinations
indicated by the operator, of theh partition on the left and th¢th partition on the right
side.

2. Assign a number in the rang@...c(x)) to each possible permutation of the whole par-
tition. Given that number, it is possible to calculate the particular permutation of sub-
partitions associated with the number. In order to achieve the required “shuffling” of the
permutations, count a variable upwards from O to the next higher power of 2 greater or
equal toc(x) — but before calculating the individual permutations from it, mirror the vari-
able value bit by bit. (If the number exceetlx) after the bit-mirroring, that combination
is ignored.)

3. Turn the “path” through the partition associated with each number into an expression by
connecting sub-partitions’ expressions with a logmal. The resultant predicate would
have to be passed to a solver to determine whether it can be solved, and to generate sample
values for the variables if it can. However, since the implementation of a solver is beyond
the scope of this project, the program only outputs the predicate.

16

3 DESIGN 3.3 Generation and Output of Test Data

When this algorithm is applied to the partition of the exampieO or y < 5,
{x:o+1} {y+1:5}
x>0+1 y+1<5
x=0 X y=5
Xx<0 y>5
then the number of permutations is 12. The following table shows the expressions generated from
the partition, both in the original and the “shuffled” order.

ORIGINAL ORDER SHUFFLED ORDER
Binary Nr Generated expressiorMirrored Nr Generated expression

0000 0 x=0+1Ay+1=5| 0000 0 x=0+1Ay+1=5
0001 1 x>0+1Ay+1=5 1000 8 x=0+1Ay=5
0010 2 x=0+1Ay+1<5 | 0100 4 x=0Ay+1=5
0011 3 x>0+1Ay+1<5 1100 12 -

0100 4 x=0Ay+1=5 0010 2 x=0+1Ay+1<5
0101 5 X<O0Ay+1=5 1010 10 x=0+1Ay>5
0110 6 x=0Ay+1<5 0110 6 x=0Ay+1<5
0111 7 X<O0OAy+1<5 1110 14 —

1000 8 x=0+1Ay=5 0001 1 x>0+1Ay+1=5
1001 9 x>0+1Ay=5 1001 9 x>0+1Ay=5

1010 10 x=0+4+1Ay>5 0101 5 x<OAy+1=5
1011 11 x>0+1Ay>5 1101 13 -

1100 12 - 0011 3 x>0+1Ay+1<5
1101 13 - 1011 11 x>0+1Ay>5
1110 14 - 0111 7 X<O0Ay+1<5
1111 15 - 1111 15 -

Unfortunately, compared to the algorithm originally proposedMie(idec9§ the program
tends to pass larger expressions to the solver, and more of these predicates are unsatisfiable,
which might have a significant impact on performance. A more sophisticated implementation
would try to take advantage of both algorithms’ positive aspects by proceeding according to
Meudec’s algorithm first, but switching over to the algorithm useddyipart once the size of
all sets of equivalence classes in the partition exceeds a certain limit.

Data Model and Functions

Calculating the number of permutations is likely to yield extremely large numbers for non-trivial
inputs. Since the 32-bit or 64-bit integers of current hardware are not adequate for all cases, a
special concrete typeBigint is introduced. The program only implemeiglints usingunsigned

17

Revision: 1.43

3 DESIGN 3.3 Generation and Output of Test Data

long or the non-standanghsigned long long (if supported), but by providing thigigint abstraction
it is made easy to replace this with an arbitrary-length integer implementation later on, should
this become necessary.

Most of the functionality oBigInt is implemented by overloading of the respective operators.
However, there are some special methods:

e size_t roundUp() rounds the value up to the next power of two, and returns which power of
two theBiglnt now represents.

e mirrorinc(size_t n) increments what is interpreted to be the bit-mirrored representation of
an integer with bits, i.e. a call tanirrorinc() is equivalent to mirroring the number bit by
bit, increasing it by one and mirroring it once more.

e divrem(const Biglnt& divisor, BigInt& result, BigInt& remainder) is preferred over the
usual integer division and remainder &nd %) for efficiency reasons; with this method,
the division only needs to be carried out once, not twice.

The number of permutations is calculated for eBshtition node during its construction and
stored with the object. Its value is returned by thenbinations() member function.

Partition::partition(BigInt x) is a recursive member function which returns the expression
corresponding to a permutation given the permutation’s number.

18

Revision: 1.43

Revision: 1.43

4 IMPLEMENTATION

4 Implementation

The program was written in a Unix environment, using theuGC Compiler, version 2.95, and
the toolsmake, bison, flex, gawk (for the test suite andfiake depend”) and cvs (for version
management). The compilation process is made easier by the usewt@oconf and the
configure script it creates. The documentation was created usifgXLxfig andlgrind for
formatting source code examples.

As the total project sizeefcluding generated files) is about 10 000 lines of code, the expla-
nations in this chapter do not attempt to describe it in detail. Instead, they focus on making
clear what concepts or algorithms were used for the implementation of each component, and give
small examples of the code where appropriate. Furthermore, in an attempt not to confuse with
too many details, the text does not even highlight every single aspect of the code excerpts.

4.1 Lexical Analysis

The implementation of the scanner comes in the form of a descriptidexilgy thatis passed
to flex. The scanner distinguishes between several types of input tokens, which are passed to the
parser in &ymbol<. .. > object containing the token value as well as the token’s position (line
number) in the input file. The different types of tokens are integer literals, character literals, string
literals, quote literals, identifiers, keywords, operators consisting of more than one character (e.qg.
**) and single characters.

Whitespace and comments are ignored. The specification of comments is vatfs® 93 [
In particular, it is not clear whether multi-line comments may be nested and how they interact
with “—-"comments. The implementation ignorgsotation orend annotation in single-line -
- comments even if they are inside a multi-line comment, sothaénd annotation never ends
a multi-line comment. It allows nesting of multi-line comments. Within a multi-line comment,
words are formed in the same way as in the program text, soxtbad annotation or x'end
annotation or x#end annotation does not end the comment, bugnd annotation does. On the
other hand, character and string literals moétreated specially, so any occurrenceofiotation
inside’ " or” " is recognized during the processing of multi-line comments.

Here is a typical example of one of the regular expressions in the scanner description file
lex.yy and its associated action; the part of the file dealing with the recognition of quote
literals, i.e. strings of alphabetic characters anénclosed in<>.

\<[[:alpha:]][[:alpha:]_]*\>{WHITE} {
char* scanned = yytext + yyleng — 1;

19

Revision: 1.43

4 IMPLEMENTATION 4.1 Lexical Analysis

while (*scanned == "' || *scanned == "W || *scanned == "\’)
——scanned;
*scanned = \O' ; // overwrite ">x

auto_ptr<string> s(new string(yytext + 1));
if (CmdOptions::Debug::parse)
cout << "Quote <" << *s << > << endl;
xxlval.str.assign(s.release(), filePos);
return LIT_QUOTE;

During the implementation and testing of multi-line commentsétation ...end annota-
tion) it became obvious that if a user accidentally makes use of the word “annotation” anywhere
in the input document, the exact position of the occurrence would be difficult to find if only a “un-
terminated comment at end of file” error message were given. Consequently, the error message
records all line numbers containiagnotation or end annotation — see pagé7 in section4.6.2
for an example of the message.

The scanner is responsible for maintaining the hash tafslerab which records the names
of all identifiers that are found. Initialisation and clean-uphashTab is implemented as a “Sin-
gleton” class, i.e. a class for which only one instance is ever created during program initialisation
and destroyed at program termination. The class definition is given below — the keyword tables
have been shortened.

struct Singleton_InitHash : private DebugSingleton {
static const int values[] = {
MUNION, PSUBSET, SUBSET, DINTER, DUNION, INVERSE,...

h
static const char* const keywords[] = {

"munion" , "psubset" , "subset" , "dinter" , "dunion" , "inverse" ...
h
Singleton_InitHash() {

for (size_t i = 0; i < sizeof(keywords) / sizeof(char*); ++i)

hashTab[new IdToken(values[i], keywords[i])];

¥

“Singleton_InitHash() {
Lex::ldToken::allowDelete();
for (myhashmap::iterator i = hashTab.begin(), e = hashTab.end();
i 1= e ++i)
delete i—>first;

20

4 IMPLEMENTATION 4.2 Parsing

Lex::ldToken::denyDelete();
}

} singleton_InitHash;

When an identifier is encountered by the scanner, the following action is takeleXsge
for the code):

¢ In the special case of an identifier reading “annotation”, change the scanner’s mode of
operation to skip the comment.

e Check whether the identifier begins with the letters™is “mk_", as the parser requires
the scanner to distinguish between these two cases and “normal” identifiers.

e If the identifier begins with the character ‘'$’, check whether the part following the ‘$’ is a
keyword and give an error if it is not. (Se&P93 10.3, p.203])

e Unless the identifier has already been adddthta Tab, add it now.

e Return a pointer to the identifiersex::ldToken object to the parser, together with the
appropriate token type, which is eitH®ENTIFIER, MK_IDENTIFIER or IS_IDENTIFIER,
or another token type (such @PERATIONS) if the identifier is a keyword.

4.2 Parsing
4.2.1 Creation of the LALR(1) grammar

The parser is implemented in the fparse.y which was created by first translating the gram-
mar from [SO9] into a form thatbison can parse, and then altering that representation. This
proved to be a very difficult task: From the “reduce/reduce conflict” error messages produced
by bison, it can take very long to determine exactly which part of the grammar is incorrect, and,
once this is clear, it is sometimes also extremely difficult to correct the behaviour without chang-
ing the language that the parser accepts, and without introducing new conflicts elsewhere. Quite
often, seemingly trivial changes “rippled” through large parts of the grammar, causing numerous
modifications. Furthermore, errors in the ISO grammar had to be identified and worked around.
Several techniques were used for correcting aspects of the grammar that the parser generator
cannot deal with. They include:

21

Revision: 1.43

Revision: 1.43

4 IMPLEMENTATION 4.2 Parsing

Resolving shift/reduce conflicts by assigning precedence values to tokens or rulesMany
of the changes of this kind are carried out according to the precedence rulg@®pg[9.8].

The given precedence rules cause problems in some cases. Most notably, the chdiacter *
given different precedence depending on whether it is used in type compositior Gool”) or
in expressions (“563").

In other cases, precedence is assigned to tokens which are not treated specially in the ISO
grammar, to resolve shift/reduce conflicts for which the desired action of the parser is always to
shift, or always to reduce (i.e. there is no ambiguity). For example, the charattsrdiven
highest precedence in order to allow graceful recovery from parse errors at the next occurrence
of ;.

“Inlining” of the definitions of sub-goals. To delay the reduction of goals, this method takes
advantage of the stack used by bottom-up parsers. For example, the following grammar is not
accepted by a parser generator:

input = x|y;
X = a“+""x";
y o= by
a = “?"|“a”;
b = “?"|“b";

The parser cannot deal with inputs like+y” because after the?” has been read, it needs
to be reduced to eitheror b before being pushed onto the stack. (It is not possible to push the
“?” itself as the reduce action would then later on have to be performed on something that is not
at the top of the stack.) However, at this point the lookahead tokef’jssb it is not yet clear
whether the non-terminal being parsedier y. Inlining of the definitions ok andb solves the
problem:

input = x|y;

X - H?” “ +” 1] Xll | “ a” “ +” 1] X ;
ub" “® +n “ yn .

y — H?H 113 +n “ yn

Note that the single characters in the simple example above are often arbitrary non-terminals
in the VDM-SL grammar. Inlining is used extensively parse.y , even though it has the
disadvantage that the complexity of the grammar increases noticeably.

22

Revision: 1.43

4 IMPLEMENTATION 4.2 Parsing

Simulating additional lookahead tokens. Sometimes, inlining of sub-goals is not a solution,
as in the case of the operator, written as the two wordi“set” in V DM-SL. The grammar
rules involved are as follows (only the rule alternatives relevant to the problem are given):

expression = def patternbind-expr-list in expression
| name
| expression in Setexpression ;

patternbind-expr-list = pattern-bind “=" expression ;

pattern-bind = pattern
| bind;

pattern = name
| pattern union pattern ;

bind = patternin setexpression ;

The problem occurs because during the parsing oéxgnession, it cannot be determined
whether the end gbatternbind-expr-list has been reached, as arny’*following could be either
the “in” after thepatternbind-expr-list or the start of in set” followed by another expression. All
attempts to inline some non-terminals fail because different problems arise from the changes.

The solution is simulating a further lookahead token to allow the parser to distinguish between
“in” and “in set”. The parser itself cannot be altered to do this, but a common trick used in such
a situation is to make the scanner return a special terminal token. In this case, the two words
“in set” are not returned as two tokeils, SET. Instead, they are combined into just one token
IN_SET.

Due to the requirement th#lll_SET is returned even whenn” and “set” are separated by
any sequence of whitespace and/or comments, it is more appropriate not to change the scanner
itself, but to insert a new “layer” between the scanner and the parser.

This behaviour is implemented in the flexqueue.cc : All tokens are passed straight on
to the parser, with one exception: If the tokeiNsthe scanner is called once more to see whether
the next token iSET. Ifitis, IN_SET is returned to the parser, and if it is n@, is returned and
the token following it is buffered and returned the next time the parser requests a token.

“Trial and error”. While this is not the most sophisticated way of proceeding, trying out a
few alternative ways of expressing the same language construct is often a good alternative to
exploring the problem in detail, which can take some time.

23

Revision: 1.43

4 IMPLEMENTATION 4.2 Parsing

The following ambiguities and errors in the ISO grammar were the most severe ones — con-
siderable effort was necessary to identify/work around them:

e The VDM-SL representation of thedv expression X-set” appears to beset of X”, even
though this is not mentioned in§0O93 10].

e Itis not clear what the difference between thew-SL map operatorsierge andmunion
is.

e There is reason to believe that thenbda operator is a member of the family obn-
structors(see [SO93 9.8]), but this is not explicitly mentioned — the operator needs to be
assigned a precedence value according to what family of operators it is in.

e The identifier non-terminal does not seem to stand for the same thing in all parts of the
grammar: In some cases, it only denotes those identifiers beginning igitrof those
beginning with ‘mk_". The absence of separate non-terminals for these cases is the cause
of numerous ambiguities.

This particular error in the ISO grammar needed more than 10 hours to identify. The
distinction between the different identifier types is implemented with special code in the
scanner, which checks fori@ or mk_ prefix.

In addition to the changes described above, which are motivated by the need to transform the
grammar into a grammar that the parser generator can process, there are also changes to support
later stages of the program: The non-terminadsnScope, closeScope, openComprehension-

Scope, beginPreCond andendPreCond are all empty, i.e. their rules are of the form

openScope =

Hence, inserting them into any rules does not alter the language that the parser recognizes.
However, the action associated with each of the rules is used to influence how subsequent input
is parsed.

Finally, as an example of the grammar transformation process, here is the rude-tier
expression the way it appears in the ISO grammar andperse.y . The rules in the ISO
grammar are as follows:

expression = let-be-expression | ... ;

let-be-expression = let bind be Stexpression in expression | ... ;

24

4 IMPLEMENTATION 4.2 Parsing

bind = set-bind | type-bind ;

set-bind = pattern in Setexpression ;

Inlining has been applied several times to these rules, as it was necessary to isolate the prob-
lematic ‘in set” case. Since the one “physical”’ rule parse.y represents more than one
“logical” ISO grammar rule, the code associated with it needs to construct more than one parse
tree object. It does this with calls to the madvii<, whose definition is also given. Th#()
functions simplydelete all of their arguments before throwingbad_alloc() exception. The rule
is assigned the precedence of the family of constructors withrac CTOR declaration.

#define MK(_dest, _ToCreate, _dels) \
if ((_dest = new(nothrow) _ToCreate) == 0) { dl _dels; }

expression:
LET openScope pattern IN_SET expression BE ST expression IN expression
closeScope %prec CTOR {
SetBind* sb; MK(sb, SetBind($3, $5), ($3, $5, $8, $10));

MK($$, LetBeExpr(sb, $8, $10, $1.pos),sb, $8, $10));} ;

4.2.2 Representation of the Parse Tree

As described in sectiof.2, the parse tree is represented by nodes of objects whose classes are
derived fromTree::N. The class declaration is as follow$assert is described in sectioh.4.3

class N {
public:
/* no ctor of a class derived from N should throw any exception other
than bad_alloc. dtors should not throw any exceptions. */
N() throw(std::bad_alloc) { }
inline virtual "N() throw() = 0;
virtual ostream& put(ostream& s) const = O;
private:

N(N&) { Dassert(false); abort(); } // need deep copy
void operator=(const N&) { Dassert(false); abort(); } // need deep copy

%

N::"N() throw() { }

inline ostream& operator<<(ostream& s, const N& t) { return t.put(s); }

25

Revision: 1.43

Revision: 1.43

4 IMPLEMENTATION 4.2 Parsing

The classes are declared in the filee.h . For those classes in the hierarchy whose con-
structors are not inline, the constructors are definedktree.cc , whereas non-inline destruc-
tors are located itree.cc . The definitions of theut() methods (used for printing the tree to
the screen) are defined in the fil@nttree.cc

The class hierarchy is quite “flat”; most classes derive either directly foor from an
abstract class that is derived from it.

Tree:: TypeDefinition is an example of a class that derives directly frhmit also illustrates
the close relation between the class layout and its corresponding non-terminal rule in the parser.
Furthermore, it serves to show how null pointers are used if optional sub-goals of the rule are not
present for a particular instance. Here are the grammar rulegde«lefinition from parse.y ,
followed by the class declaration fogpeDefinition from tree.h

type_definition:
name '=" type { MK($$, TypeDefinition($1, $3), ($3));}

—

| name '=" type invariant {

MK($$, TypeDefinition($1, $3, $4), ($3, $4));}
| name DBL_COLON field_list {

MK($$, TypeDefinition($1, $3), ($3));}
| name DBL_COLON field_list invariant {

MK($$, TypeDefinition($1, $3, $4), ($3, $4));}

class TypeDefinition : public N {
public:

inline TypeDefinition(IdToken* id, N* tf, Invariant* i = 0);

inline TypeDefinition(TypeDefinition& t);

inline virtual ~TypeDefinition();

virtual ostream& put(ostream& s) const;

const IdToken& identifier() const { return *identifierVal; }

|dToken& identifier() { return *identifierVal; }

inline const Type& type() const;

inline const FieldList& fieldList() const;

bool haslnvariant() const { return invariantVal != 0; }

const Invariant& invariant() const {
Assert(haslnvariant()); return *invariantVal;

¥

Invariant& invariant() {

Assert(haslnvariant()); return *invariantVal;

26

4 IMPLEMENTATION 4.2 Parsing

}

private:
IdToken* identifierVal;
N* typeOrField;

Invariant* invariantVal;

I

In contrast toTypeDefinition, it is convenient to have an abstract cl@ssinitionList for the
classeslypeDefinitionList, ValueDefinitionList, OperationDefinitionList andFunctionDefinition-
List. The rule fortype-definition-list and the class declaration féypeDefinitionList below also
show how list-like non-terminals are implemented usiagtor:

type_definition_list:
TYPES type_definition { MK($$, TypeDefinitionList($2), ($2)); }
| type_definition_list ’;’ type_definition {
try { $1—>push_back($3); }
catch (...) { delete $1; delete $3; throw; } }
| type_definition_list ;" error { }

| type_definition_list error { }

class DefinitionList : public Definition {
public:

DefinitionList() { }

inline virtual "DefinitionList() = O;

virtual ostream& put(ostream& s) const = O;
h

DefinitionList:: " DefinitionList() { }

class TypeDefinitionList
. public DefinitionList, public vector<TypeDefinition* > {
public:
explicit TypeDefinitionList(TypeDefinition* td)
. vector<TypeDefinition* >(1, td) { Dassert(td != 0); }
virtual ~TypeDefinitionList();
void push_back(TypeDefinition* td) {
Dassert(td !'= 0); vector<TypeDefinition* >::push_back(td);

}

virtual ostream& put(ostream& s) const;

%

27

Revision: 1.43

Revision: 1.43

4 IMPLEMENTATION 4.2 Parsing

4.2.3 Scope Handling

The termname scopés used to describe a feature found in many computer languages, including
VDM: ldentifiers are only valid in a certain section of the input file and using them elsewhere
is not allowed, typically because it would not make sense to use them. Some examples of this
behaviour for \bm are:

e The identifiers for function/operation arguments are only valid within the definition of that
function or operation.

e In constructs like fet x = 1 in some_expression”, the identifiers that are introduced (in this
case, x’) are only valid until the end of the expression has been reached.

Furthermore, a local declaration may shadow a declaration of the same name in an enclosing
scope. That shadowed name is inaccessible, but becomes available again after the local scope has
been closed.

It was originally hoped that no support for scopes would need to be implemented, but the
following problem made this necessary: In operation pre-conditions, the external state variable
may be referred to either with or without a trailing’, i.e. either as the old or the new value,
without any semantic difference. Thus, the following two operation definitions are equivalent:

opname(y: bool opname(): bool
ext wrX int ext wrX int
pre Xx=0 pre X =0
post I <=> true post I <=> true

When the pre- and post-condition are combined using a logiehturing the partitioning
pass, all references to the state in the pre-condition must obviously bedltstate, so for both
cases, the expressior™= 0 and r <=> true” must be generated.

In order to decide correctly when to turn & into a ‘x™, it must be known whether the
expression currently being parsed is part of a pre-conditition (this is achieved by modifying a flag
with the beginPreCond andendPreCond non-terminals), and whethex™ is defined in the local
scope.

The implementation of scope support also includes code to deal with the two error conditions
that a name is declared twice in a scope, or that a name is used even though it has not been
declared — see pade in section4.6.2for an example of the error message.

28

Revision: 1.43

4 IMPLEMENTATION 4.2 Parsing

The interface and code for scope support are located in thestitgse.h andscope.cc
The program creates onarDef instance for each variable and stores a pointer to it in the parse
tree. ThisVarDef object uniquely identifies the variable, function etc. that is being referred to,
even if the spelling of two different names is identical —ifis both a function’s local variable
and a function name, there will be twarDef objects for X’

The data structures used for scope handling are probably the most complicated data structures
used in the program. They were designed with the following goals:

e Lookup of aVarDef object given an identifier spelling should be fast, i.e. the scanner’s hash
table should be used.

e There should be no overhead when looking for the most locally defined instance of a name.
For example, if 10 name scopes are currently open and a name is requested that is only
present in the outermost, top-level scopedlmbal scopg the program should not have to
search linearly through the other 9 scopes before arriving at the definition in the top-level
scope.

e The semantics described above should be correctly modelled, including shadowing of name
definitions.

e The following common operations should be cheap: Creating a new local scope that is
“active” (i.e. accessible at the moment); closing an active scope (by moving it to a list of
“old” scopes); inserting a neWarDef into the local scope or one of the scopes surrounding
it.

The implementation ensures these properties by using a grid-like structure of objects: In one
direction, VarDef objects whose names have the same spelling are accessed through the hash
table and are singly linked in the reverse order in which the scopes were opened, i.e. a pointer
from one of theldTokens in the hash table points to the most locally defined variable with that
spelling'. In the other directionyarDef objects that are declared in the same scope are connected
as a singly-linked list to support operations on whole scopes, e.g. closing them. The start of each
such list is stored in an ordered ligttiveScopes for those scopes that are currently accessible, or
in an unordered collectiosidScopes for those scopes that are no longer accessible. Finally, each
VarDef object contains a pointer to théToken with its spelling.

"Thus, looking up a variable definition given its spelling is close to O(1) with a good hash table implementation.

29

4 IMPLEMENTATION

4.2 Parsing

hashTab

/

/

/

y

y

a

IdToken

IdToken

IdToken

q p

IdToken

IdToken

o~
O

o0

v

VarDef| |

‘ /N ’

VarDef| 1 [VarDef
¢}

o

o

Local variablesfor
operation "0"

i

|

VarDef

activeScopes

]

L o
o

I
I
|
|
|

VarDef|
I
I
|
|

VarDef

s

VarDef
o

oldScopes

VarDef

?
T
?

Y

L4
T
?

A

VarDef

?

T
?

L o

?
T
?

Global scope

Local variablesfor
function "x"

Local variablesfor
function "a"

= Pointer *—2 Undefined Pointer © Null Pointer

Figure 1. Data structures created for the example code, during the parsisig of “

vdmpart’s scope handling is illustrated below with an example. Figushows the current
state of the data structure at the moment that the post-condition of operatitime specification
below is parsed. Notice that n@arDef object foro itself has yet been inserted at this point — this
only happensfter the whole operation definition has been parsed. This behaviour means that
recursive calls are not possible, but the rest of the program does not support recursive invocation

anyway.

30

Revision: 1.43

4 IMPLEMENTATION 4.3 Generation and Output of Test Data

functions
a(: int) r:int
pre 1=0
post r=i;

X(X: int) r: bool
pre X<>5
post r<=>(x>1)

operations
o()i: int
ext wrX int
post i=5 —— state is examined here, before local scope is closed

4.3 Generation and Output of Test Data

The central function ofdmpart, which is passed a partition tree and generates a predicate ex-
pression for each possible permutation of the sub-partitions, is only 17 lines long. Its definition
is located in the filgoartition.cc

void createTestCases(ostream& s, const Part::Partition* part) {
BigInt comb(part—>combinations());
s << "# " << comb << " test cases\n" ;
if (comb == 0U) return;
Bigint limit(comb);
size_t bits = limit.roundUp();
BigInt count;
SmartPtr<Tree::Expr> testCase;
do {
if (count < comb) {
testCase = part—>partition(count);
s << "#" << count << '\’ << *testCase << '\n' ;

}

} while (count.mirrorinc(bits) == success);

return;

}

createTestCases() directly and indirectly makes use of all other components that are con-
nected with the final stage of the program. Their implementation is described in the following
sections.

31

Revision: 1.43

4 IMPLEMENTATION 4.3 Generation and Output of Test Data

4.3.1 Functions For Partitioning

The four virtual methodgpartTrue(), partFalse(), partDef() and partUndef() are introduced as
methods of the abstract base cldsse::Expr, and are consequently inherited by all parse tree
nodes that represent expressions.

For expression nodes that the program supports (e.g. integer division), the class declarations
provide their own versions of these methods. For the other, unsupported expression classes, the
default methods, e.giree::Expr::partDef(), are called; they cause an error message to be printed
and the partitioning process to be aborted. Again, an example of the error message can be found
in section4.6.2 on pageto.

The declaration of the clagxpr is given below, together with that of its child claS&Expr.

Both are taken fronree.h
class Expr : public N, public SmartPtrBase {
public:

explicit Expr(const TextPos& pos) : posVal(pos) { }
virtual ostream& put(ostream& s) const = O;

const TextPos& pos() const { return posVal; } // NB non-virtual
virtual Part::Partition* partDef();
virtual Part::Partition* partUndef();
virtual Part::Partition* partTrue();
virtual Part::Partition* partFalse();
private:

const TextPos posVal,;

class DivExpr : public BinaryExpr {
public:
DivExpr(Expr* |, Expr* r, const TextPos& pos) : BinaryExpr(l, r, pos) { }
virtual ostream& put(ostream& s) const;
virtual Part::Partition* partDef();
virtual Part::Partition* partUndef();
virtual Part::Partition* partTrue();
virtual Part::Partition* partFalse();

}s

The definitions oDivExpr's methods are located in the fipartvirt.cc . SincepartTrue()
andpartFalse() are only called for expressions that return boolean results, their being called for an

32

Revision: 1.43

4 IMPLEMENTATION 4.3 Generation and Output of Test Data

integer division is a clear indication that there is a semantic error in the input (e.g. the expression
reads {x div y) and true”), SO an error message is printed with a calstiouldBeBool():

Part::Partition* Tree::DivExpr::partDef() {
return Part::Def::integerDiv(&first(), &second());
¥
Part::Partition* Tree::DivExpr::partUndef() {
return Part::Undef::integerDiv(&first(), &second());
}
Part::Partition* Tree::DivExpr::partTrue() {
return shouldBeBool(this);
}
Part::Partition* Tree::DivExpr::partFalse() {
return shouldBeBool(this);

}

As specified in sectioB, DivExpr::partX() only consists of a call t®art::X::integerDiv().
The actual partition generation is then performed in that function. The code below is the imple-
mentation forUndef::integerDiv() from partition.cc . It is preceded by the corresponding
partitioning rule forpartUndef(e; div &), as given on pagé2:

partTrue(ex <> 0)

: partDef(er) _
partUndef(e; div &) = { X partTrue(e; = 0)
partUndef(er) partUndef(ey)

Part::Partition* Part::Undef::integerDiv(Expr* a, Expr* b) {
SmartPtr<PartSet> pset(new PartSet());
pset—>reserve(3);

Partition* defA = Def::lookup(a);

Partition* undefA = Undef::lookup(a);

Tree::ExprPtr zero(new Tree::IntegerExpr(0, b—>pos()));
Tree::ExprPtr bEqualO(new Tree::EqualExpr(b, zero.get(), b—>pos()));
Partition* defB = False::lookup(bEqual0.get());
SmartPtr<PartSet> undefB(new PartSet());
undefB—>reserve(2);
undefB—>push_back(True::lookup(bEqual0.get()));
undefB—>push_back(Undef::lookup(b));
pset—>push_back(new FullComb(undefA, defB));
pset—>push_back(new FullComb(defA, undefB.get()));
pset—>push_back(new FullComb(undefA, undefB.get()));
return pset.release();

33

Revision: 1.43

4 IMPLEMENTATION 4.3 Generation and Output of Test Data

The source code models the specified behaviour with the following ste@ (e, corre-
spond taa andb):

o Create &artSet (pointed to bypset) with three entries, for enumerating the three possibil-
ities indicated by the bipartite graph operator.

e Create patrtitions for the left hand argument of the bipartite graph operatorde*
fined/undefined” is represented hiefA/undefA).

e The division partitioning rule is special in that it introduces a new expression which is not
already a part of the parse tree. Hence, the partition for the expressmoi™can only be
constructed after that expression itself has been created. Do this by allocatirgrdar
the constant “0” £ero in the code) and using it to credi€quals0.

e Now create partitions for the right hand argument of the bipartite graph opes&tpralsO
can be used twice becausartTrue(ex <> 0) is equivalent topartFalse(e; = 0). defB is
the partition which represents s not zero”.

Create anothdvrartSet for the two alternativest'is zero” and b is undefined” which make
up undefB.

¢ Finally, enumerate the three possibilities of the bipartite graph operator by connecting with
FullComb operations the partitions obtained during the previous steps, and adding them to
pset with push_back().

The calls to thePart:: X::lookup(x) functions implement the dynamic programming: They
return the result of the call-> partX(), but they also store this result, so the partioning call is
only made once for each expression; on subsequent calls, the value is returned immediately after
a table lookup.

Throughout the program, attention was paid to the possibility that a function call may raise
an exception, and the code was made exception-safe. In the examipleldf:integerDiv()
above, this is reflected in the fact thaserve() is called for thevector part of thePartSet, so that
push_back cannot fail — if it failed, thenew FullComb that was about to be added to thetor
would be left behind unreferenced. Furthermore, the usgraftPtr ensures that objects are
automatically deleted once the function returns, except whlease() has been called for the
SmartPtr.

One may argue that this level of exception safety is overzealous since the program will be
terminated with “out of memory” (or similar) anyway, and indeed it is not necessatyiigpart,

34

Revision: 1.43

Revision: 1.43

4 IMPLEMENTATION 4.3 Generation and Output of Test Data

but forgetting about the possibility of exceptions can lead to serious and difficult-to-find bugs in
other types of programs, so it is a good idhaaysto take it into consideration.

4.3.2 Representation of the Partition Tree

The implementation of the partition tree representation is similar to that of the parse tree —
the largest difference is that there are far fewer classes that derive from the abstract base class
Part::Partition. As specified in sectioB, they are calledullComb, PartSet, ExprSet andConst-
True/ConstFalse.

Another important difference between the parse tree and the patrtition tree is that the latter is
not actually a tree, but just a directed, a-cyclic graph in many cases, due to the fact that the same
partition tree object may be pointed to by two or more other objects. This must be permitted
in order for the dynamic programming technique to be implemented, which, as mentioned on
pagelz, is used to avoid repeated evaluation of the same expression during the generation of the
partition tree.

This sharing of objects introduces a problem: The destructor of Bagftion class is ex-
pected to delete the objects it points to — however, if more than one reference to an object exists,
simply usingdelete results in attempts to delete the object more than once, with disastrous con-
sequences. On the other hand, not deleting the object at all is a memory leak.

The problem is solved with the introduction of a reference count that is stored Rarail
tion objects and updated whenever a new reference to the object is created or destroyed. The
SmartPtr template used for this is described in detail in sectigh1— the only consequence for
the implementation oPartition is that the class must be derived frémartPtrBase.

The declaration of th€artition base class below introduces virtual methods that are imple-
mented for all the classes deriving from it, includibgmbinations() to return the number of
predicates that a partition tree node can “produce”, gntition() to create and return one of
these predicates. It is taken from the fil@rtition.h

class Part::Partition : public SmartPtrBase {
public:
Partition() { }
virtual inline “Partition() throw() = 0O;
virtual bool isConstTrue() const throw() = O;
virtual bool isConstFalse() const throw() = O;
// nr of possible permutations for this node (and the nodes it contains)

virtual const BigInt& combinations() const throw() = 0;

35

4 IMPLEMENTATION 4.3 Generation and Output of Test Data

/* create expr. corresponding to particular permutation of
sub-partitions. arg must not be out of range. */
virtual Tree::Expr* partition(const BigInt& x) const = 0;
virtual ostream& put(ostream& s) const = O;
protected:
static const BigInt zero;
static const BigInt one;
private:
// not necessary ATM:
explicit Partition(Partition&) : SmartPtrBase() {
Dassert(false); abort(); // virtual needed?
}
void operator=(const Partition&) {
Dassert(false); abort(); // ditto?

}
I

Part::Partition:: "Partition() throw() { }

inline ostream& operator<<(ostream& s, const Part::Partition& t) {

return t.put(s);

}

The child classes dPartition are laid out according to the concept they represent. Whereas
PartSet andExprSet usevectors to store sets of sub-partitions/expressi@sst True/ConstFalse
are just dummy classes that do not add any data members.

FullComb, whose declaration is given below, contains pointers to the two sub-partitions to
which the full combination operator is applied — more accuratyPtr (which istypedef'd to
SmartPtr<Partition>) is used instead dPartition*. TheisConstTrue/False methods are imple-
mented in such a way that any occurrance€@fst True/ConstFalse objects are eliminated.

class Part::FullComb : public Partition {
public:
FullComb(Partition* |, Partition* r);
virtual “FullComb() { }
Partition& left() const { return *leftVal; }
Partition& right() const { Assert(IrightVal.isNull()); return *rightVal; }
virtual bool isConstTrue() const {

36

Revision: 1.43

4 IMPLEMENTATION 4.3 Generation and Output of Test Data

if (rightVal.isNull()) return leftVal—isConstTrue(); else return false;

}

virtual bool isConstFalse() const {
if (rightVal.isNull()) return leftVal—>isConstFalse(); else return false;
¥

virtual const BigInt& combinations() const { return combinationsVal; }
virtual Tree::Expr* partition(const BigInt& x) const;
virtual ostream& put(ostream& s) const;
private:
PartPtr leftVal;
PartPtr rightVal;
Biglnt combinationsVal;

1

4.3.3 Building the Test Case Predicates

As soon as the partition tree has been built, the individual test case predicates can be requested
with calls topartition(x) for the root object of the partition tree, wherés aBigint between zero
and the value returned lypmbinations() for that node.

The implementation ofartition() creates the predicate by calculating which part of the par-
tition tree is relevant for th&iglnt argument given, recursively callingartition() for the ap-
propriate sub-partition(s) (but with a different argument) and, if more than one sub-partition is
involved, combining the expressions into one.

As shown in sectior3.3.3 the number of combinatioreg p) for a wholePartSet is the sum
of the number of combinations for all timesub-partitions it containg;’ ; c¢(pi). The implemen-
tation of partition(x) for this node type must reverse the sum operation in the sense that it must
find the smallestn so thaty ™ c(pi) < x. Next, it must calpartition() for themth sub-partition
with an argument ok — Y™ Y c(py).

For example, if &artSet contains three subpartitions with 300, 200 and 100 combinations,
its partition() method can be called with values from 0 to 599. If it is called with a value of 505,
the third sub-partition is selected (since 30R00< 505) and the third sub-partitionfsrtition()
method is called with an argument of 5.

The code foPartSet::partition() performs a binary search to find the right sub-partition. A
simple linear search would probably even have been more efficient in this case because at present,
no PartSet ever contains more than three sub-partitions, but binary search was favoured neverthe-
less in anticipation of the possible improvements to the algorithm described ord padehey
are ever carried ouBartSets will sometimes contain hundreds or thousands of sub-partitions.

37

Revision: 1.43

4 IMPLEMENTATION 4.4 Further Components of the Implementation

In the FullComb class’s version opartition(), the expressions returned by recursive calls
for the left-hand and right-hand operands to the full combination operator are combined with a
logical and. The value returned byombinations() for a FullComb object is the product of the
number of combinations for the two sub-partitions, so the implementation only needs to perform
an integer division/remainder calculation to determine the argument values for the two recursive
calls topartition(). This code excerpt is taken fropartvirt.cc

Tree::Expr* Part::FullComb::partition(const BigInt& x) const {
BigInt val, rem;
if (rightVal.isNull()) return left().partition(x);
x.divrem(left().combinations(), val, rem);
SmartPtr<Tree::Expr> I(left().partition(rem));
SmartPtr<Tree::Expr> r(right().partition(val));
return new Tree::AndExpr(l.get(), r.get(), TextPos::none);

4.3.4 TheBiglnt Integer Abstraction

The BigInt concrete type is implemented Imgint.h andbigint.cc according to the de-
scription in sectior8.3.3 Since the class declaration is straightforward, it is not reproduced here.

However, one part of the code that deserves to be mentioned isrewrinc() has been
carried out: Rather than mirroring the integer bit by bit, adding one and then mirroring it again,
mirrorinc() performs the increment operation directly on the mirrored representation. This is the
function definition frombigint.cc

bool Biglnt::mirrorinc(size_t n) { // increase by 1
while (n > 0) {
ValueType toggle = 1 << ——n;
if (((val ~ = toggle) & toggle) != 0) return success;

}

return failure;

4.4 Further Components of the Implementation

This section of the dissertation describes some important components of the implementation that
have the common property that they cannot be associated with any particular stage of the test data

38

Revision: 1.43

4 IMPLEMENTATION 4.4 Further Components of the Implementation

generation. Instead, they are “standard components” which are general-purpose — as such, they
can be re-used for other programs.

4.4.1 TheSmartPtr Template

“Smart pointers” are a useful concept in C++ to improve the low-level memory allocation scheme
of the language. They allow the programmer to express which data structures “own” other data
structures and which only reference them. Furthermore, just like the library temaptatgtr,

they make it easy to improve exception safety. For further discussion of these issues, see
[Stroustrup9714.4].

The idea behind the so-called “resource acquisition is initialisation” technique supported by
smart pointers is to provide a class that only contains a pointer, and for which operators have
been overloaded in such a way that its usage is very similar to that of a pointer. An important
feature of a smart pointer class is that when its destructor is called, it may delete the object it
is pointing to. By making smart pointers local objects of a function, this feature can be used to
have objects deleted automatically when the local scope is destroyed — regardless of whether this
happens because the function returns or because an exception has been raised.

A SmartPtr<X> behaves much like a regul4i, with the difference that th¥ object always
contains a count which represents the number of smart pointers pointing to it. Wheobgect
is first created, the count is zero. Subsequently, it is updated whenever smart pointers to it are
created, assigned or destroyed. If the count ever reaches zero during a GatlatoPtr<X>,
the X object is deleted X must have been derived froBmartPtrBase if it is to be used with
smart pointers.

TheSmartPtr template and a number of further functions are definesiartptr.h . They
provide the following interface:

e Initialisation of SmartPtr<X> objects with the null pointer, with a pointer % or to a
class derived fronX, or with anotheSmartPtr pointing toX or to a class derived fror.

e Assignment tdbmartPtr of a pointer or smart pointer, which may point to the same class
or a class derived from it. Assigning null requires an explicit cast, @ig.= (X*)0;".

e Dereferencing (prefix*’) and indirection (infix => ") work just like for ordinary pointers.

e Likewise, the comparison operators, ‘' >’, ‘<=" and ‘>=" result in comparisons of the
pointers contained within themartPtr objects. For=="and ‘=", one of the objects can
even be a regular pointer instead of a smart pointer.

39

Revision: 1.43

Revision: 1.43

IMPLEMENTATION 4.4 Further Components of the Implementation

In contrast, the meaning of the “address of” operator (pré&fixhasnotbeen changed — it
returns a pointer to themartPtr object. The methogdet() returns the address of the object
that the smart pointer references.

Therelease() method is equivalent to assigning null to theartPtr, except that the object
being pointed to is never deleted, not even if thatrtPtr was the last one referencing it.

swap() (available both as a method taking one argument and a global function taking two
arguments) is an efficient way of swapping the contents ofSwertPtr objects.

For convenience, the methaNull() is provided to make testing for null possible without
an explicit cast.

The global functiormakeSmartPtr(x) creates &martPtr to the class ok without the need

for the caller to specify the class name. This is convenient for cases when only a normal
pointer to an object is available, but a function needs to be called which t&kesrePtr
argument; no loca®martPtr variables need to be created.

The global functiondeleteSmart(x), which takes a normal pointer as an argument, performs
“delete x;” if the reference count for the object pointed toxbis zero.

The global functiorreleaseSmart(x) is also given a normal pointer as its argument. Its only
effect is that the reference count for the object pointed te isydecreased by one. It must

be used with care because it can easily result in an object being deleted too early, i.e. while
otherSmartPtrs to it still exist.

If instances of classes that derive fr&dmartPtrBase are not created on the heap, their
reference count defaults to zero. This is not desirable because it can result in at-
tempts by~“SmartPtr to perform adelete operation on them. The memberless class
SmartPtr_lockStatic is designed to overcome this problem: ISanartPtr_lockStatic is
defined immediately after the definition of the variable, and is initialised with a reference
to that variable, it will increase its reference count by one. For example, a global variable
can be “locked” against deletion like this:

SmartPtr<X> x;
SmartPtr_lockStatic lock(x);

40

Revision: 1.43

4 IMPLEMENTATION 4.4 Further Components of the Implementation

Note that théSmartPtr_lockStatic object must be definealfter the SmartPtr, and must be
defined in the same compilation unit — otherwise, the order of initialisation is not guaran-
teed.

The definition of th&SmartPtr template probably constitutes the most advanced usage of C++
in the program. For this reason, a cut-down version of the code (without the debugging support)
is included in this dissertation despite its length. It is reproduced in appéntlix

4.4.2 Error Handling

All functions related to the reporting of errors are located in the élesr.h anderror.cc
There are three types of error messages: Genuine errors, warnings, and “not implemented” errors.
A count of the number of errors and warnings that occurred so far is maintained in the variables
Error::errorCount andError::warningCount and can be used in other parts of the program, e.g. to
abort execution before the test data generation stage in case there were any errors during parsing.
The three functiongrror(), warning() and unimplemented() print the appropriate type of
message. There are four variants of each of the functions, since the text to be printed in the
message can be supplied either asm@st string object or asconst char*, and additionally, the
function can optionally be given &extPos argument containing line number information. For
error(), the function prototypes are:

void error(const string& s, const TextPos& t);
void error(const char* s, const TextPos& t);
void error(const string& s);

void error(const char* s);

Calls to these functions are made from many different parts of the program. Sédii@n
lists numerous examples for the output they generate.

4.4.3 Debugging Aids

Experience has shown that it makes sense to leave some debugging code enabled even in “release”
versions of a program. In particular, assertions (i.e. checking for the violation of invariants) are
often very useful to track down a bug that a user has encountered in the program: Instead of just
crashing, the program will print a message that can help to identify the source of the problem.

On the other hand, the release version should not coalieassertions, either. Often, the tests
are very simple and only serve the purpose of catching programming errors during the implemen-

41

Revision: 1.43

4 IMPLEMENTATION 4.5 Tests of the Program Components

tation stage. They may also be so numerous that they considerably increase the executable size
or —if they are located in inner loops or inline functions — the program’s performance.

The policy that was adopted fedmpart was only to compile in those assertions in all cases
that check for violations of the interface between individual components of the program. Addi-
tional checks within each component are only enabled if the program is compiled with debug-
ging support, using thedDDEBUGcompiler switch (which is passed on ke if the command
“make X=-DDEBUGis used).

As the standard ANSI C libraryssert() facility only allows to either compile in all assertions
or none, a slightly enhanced version is provided in thedébug.h . It defines two macros
Assert() andDassert(). Both of them check whether a condition is fulfilled and print an error
message tatderr if it isn't. However, whereas\ssert() checks are always compiled into the
program, théassert() macro only produces code if debugging has been enabledRDEBUG
Unlike the standard librargssert(), Assert() andDassert() do not callabort() if the assertion
fails, but let program execution continue.

4.5 Tests of the Program Components

The various components that make wmpart have been identified and separated from each
other in previous sections. Before they were integrated into one program, each component was
tested separately.

Scanner Because the scanner directly processes the input, testing it was easily achieved by
confronting it with a selection of inputs consisting of valid and invalid tokens. Debugging code
(triggered by a command line switch) prints out the value of the token that is output, and, if
necessary, any additional information such as the contents of a string constant.

Parser The interface between scanner and parser is trivial and the scanner/parser generator
tools are designed to work with each other, so the concept of separate testing was violated in
this case; the parser was given its input by the scanner during testing. The parser generation tool
includes an option to generate debugging code which prints out the state of the stack, rules applied
and other information. Together with tlyeoutput file (created by the parser generator) that
describes the generated states, it proved an invaluable tool for identifying problems with the
grammar. This debugging information can be switched on with-thebug-parse switch.

The parser component also includes the parse tree. In order to determine whether the cor-
rect tree was being generated, the() methods were implemented for all tree node objects.

42

Revision: 1.43

4 IMPLEMENTATION 4.6 Tests of the Final Program

Triggered by the-debug-printtree command line switch, they can be used to print out

a textual representation of the parse tree. Inputsafotree node types were written and the
parser was presented with them — they now form part of the automatic test suite described in
section4.6.1

Partitioning The turning of expressions into partition trees was tested with a small driver pro-
gram which builds an expression by constructing a trelexpf objects, and invoking one of the
part. .. () methods on the top-level object. Analogous to the parse gpre€) was implemented
for all partition tree classes. At this point, it became obvious that the ability to visualise the par-
tition was not only useful for testing, but also for the users of the program, so output of partitions
was made an “official feature”. Thepartition switch was added to enable it.

Even though the creation of equivalence classes has previously been described as belonging
into a separate stage of the program, the implementation gfattieion() method is dependent
on the data structures used in the partition tree to such a degree that it makes sense to test the two
together. Thus, testing was conducted by calpagition() for partition trees generated by the
partitioning functions. The partition tree was first output using-tpartition switch, and
the displayed test cases were then verified manually.

Further Components The other, minor components of the system were not always tested sep-
arately, either because they are very simple (as in the case of the error reporting and debugging
support) or because they were adapted to the changing needs of other components many times
during program development — this happened withShartPtr code. While initial, separate
testingwasperformed, this did not happen again each time the interface was changed.

4.6 Tests of the Final Program
4.6.1 Portability

In order to determine how portablempart is, it was attempted to compile the program in a
variety of environments. In general, there were few or no problems doing this. However, it
became clear that the largest obstacle to compiling is that the C++ compiler used may not be
recent enough to support the programming constructs and library facilities used by the program.

Linux Linux 2.2.13 running on the x86 architecture was the original development platform,
consequently there were no problems during compilationc @95 had to be installed to replace
a slightly older version supplied with the original OS distribution.

43

Revision: 1.43

4 IMPLEMENTATION 4.6 Tests of the Final Program

Solaris The program was compiled without problems on two different Solaris systems:

On a x86 Pentium machine running Solaris 5.5, compilation was successful afteméke
and &c 2.95 had been compiled and installed.

On a Sun Ultra-60 (two UltraSparc Il processors, running Solaris 5.7), no additional work
was necessary sinced@ 2.95 had already been installed on the system earlier; compilation was
immediately successful.

HP-UX An attempt to compile the program on a HP 9000/720 running HP-UX B.10.20 was
abandoned because it turned out that too many components of the system needed upgrading in
order to run &c 2.95.

CygWin (Windows) CygWin by Cygnus Solutions provides a Unix-like environment under
Windows 98 and Windows NT. To mak@mpart compile properly, a very minor change had to
be made to theetopt_long() call made by the program.

An addititional measure was taken to ensure that any problems with the compiled program are
noticed: A small test suite is supplied in tagamples subdirectory of the source distribution.
The command fhake check” causes the program to be run on a number of input files in this
subdirectory and its output to be compared with that of a version of the program that is known
to work. If there are any differences between the expected and the actual outpki,check”
produces an error. For example, if there were a problem with the “err08” test, the outputhkef
check” might look like this:

examples> make check
gawk -f check.awk

Testing ‘division’... OK
Testing ‘err01'... OK
Testing ‘err02'... OK
Testing ‘err03'... OK
Testing ‘err04'... OK
Testing ‘err05'... OK
Testing ‘err06'... OK
Testing ‘err07'... OK
Testing ‘err08'... FAILED!
Output was:

44

4 IMPLEMENTATION 4.6 Tests of the Final Program

err08.t.out - differ: char 255, line 8

Testing ‘errQ09'... OK
Testing ‘errl0'... OK
Testing ‘huge’... OK
Testing ‘relations’... OK

Testing ‘tree0l’... OK
Testing ‘tree02'... OK
Testing ‘tree03'... OK
Testing ‘tree04'... OK
Testing ‘tree05'... OK
Testing ‘tree06’.. OK

Finished: 1 out of 19 tests failed (5%)
make: *** [check] Error 1

Obviously, in practice none of the tests should fail.

4.6.2 Robustness

The robustness tests of the program can be subdivided into two categories: Very large, but correct
input, and input with syntactic and/or semantic errors. (An example of a small, correct input file
together with the resultant output is given in appertglix

For the first category, the following input was givenvtbmpart:

operations

operation(a, b: int, c: bool, d, e, f, g: int, h, ii bool) r: int
ext wr X: int

rd y, z: bool

wr s, t, u, v:int
pre X +s +t=v*u*d

or (h => 1) and (y and not z <=> false) or (not c))
post (d div e > fora<borb<a=>9g=<=f

or x divg<=0andr=advbdvd

The input expressions may not seem towbeylarge, but as the number of generated test cases
increases exponentially, a huge number of cases is owgdutpart reported the generation of

45

Revision: 1.43

Revision: 1.43

4 IMPLEMENTATION 4.6 Tests of the Final Program

129537 408 test cases. Generating them and counting the number of characters that were output
took 10 hours on a 266 MHz Pentium Il. The size of the data that was output amounted to 38 GB.

The reaction of the program to the second category of input is best illustrated with a number
of examples of the different error messages that it outputs, which are shown to the right of the
input. Notice that a line number is output for most messages and that the program distinguishes
between warnings, which are not considered fatal, and errors, which cause the test data genera-
tion to be aborted. In the examples below, only the messag85.t.vdm:8: Warning:

lllegal use of ‘$’ in identifier " is a warning.

1 state x of > vdmpart err02.t.vdm -1

2 a:int err02.t.vdm:6: Initialization must be

3 b:rat specified before invariant

4 initx==20 (Lines 4 and 5 should be swapped)

5 invx==0 err02.t.vdm: File does not declare any

6 end implicit functions or operations

1 types > vdmpart err03.t.vdm -1

2 a=int err03.t.vdm:3: ‘mk (...)) must be given at
3 inv p == mk_(1) least 2 expressions

(The requirement “at least two arguments” could have been
encoded in the grammar, but it was more convenient to allow one or
more arguments and to add an additional check.)

46

Revision: 1.43

4 IMPLEMENTATION

4.6 Tests of the Final Program

A WODN PR

© 00N O O

10
11
12

annotation
annotation
—— end annotation
"annotation” starts new
annotation
'——" annotation
:end
annotation
'end annotation
#end annotation

end annotation#
end annotation
end annotation——

> vdmpart errO4.t.vdm -1
err04.t.vdm:1: Unterminated annotation.
err04.t.vdm:2: This line starts an

annotation
err04.t.vdm:4: This line starts an
annotation
err04.t.vdm:4: This line starts an
annotation

(Line 4 starts two nested annotations)
err04.t.vdm:7: This line ends an

annotation
err04.t.vdm:8: This line ends an
annotation
err04.t.vdm:9: This line starts an
annotation

(Identifiers may contain “greek” characters — characters preceded
by ‘# — this causes the ‘#’ in lines 9 and 10 to be considered part of
the identifier.)
err04.t.vdm:11:
annotation
err04.t.vdm:12:
annotation
err04.t.vdm:13: parse error

This line ends an

This line ends an

47

Revision: 1.43

4 IMPLEMENTATION

4.6 Tests of the Final Program

w N

© 00 N o O b~

10

N o ok W0ON B

N o ok WDN B

types

a=int

inv p == 10E10 + "#i
+'a' +id

+ $types + i#d

+ 66E

+ '#j’ ——no greek letter
+ 'as’ —— >1 character
+ $id

+ i

+ "unterminated string

functions
f() r: bool
post r or n;

g(r: int)
r: bool
post true

functions
fl: int -=> rat
f2() ==

operations

ol: () ==> ()
02() == skip

> vdmpart err05.t.vdm

err05.t.vdm: Sorry, not implemented:
Exponents for number constants.
err05.t.vdm:3: ‘id’ undeclared

err05.t.vdm:4: ‘$types’ undeclared
err05.t.vdm:4: ‘i#d’ undeclared
err05.t.vdm:5: lllegal numeric constant ‘66E’
err05.t.vdm:6: lllegal character constant
(Whereas “#i” stands far (iota), “#j” does not correspond to any
greek character, so it is not allowed.)
err05.t.vdm:7: lllegal character constant
err05.t.vdm:7: lllegal character constant
err05.t.vdm:7: ‘s’ undeclared

err05.t.vdm:8: Warning: lllegal use of ‘$’ in
identifier - ‘id’ is not a keyword
err05.t.vdm:8: ‘$id’ undeclared
err05.t.vdm:9: lllegal greek letter code
after ‘i#

err05.t.vdm:9: ‘j' undeclared

err05.t.vdm:10: lllegal string constant

(End of file instead of closing.)

err05.t.vdm:10: parse error

> vdmpart err06.t.vdm h

err06.t.vdm:3: ‘n’ undeclared
err06.t.vdm:6: Redefinition of ‘r’
err06.t.vdm:5: ‘r' previously defined here
err06.t.vdm: File does not declare implicit
function or operation ‘h’

> vdmpart errO7.t.vdm -1

err07.t.vdm:2: Names in function definition
must be identical: ‘f1’, ‘2’

errQ7.t.vdm:6: Names in operation definition
must be identical: ‘ol’, ‘02’

errQ7.t.vdm: File does not declare any
implicit functions or operations

48

4 IMPLEMENTATION 4.6 Tests of the Final Program

1 operations > vdmpart err08.t.vdm -1

2 o) r: bool err08.t.vdm:8: Result of expression is

3 ext wr X int boolean, should be integer

4 pre (x + 1) err08.t.vdm:7: Type of ‘r' is not int

5 and r err08.t.vdm:6: Type of ‘X™ is not bool

6 and x err08.t.vdm:4: Result of expression is

7 postr— integer, should be boolean

8 true (The operator “=" requires numeric operands. It would have to be
replaced with £=>" for the expression to be correct.)

1 functions > vdmpart err09.t.vdm o

2 ox, y:rat) r: rat err09.t.vdm:4: Sorry, test case generation

3 post r = x not implemented

4 / err09.t.vdm:4: for this kind of expression

5 y (Only integer division — théiv operator — is supported.)

1 values errl0.t.vdm:2: parse error

(End of file instead of value definitions.)

49

Revision: 1.43

Revision: 1.43

5 CONCLUSION

5 Conclusion

In sectionl, the nature of the problem that was to be solved in this Software Engineering Project
was outlined, and in sectia?) the Vbwm specification language was described in more detail in
order to show the fundamental approach to test data generation taken by a program that was to
be implemented as part of the project. The functionality of the program was also specified more
accurately and broken down into several stages:

Read the input characters of @M-SL specification and separate them into symbols in a
scanner.

In a parser, analyse these symbols and build a parse tree which representsvtieLV
specification.

In the parse tree, find the function/operation definition that is to be analysed and create a
partition from the expressions it contains.

Create equivalence classes from the partition and output them.

Prior to the design of these program components, the theoretical work the last two stages are
based on —the Ph.D. thesis of Christophe Meudec — was analysed. Because of undesirable prop-
erties of the test data generation algorithm (in particular the fact that its memory requirements
grow exponentially with the size of the input specification) and because of the possibility of a
flaw in the algorithm itself, it was decided to modify the test data generation technique. The re-
sulting algorithm is described in secti@rB3.3 It turns out to be less efficient as far as the higher
number of test cases that are created for an input is concerned. However, on the other hand its
space complexity is far better and it allows that the test cases are generated in semi-random order.

The role of each of the components listed above was next defined in detail: Not only was its
functionality given, but also its program interface (see sec®jorfrinally, all of the components
were successfully implemented and integrated into one program. The components as well as the
final program were tested as outlined in sectiérisand4.6.

The tools and environment used for the implementation of the program proved to be well
suited for the task. Previous experience with the scanner and parser generatidiexcaisl
bison allowed the implementation to proceed relatively quickly. The C++ programming language
used for the program was also a good choice as it could easily be interfaced to the C output of

50

Revision: 1.43

5 CONCLUSION

the code generators, and is both both powerful and fast; because of the bad complexity of the
problem, the latter property is not unimportant.

The program written for the project is suitable for further development — in fact, many parts
have been written carefully in a way that makes later extension easy. First and foremost, the
program is not ready for practical use in its current state — its output needs to be passed through
an as yet unwritten solver to produce the final test data.

In addition to this, the support fortM-SL is currently restricted to very fewdv operations
and data types. Even though¢udec98 states that it will not be possible to automate test data
generation for all \bm constructs, support for a number of them could still be addedrtgart.

The most probable candidate for this kind of expansion are user-defined types, since they appear
in almost every \bm-SL specification.

Furthermore, the partitioning and test data generation process as implemenbtegan can
be enhanced in the way described on pagas soon as a solver is available.

Finally, it would also make sense to write a support program which can be used for the actual
testing procedure. It will need to read in the test data produced by the extehdpart (because
of the large amount of test data, preferably not from a file, but through a Unix pipe), instantiate
the indicated state for a component of the program to be tested, execute that part of the program,
and take notice of any errors and program crashes.

All'in all, the program that was created during the course of the Software Engineering Project
meets all requirements specified at the start of the project, and it is felt that it provides a sound
basis for further work in the area ofb#-SL processing and test data generation.

51

Revision: 1.43

A USER MANUAL FOR VDMPART

A User Manual For vdmpart

A.1 Installation

The following is required to build the program from the source archrdmpart-x.x.x.
tar.gz orvdmpart-x.x.x.tar.bz2

e A Unix-like system, or CygWin under Windows.

e A C++ compiler conforming to the 1998 ISO C++ standard. While any such compiler
should work, only &c 2.95.x has been tested.

A make utility, preferably Gvu make.

IATEX 2¢ to create the documentation addps to turn it into PostScript, as well aglvi,
ghostview or similar to view it.

An implementation obwk, e.g.gawk, to run the test suite.

e Various other standard Unix tools: A shely, gzip or bzip2, cmp, cat, touch etc.

Since the source archive comes with pre-generated source, the following programs are only
needed when the source code is modifigson, flex, autoconf, makedepend.
To compile the program:

¢ Untar the archive with one of the following commands, depending on which program it has
been compressed with:

bzcat vdmpart-x.x.x.tar.bz2 | tar -xvf -
gzip -cd vdmpart-x.x.x.tar.gz | tar -xvf -

e Change into the directory that has been created and exedtnafigure ”. This will
perform some checks for features and programs available on your system, and in response
alter the way the program is compiled.

e Execute the commanadrfake” to compilevdmpart and to create its documentation. Since
some of the code (in particular the parser) takes extremely long to compile witi2@5,
optimisation is switched off by default; if you want to compile the program with optimisa-
tion, use make X=-02" .

52

A USER MANUAL FOR VDMPART A.2 Program Usage

e Finally, if compilation has successfully completed, it is recommended that you execute
“make check ” to test whethewdmpart works correctly. This command will cause the
program to be run on the files in tle@amples subdirectory.

A.2 Program Usage

The progranvdmpart is a command line utility. It is invoked as
vdmpart (optiong (input-file) (function-name

It reads a \bm-SL program from the specifiddput-file (the filename of which should have
a “.vdm” extension) and writes test data information to standard output, or to a file specified
with the--testcases switch.

Alternatively, the special value ® can be given instead of the input flename, in which case
the program reads from standard input.

Test data is generated for the implicit function or operation specified bfutigion-name
argument.

The input-file and function-nameparameters may only be omitted completely if one of the
following two options is used:

-h or --help
Output information on the available option switches and exit immediately without pro-
cessing the input.

-V or --version

Output the version number and exit immediately without processing the input.

The other options understood by the program are:

-1 or --first
This option replaces thieinction-namegparameter and causes the program to analyse
the first implicit operation or function definition that the specified file defines.

-t or --testcases

Create test data and print it to standard output. Since this already is the de-
fault behaviour, the switch will only be used to redirect the output to a file using
--testcases=data.txt or similar.

53

Revision: 1.43

Revision: 1.43

A USER MANUAL FOR VDMPART A.3 KIEX Macro Definitions For Use With vdmpart

-n or --no-testcases
Suppress generation of test data.

-p or --partition
After the final partition for the specified function or operation has been generated, print
it in a format suitable for processing WTEX. The output does not contain definitions
for the macros used — a file which contains example definitions is included with the
source distribution and in appendix3. Standard output is used, unless a filename is
explicitly specified, e.g. with-partition=part.tex

--debug-noterm
When finished, do not exit, instead sleep forever. This allows for examination of the
program’s state, e.g. to find memory leaks.
This option is only available if the program has been compiled iltbEBUG

--debug-noversion

Do not include the version number of the program in the generated partition or test
data. This switch is mainly useful in the following case: The test suite compares the
program output with the saved output from a workignpart and considers a test
to have failed if the output differs. The tests would fail whenever the version number
changes, and would have to be adapted to the new version manually.

--debug-parse
Turn on output of debugging information in the generated parser.

--debug-printtree

“Pretty-print” the program using the parse tree once parsing has successfully fin-
ished. Standard output is used, unless a filename is explicitly specified, e.g. with
--debug-printtree=tree.txt

A.3 |ATEX Macro Definitions For Use With vdmpart

The following file can be used to process the output generatedvditipart’s --partition
switch with BTEX. It is expected that the generated partition has been written to the file
partition.tex

\documentclass[10ptfleqn]{article}

54

A USER MANUAL FOR VDMPART A.3 KIEX Macro Definitions For Use With vdmpart

\newcommand{\vdmComb}[2]{\ensuremath{#1 \times #2}}
\newcommand{\vdmSet }[1]{\ensuremath{ %
\left\{\begin{array }{c}#1\end{array} \right\ } } }
\newcommand{\vdmVar}[1]{\mbox{#1} }
\newcommand{\vdmOp}[1]{ \mbox{\textsf{#1}} }

\addtolength{\ oddsidemargin}{—1in}
\addtolength{\evensidemargin}{—1in}
\addtolength{\ textwidth }{2in}
\addtolength{\topmargin}{—1in}
\addtolength{\textheight } {2in}

\begin{document}
\noindent\ (\input{partition.tex}\)
\end{document}

55

Revision: 1.43

B EXAMPLE OF INPUT/OUTPUT FOR A SMALL PROBLEM

B Example of Input/Output For a Small Problem

The commanddmpart relations.vdm --first --partition=partition.tex
was used on the following input file:

functions

fnc(x, y: int) r: bool
post r <=> x >0 ory <5

The partition output by the program looks like this irs@il:

% generated from ‘fnc’ in file ‘relations.vdm’ by vdmpart 0.9.0
\vdmSet{ %
\vdmComb{ %
\vdmSet{ %
\vdmVar{r}} %
H%
\vdmSet{ %
\vdmComb{ %
\vdmSet{ %
(\vdmVar{x} = (0 +))\\%
(\vdmVar{x} > (0 + 1))} %
H%
\vdmSet{ %
((\vdmVar{y} + 1) = 5)\\%
((\vdmVar{y} + 1) < 5)} %
1%
\\%
\vdmComb{ %
\vdmSet{ %
(\vdmVar{x} = 0)\\ %
(\vdmVar{x} < 0)}%
H%
\vdmSet{ %
((\vdmVar{y} + 1) = 5)\\%
((\vdmVar{y} + 1) < 5)} %

56

Revision: 1.43

B EXAMPLE OF INPUT/OUTPUT FOR A SMALL PROBLEM

+%
\\%
\vdmComb{ %
\vdmSet{ %
(\vdmVar{x} = (0 + 1))\\%
(\vdmVar{x} > (0 + 1))} %
H%
\vdmSet{ %
(\vdmVar{y} = 5)\\%
(\vdmVar{y} > 5)}%

+%
+%
+%
\\%
\vdmComb{ %
\vdmSet{ %
(\vdmOp{not } \vdmVar{r})}%
H%
\vdmComb{ %

\vdmSet{ %
(\vdmVar{x} = 0)\\ %
(\vdmVar{x} < 0)}%

H%

\vdmSet{ %
(\vdmVar{y} = 5)\\%
(\vdmVar{y} > 5)}%

+%
+%
1%

When the partition is processed BEX using the provided filezdmpart-macros.tex

57

Revision: 1.43

Revision: 1.43

B EXAMPLE OF INPUT/OUTPUT FOR A SMALL PROBLEM

the following output is created:

Saaaaana

VoV Al

—

/

Finally, here is the set of test cases as outputdaypart:

generated from ‘fnc’ in file ‘relations.vdm’ by vdmpart 0.9.0
16 test cases

#0

(rand ((x = (0 + 1)) and ((y + 1) = 5)))
8

(rand ((x = (0 + 1)) and (y = 5)))

4

(rand ((x = 0) and ((y + 1) = 9)))

12

(not r) and ((x = 0) and (y = 5)))

2

(rand ((x = (0 + 1)) and ([y + 1) < 5)))
10

(rand ((x = (0 + 1)) and (y > 5)))

6

(rand ((x = 0) and ((y + 1) < 9)))

14

(not r) and ((x = 0) and (y > 5)))

1

(rand ((x > (0 + 1)) and ((y + 1) = 5)))
9

(rand ((x > (0 + 1)) and (y = 5)))

#5

(rand (X < 0) and ((y + 1) = 5)))

13

((not r) and ((x < 0) and (y = 5)))

3

(rand ((x > (0 + 1)) and ((y + 1) < 5)))
11

(rand ((x > (0 + 1)) and (y > 5)))

#7

58

B EXAMPLE OF INPUT/OUTPUT FOR A SMALL PROBLEM

(rand ((x < 0) and ((y + 1) < 5)))
15
((not r) and ((x < 0) and (y > 5)))

59

Revision: 1.43

Revision: 1.43

C LR(1) GRAMMAR FOR VDM-SL

C LR(1) Grammar For VDM-SL

Below is a copy of the transformed grammar used by the parser generator, based on section 9 of
[ISO93. Keywords and other terminal symbols are printed oéd typeface, terminal symbols
consisting of non-alphabeticgcii characters appear likétis 7, and nonterminals arganted.
Note that there are several symbols (for example “identifier”) that are nonterminals in the 1SO
grammar, but terminals here, because they are handled by the scanner.

A number of ambiguities remain in this grammar. They are resolved using the precedence
declarations for terminal symbols and rules thiabn andyacc provide as an extension.

This BTEX representation of the grammar has been automatically generated from the parser
description filesrc/parse.y using the progranyacc2tex, which was written especially for
this purpose. It is supplied in trdoc subdirectory of the source archive.

document = openScope definition-block
| document definition-block ;

definition-block = type-definition-list
| state-definition

| state-definition error

| value-definition-list

| function-definition-list

| operation-definition-list ;

type-definition-list = typestype-definition
| type-definition-list“; " type-definition
| type-definition-list*“; " error

|

type-definition-list €rror ;

type-definition = name “=" type
| name“=" type invariant
| name“:: " field-list
| name*“:: " field-list invariant;
type-list = type
| type-list“,” type

| type-list error ;

“(" type*)”
bool

nat

natl

int

rat

real

type

60

C LR(1) GRAMMAR FOR VDM-SL

| char

| token
| lit-quote

| composename of field-list end
| type“| " type

| type“*" type

| " type®]”

| setoftype

| seq oftype

| seql oftype

| map type to type

| inmap type to type

| function-type

| type-variable-identifier

| name;

function-type = type " type

‘ u ” ” _ ” type
\ type +> type

|

H(HH)HH+> type;
discretionary-type = type

e
field = name"“:” type
| pe;
field-list = empty
| field-list field ;

state-definition = statename of field-list end

| state name of field-list invariant end

| statename of field-list initialization end

| state name of field-list invariant initialization end
|

state name of field-list initialization invariant end ;

invariant = inv pattern“==" expression ;
initialization = init pattern“==" expression ;

value-definition-list = valuesvalue-definition
| value-definition-list“; " value-definition
| value-definition-list“; " error

value-definition-list error ;

value-definition = pattern“=" expression
| pattern“:”

w_n

type “=" expression ;

function-definition-list = functions openScope function-definition closeScope
| function-definition-list“; " openScope function-definition closeScope

61

Revision: 1.43

Revision: 1.43

C LR(1) GRAMMAR FOR VDM-SL

| function-definition-list“; " error
| function-definition-list error ;

function-definition = explicit-function-definition
| implicit-function-definition ;

explicit-function-definition = name “: " function-type name parameters-list “==" expression
maybe-precondition
| name“[” type-variable-list“] " “: " function-type name
parameters-list “==" expression maybe-precondition ;
implicit-function-definition = name parameter-type-list deciName “: " type maybe-precondition
post expression
| name“[” type-variable-list"] " parameter-type-list decIName “: "

type maybe-precondition poSt expression ;
type-variable-list = type-variable-identifier
| type-variable-list", " type-variable-identifier ;

type-variable-identifier = “@ name ;
parameter-type-list = “(”“)”

| “(” pattern-type-pair-list*“) " ;
pattern-type-pair-list = pattern-list“: " type

| pattern-type-pair-list“, " pattern-list“: " type ;
parameters-list = brack-maybe-pattern-list

| parameters-list brack-maybe-pattern-list ;

maybe-precondition = empty

| pre beginPreCond expression endPreCond ;

brack-maybe-pattern-list = “("“)”
| “(” pattern-list*) " ;
operation-definition-list = operationsopenScope operation-definition closeScope
| operation-definition-list“; " openScope operation-definition
closeScope

| operation-definition-list“; " error
| operation-definition-list error ;

operation-definition = explicit-operation-definition
| implicit-operation-definition ;
explicit-operation-definition = name "“: " discretionary-type “==>" discretionary-type name
brack-maybe-pattern-list “==" statement maybe-precondition ;
implicit-operation-definition = name parameter-type-list maybe-externals maybe-precondition
post expression

| name parameter-type-list maybe-externals maybe-precondition
post expression errs exception-list

62

Revision: 1.43

C LR(1) GRAMMAR FOR VDM-SL

| name parameter-type-list decIName “: " type maybe-externals
maybe-precondition poSt expression
| name parameter-type-list declName “: " type maybe-externals

maybe-precondition POSt expression errs exception-list ;
maybe-externals = empty
| externals;

= ext var-information
| externals var-information
| externals error ;

externals

var-information = rd name-list
| wr name-list
| rd name-list“: " type

Wr name-list“: " type ;

exception-list = name“:” expression “->" expression

| exception-list name “: " expression “->" expression ;
expression-list = expression

| expression-list“,” expression

expression-list error ;

addto-expression-list = expression
| addto-expression-list“, ” expression

addto-expression-list error ;

expression = “(” expression")”

| let openScope local-definition-list in expression closeScope

| let openScope pattern in setexpression in expression closeScope

| let openScope name “: " type in expression closeScope

| let openScope pattern2“: " type in expression closeScope

| let openScope pattern in setexpression be Stexpression in expression closeScope
| let openScope name “: " type be stexpression in expression closeScope

| let openScope pattern2 “: " type be Stexpression in expression closeScope

| def openScope patternbind-expr-list in expression closeScope

| if-expression

| casesopenScope expression “: " cases-alternatives end closeScope

| casesopenScope expression“:” cases-alternatives “, " others“->" expression

end closeScope
“+” expression

“-" expression
absexpression
floor expression
not expression
card expression
power expression
dunion expression

63

Revision: 1.43

C LR(1) GRAMMAR FOR VDM-SL

dinter expression

hd expression

tl expression

len expression
elemsexpression

inds expression
concexpression

dom expression

rng expression

merge expression

inverse expression
expression “+” expression
expression “- " expression
expression “*” expression
expression “/ ” expression
expression div expression
expression rem expression
expression mod expression
expression “<” expression
expression “<=" expression
expression “>" expression
expression “>=" expression
expression “=" expression
expression “<>" expression
expression OI expression
expression and expression
expression “=>" expression
expression “<=>" expression
expression in Set expression
expression NOt in set expression
expression Subsetexpression
expression psubsetexpression
expression UNion expression
expression merge expression
expression “\” expression
expression inter expression
expression " " expression
expression “++” expression
expression munion expression
expression “<: " expression
expression “<-: " expression
expression “:> " expression
expression “:-> " expression
expression COMp expression

64

C LR(1) GRAMMAR FOR VDM-SL

expression “** " expression

forall openScope bind-list“&" expression closeScope
existsopenScope bind-list “&" expression closeScope
existslopenScope bind “&" expression closeScope
iota openScope bind “&” expression closeScope

|
|
|
|
|
Y
I
|
|
|

“{" expression“}”
“{" expression“, " expression“}”
“{" expression“, " expression“, " addto-expression-list“}”
“{” expression“| " openComprehensionScope bind-list“} " closeScope
“{" expression“| " openComprehensionScope bind-list “ & expression “} "
closeScope

| “{” expression“,”"“... ""“,” expression“}”

I

| “[” expression-list*“] "

| “[” expression*| " openComprehensionScope bind-list“] " closeScope

| “[” expression"“| " openComprehensionScope bind-list “&" expression“]”
closeScope
expression “(" expression®,” ... """ expression")”

“{" map-enumeration-list “} "

|
{] ey
|

“{" expression “|-> " expression"“| " openComprehensionScope bind-list “}”
closeScope
| “{" expression“|-> " expression“| " openComprehensionScope bind-list “ &

expression “} " closeScope

mk_“(" expression-list*) "

mk_identifier “("*)”

mk _identifier “(” expression-list) "

mu “(” expression “, " record-modification-list) "
expression (" ")
expression “(" expression “) ”

|
|
|
|
|
|
| expression"“(” expression",” addto-expression-list"“)”
|
|
|
|
|
|
|

W

expression “. " name
name “[" type-list“] "
lambda type-bind-list “&" expression
is_identifier “(” expression*) "
identifier
name ™"
symbolic-literal ;
symbolic-literal = lit-int
| true
| false
| nil
| lit-char

65

Revision: 1.43

Revision: 1.43

C LR(1) GRAMMAR FOR VDM-SL

| lit-string
| lit-quote;

patternbind-expr-list = pattern-bind “=" expression
| patternbind-expr-list“; " pattern-bind “=" expression
| patternbind-expr-list error ;

local-definition-list = local-definition
| local-definition-list“, " local-definition
| local-definition-list error ;

if-expression = if expression then expression elseexpression
| if expression then expression elseif-expression elseexpression ;

elseif-expression = elseifexpression then expression
| elseif-expression elseifexpression then expression ;

cases-alternatives = pattern-list“->" expression
| cases-alternatives“, " pattern-list “-> " expression

cases-alternatives error ;

name-list = name
| name-list", " name ;
map-enumeration-list = expression“|-> " expression

| map-enumeration-list“, ” expression “|-> " expression
| map-enumeration-list error ;

record-modification-list = name"“|-> " expression
| record-modification-list“, ” name “|->

record-modification-list error ;

expression

name = identifier
| mk_identifier
| is.identifier ;
decIName = name;
state-designator = name
| state-designator”.” name
| state-designator“(” expression")” ;
statement = let local-definition-list in statement
let pattern in setexpression in statement
let name “: " type in statement

|
|
| let pattern2“: " type in statement

| let pattern in setexpression be Stexpression in statement
| let name“: " type be stexpression in statement

| let pattern2“: " type be Stexpression in statement

| def equals-definition-list in statement

| “(” maybe-dcl-statement-list statement-list“) "

66

Revision: 1.43

C LR(1) GRAMMAR FOR VDM-SL

| call-statement
| skip;

name “(" expression-list*)”

name “) " using state-designator

call-statement = name“("")”
| name"“ (" expression-list“) " using state-designator ;

equals-definition-list = pattern-bind “=" expression

| equals-definition-list“; " pattern-bind “=" expression ;

maybe-dcl-statement-list = empty

| maybe-dcl-statement-list name “: " type“; ”

| maybe-dcl-statement-list name “: " type “:= " expression
statement-list = statement

| statement-list"; " statement ;
pattern = name
| pattern2 ;

pattern2 ‘L

| “(” expression")”
| symbolic-literal

| “{" pattern-list “}”
| pattern union pattern
| “[” pattern-list“]”
| pattern“” " pattern

| mk_“(" pattern-list“)”
|

name brack-maybe-pattern-list ;

pattern-list = pattern
| pattern-list“, " pattern

pattern-list error ;

pattern-bind = pattern
| bind;

bind = pattern in setexpression

| pattern“:” type;

bind-list = multiple-set-bind

| multiple-type-bind

| bind-list*, ” multiple-set-bind

| bind-list“, " multiple-type-bind
| bind-list error ;

multiple-set-bind = pattern-list in setexpression ;

multiple-type-bind = pattern-list“: " type ;

67

’ ’

C LR(1) GRAMMAR FOR VDM-SL

= pattern ". "~ type
| type-bind-list“,” pattern“:” type
| type-bind-list error ;

type-bind-list

“_n

local-definition = pattern expression

| name"“:” type“=" expression

| pattern2*“:” type“=" expression

| name“:” function-type name parameters-list “==" expression
maybe-precondition

| name“[” type-variable-list“] " “: " function-type name parameters-list “=="
expression maybe-precondition

| name parameter-type-list deciName “: " type maybe-precondition post

expression

name type-variable-list“] " parameter-type-list decIName “: " type
maybe-precondition POSt expression ;

openScope = empty;

closeScope = empty;
openComprehensionScope = empty;
beginPreCond = empty;
endPreCond = empty;

68

Revision: 1.43

Revision: 1.43

D PROGRAM CODE

D Program Code

The complete program source is submitted on floppy disc together with this document. It is also
available online fromhttp: //www.in.tum.de/"atterer/uni/sep/

D.1 TheSmartPtr template

The code excerpt below is included as an example of a complete compilation unit;
smartptr.h . Only the initial copyright comment and some debugging code have been omitted.
TheSmartPtr template is described in detail in sectiém. 1

struct SmartPtr_lockStatic;

struct SmartPtrBase {
friend struct SmartPtr_lockStatic;
SmartPtrBase() throw() : smartPtr_refCount(0) { }
int smartPtr_refCount;
¥
//

/* If static objects are accessed through smart pointers, ensure that
there are no attempts to delete them, by defining a non-static
SmartPtr_lockStatic(object), which MUST be DEFINED (not declared)
AFTER the object being locked, in the SAME translation
unit. Otherwise, order of construction is not defined. */

struct SmartPtr_lockStatic {

SmartPtr_lockStatic(SmartPtrBase& obj) { ++obj.smartPtr_refCount; }
“SmartPtr_lockStatic() { }
I3
//

// There are no implicit conversions from/to the actual pointer.
template<class X>
class SmartPtr {
public:
typedef X element_type;

69

http://www.in.tum.de/~{}atterer/uni/sep/

Revision: 1.43

D PROGRAM CODE D.1 The SmartPtr template

SmartPtr() throw() : ptr(0) { }
“SmartPtr() throw() { decRef(); }

// init from SmartPtr<X>

SmartPtr(const SmartPtr& x) throw() : ptr(x.get()) { incRef(); }

// init from SmartPtr to other type; only works if implicit conv. possible

template<class Y> SmartPtr(const SmartPtr<Y>& vy) throw() : ptr(y.get()) {
incRef();

}

// init from pointer

explicit SmartPtr(X* x) throw() : ptr(x) { incRef(); }

/* This one is necessary, the compiler will *not* generate one from
the template below. */

SmartPtr& operator=(const SmartPtr& x) throw() {
if (ptr = x.get()) { decRef(); ptr = x.get(); incRef(); }
return *this;

}

template<class Y> SmartPtr& operator=(const SmartPtr<Y>& vy) throw() {
if (ptr != y.get()) { decRef(); ptr = y.get(); incRef(); }
return *this;

}

template<class Y> SmartPtr& operator=(Y* y) throw() {
if (ptr 1= y) { decRef(); ptr = y; incRef(); }
return *this;

X& operator*() const throw() { return *ptr; }

X* operator—>() const throw() { return ptr; }

X* get() const throw() { return ptr; }

X* release() throw() { // relinquish ownership, but never delete
if (ptr '= 0) ——(ptr—>SmartPtrBase::smartPtr_refCount);
X* tmp = ptr; ptr = 0; return tmp;

}

void swap(SmartPtr& x) throw() { X* tmp = ptr; ptr = x.ptr; x.ptr = tmp; }

70

D PROGRAM CODE D.1 The SmartPtr template

bool isNull() const throw() { return ptr == 0; }

private:
void incRef() throw() {
if (ptr != 0) ++(ptr—>SmartPtrBase::smartPtr_refCount);
}
void decRef() throw() {
if (ptr !I= 0 && ——(ptr—>SmartPtrBase::smartPtr_refCount) <= 0)
delete ptr;

}

X* ptr,
h
//

template<class X>
inline SmartPtr<X> makeSmartPtr(X* x) { return SmartPtr<X>(x); }

// only delete if count is zero
// 'deleteSmart(x);" is equivalent to { SmartPtr<X> tmp(x); }'
template<class X> // need template for 'delete ptr’' to call the right dtor
inline bool deleteSmart(X* ptr) {
if (ptr '= 0 && ptr—>SmartPtrBase::smartPtr_refCount <= 0) {
delete ptr; return true;

} else {

return false;

template<class X>
inline X* releaseSmart(X* ptr) {
if (ptr '= 0) ——ptr—>SmartPtrBase::smartPtr_refCount;

return ptr,;

}
//

71

Revision: 1.43

Revision: 1.43

D PROGRAM CODE D.1 The SmartPtr template

template<class X> inline void swap(SmartPtr<X>& a, SmartPtr<X>& b) {
a.swap(b);

¥

template<class X>

inline bool operator<(const SmartPtr<X> a, const SmartPtr<X> b) {
return a.get() < b.get();

h

template<class X>

inline bool operator>(const SmartPtr<X> a, const SmartPtr<X> b) {
return a.get() > b.get();

¥

template<class X>

inline bool operator<=(const SmartPtr<X> a, const SmartPtr<X> b) {
return a.get() <= b.get();

¥

template<class X>

inline bool operator>=(const SmartPtr<X> a, const SmartPtr<X> b) {
return a.get() >= b.get();

;

// allow comparison with pointers

template<class X>

inline bool operator==(const SmartPtr<X> a, const X* b) {
return a.get() == b;

template<class X>

inline bool operator==(const X* a, const SmartPtr<X> b) {
return a == b.get();

template<class X>

inline bool operator!=(const SmartPtr<X> a, const X* b) {
return a.get() != b;

template<class X>

inline bool operator!=(const X* a, const SmartPtr<X> b) {

72

D PROGRAM CODE D.1 The SmartPtr template

return a != b.get();

}

73

Revision: 1.43

Revision: 1.43

REFERENCES REFERENCES

References

[1SO93] International Standards Organizatioimformation Technology Programming
Languages — VDM-SLFirst committee draft CD 13817-1, Document ISO/IEC
JTC1/SC22/WG19 N-20, November 1993

Available online at
ftp://ftp.cs.uq.oz.au/pub/vdmsl_standard/

ftp://gatekeeper.dec.com/pub/standards/vdmsl/
ftp://ftp.imada.ou.dk/pub/vdmsl|_standard/

[Meudec98] Christophe Meudedutomatic Generation of Software Test Cases From Formal
SpecificationsPh.D. thesis, The Queen’s University of Belfast, May 1998

Available online as
http://www.geocities.com/CollegePark /Square /4148 /research/

thesis/thesis.zip
http://www.in.tum.de/"atterer/uni/sep/meudec-thesis.ps.gz

[Stroustrup97]Bjarne Stroustrupl'he C++ Programming Languagé&rd edition, Addison Wes-
ley, Reading (Massachusetts), 1997 (9th printing 1999)

74

http://www.geocities.com/CollegePark/Square/4148/research/thesis/thesis.zip
http://www.geocities.com/CollegePark/Square/4148/research/thesis/thesis.zip
http://www.in.tum.de/~{}atterer/uni/sep/meudec-thesis.ps.gz

	Introduction
	Specification
	Design
	Lexical Analysis
	Parsing
	Generation and Output of Test Data
	Processing the Input
	Partitioning Expressions
	Generation of Equivalence Classes

	Implementation
	Lexical Analysis
	Parsing
	Creation of the LALR(1) grammar
	Representation of the Parse Tree
	Scope Handling

	Generation and Output of Test Data
	Functions For Partitioning
	Representation of the Partition Tree
	Building the Test Case Predicates
	The BigInt Integer Abstraction

	Further Components of the Implementation
	The SmartPtr Template
	Error Handling
	Debugging Aids

	Tests of the Program Components
	Tests of the Final Program
	Portability
	Robustness

	Conclusion
	User Manual For vdmpart
	Installation
	Program Usage
	LaTeX Macro Definitions For Use With vdmpart

	Example of Input/Output For a Small Problem
	LR(1) Grammar For VDM-SL
	Program Code
	The SmartPtr template

	References

