
Automatic Test Data Generation From VDM-SL
Specifications

A dissertation submitted at The Queen’s University of Belfast

by

Richard Atterer

April 7, 2000

Acknowledgements

I would like to thank my supervisor, Dr Ivor Spence, for his help and support, as well as for

giving me a demanding, but also very interesting task.

This project is based on previous work by Christophe Meudec, and would not have been

possible without the theoretical foundations provided by his Ph.D. thesis.

Additionally, I want to express my thanks to the Faculty of Computer Science at the Tech-

nische Universiẗat München and especially Mrs Angelika Reiser for letting me study abroad in

Belfast for one year.

Abstract

Testing is an important aspect of software development and plays a major role in detecting errors

in implementations. Tests are often performed manually and at random, which is problematic

because it is time-consuming and there is no way of telling how well a software component has

been tested. Additionally, the “random” test inputs are determined by a human, which can mean

that the corner case that has escaped the implementor’s attention may well also not be noticed by

the tester.

It seems obvious that testing should also (at least in part) be done by computers. However, this

proves difficult when only the program source is available, as any tool analysing it will hardly be

able to tell what the codeis supposedto do. For this reason, one approach to automatic test data

generation is not to use the source code, but an additional, high-level and abstract specification

which describes the behaviour of a component. The program developed for this project is a partial

implementation of such a test data generation tool.

Revision: 1.43

I

CONTENTS CONTENTS

Contents

1 Introduction 1

2 Specification 2

3 Design 5
3.1 Lexical Analysis . 5

3.2 Parsing . 6

3.3 Generation and Output of Test Data. 7

3.3.1 Processing the Input. 7

3.3.2 Partitioning Expressions. 8

3.3.3 Generation of Equivalence Classes. 14

4 Implementation 19
4.1 Lexical Analysis .19

4.2 Parsing .21

4.2.1 Creation of the LALR(1) grammar. 21

4.2.2 Representation of the Parse Tree. 25

4.2.3 Scope Handling. 28

4.3 Generation and Output of Test Data. 31

4.3.1 Functions For Partitioning. 32

4.3.2 Representation of the Partition Tree. 35

4.3.3 Building the Test Case Predicates. 37

4.3.4 TheBigInt Integer Abstraction. 38

4.4 Further Components of the Implementation. 38

4.4.1 TheSmartPtr Template . 39

4.4.2 Error Handling. 41

4.4.3 Debugging Aids . 41

4.5 Tests of the Program Components. 42

4.6 Tests of the Final Program. 43

4.6.1 Portability. .43

4.6.2 Robustness. .45

5 Conclusion 50

Revision: 1.43

II

CONTENTS CONTENTS

A User Manual For vdmpart 52
A.1 Installation .52

A.2 Program Usage. .53

A.3 LATEX Macro Definitions For Use Withvdmpart 54

B Example of Input/Output For a Small Problem 56

C LR(1) Grammar For VDM-SL 60

D Program Code 69
D.1 TheSmartPtr template . 69

References 74

Revision: 1.43

III

1 INTRODUCTION

1 Introduction

The Vienna Development Model (VDM) and its specification language (VDM-SL) provide means

for software developers to ensure the software they create is of very high quality, containing far

fewer bugs than with more conventional software development methods. This is achieved by

giving a high-level, possibly implicit specification ofwhateach component does rather thanhow

it is implemented, and giving a formal proof that the behaviour of a component does not change

when implicit expressions are replaced with a more concrete, executable version.

Unfortunately, it is impossible to account for all circumstances which can lead to incorrect

behaviour of an implementation, so tests of the final software are as important as for programs

developed less rigorously.

With conventionally developed programs, testing is mostly performed manually, not very

rigorously and takes up a significant amount of the total development cost – without there being

any guarantee that the tests even approach to cover all possible cases.

On the other hand, with the high-level specification of programs developed using VDM, it is

possible to some degree to automatically generate input samples for each software component.

Even though the technique used is largely based on heuristics, it is far superior to manual testing

in that the tests are more likely to contain critical cases. Additionally, no human interaction is

required to perform tests, making development cheaper.

The program developed for this Software Engineering Project implements a test data genera-

tor, based on the algorithm suggested in [Meudec98].

Revision: 1.43

1

2 SPECIFICATION

2 Specification

The aim of this Software Engineering Project is to produce a program which, given a formal

specification in the VDM specification language (in the form of an ASCII text file), performs an

analysis of certain parts of the specification and generates data which can subsequently be used

to test an implementation of that specification.

This is to be achieved in three major stages: First, the stream of ASCII characters is turned

into a stream of tokens by a lexical analyser (scanner). Next, a parser uses the tokens to build

a tree representation of the language constructs. Finally, this tree is traversed and analysed to

produce the test data.

Since the program is a command line utility, its user interface is very simple. Command line

switches allow the user to influence its behaviour, e.g.--partition to output an intermediate

result of the test generation process in addition to the test data.

Here is a VDM-SL specification with an example for a function that the program can process:

functions
example(x: int) r: bool – – integer argument x, boolean return value r
pre x <> 5 – – the function will never be called with x= 5
post r <=> (x > 1) – – return true if x greater than 1

The creation of test data during the final stage constitutes the most important part of the pro-

gram. The fundamental idea behind the algorithm is to provide sets of values for the arguments

given to a function (and for what it returns) in such a way that each set of values, i.e. each test

case, represents one particular “sub-case” of the problem that the function is supposed to handle,

and also that all test cases taken together represent the problem as a whole.

Each test case’s set of variable values1 is correct in the sense that it does not violate the

specified pre- and post-conditions: If the pre-condition statesx 6= 5 then none of the generated

test cases will assign the value 5 tox. This does not only apply to pre/post-conditions, but also to

other constraints, e.g. those imposed by type invariants (although the program only supports the

basic data typesbool andint, which do not have invariants).

There is a strong similarity between the way the problem is described by the set of all test

cases and the way a function with boolean input/output can be described using its disjunctive

normal form (DNF). In fact, if only boolean variables and operators are used, the two are the

same; joining the test cases using logicalor operations yields the DNF.

1In this and the following paragraphs, “variable” refers to both the function arguments and the return value.

Revision: 1.43

2

2 SPECIFICATION

To make the test case generation possible, it is first necessary to create apartition for the

expression representing a function. The term “partition” is used to emphasize that thedefini-

tion domain– for example,Z×B for one integer argument and a boolean return value – is

subdivided into disjoint parts (definition domain subsetsor sub-partitions), each of which is con-

sidered to be independent from the others for the purpose of testing, so that only one sample

variable value needs to be taken from each. For example, the function’s pre-conditionx 6= 5 leads

to a subdivision ofx∈ Z into the sub-partitionsx < 5 andx > 5.

For the example above, the expression isx 6= 5∧ r ⇔ (x> 1), and the corresponding partition

could be written as{
x < 5
x > 5

}
×

{
{r}×{x > 1}
{¬r}×{x≤ 1}

}
With this notation, sub-partitions are enclosed in{} if their union is the whole definition

domain . The ‘×’ operator is used to connect the domains represented by two sub-expressions

if both of them must be true at the same time. From a more abstract point of view, the operator

performs an intersection of its left-hand and right-hand domain arguments.

A test data generation program creates the individual variable values by combining sub-

partitions into a predicate (also calledequivalence classin [Meudec98]) and then solving that.

If there is more than one possibility for a variable value, one of the possible values is chosen at

random, since any value represents its sub-domain equally well. For the above examplex 6= 5,

the first sub-partition,x < 5, might lead tox being assigned the value−46 for a first test case,

and the second one,x > 5, to a value of 7 for a second test case, or indeed any other value greater

than 5.2

If sub-partitions have been created for several parts of the original expression, the only way to

ensure that all aspects of the problem are taken into account is to combine these sub-partitions in

all possible ways, and to create one test case for each of the permutations. In the example, there

are two subdivisions of the domain ofx: The pre-condition subdividesZ into x < 5 andx > 5,

and the post-condition leads to the generation of the sub-partitionsr ∧ x > 1 and¬r ∧ x ≤ 1.

Combining the sub-partitions in all possible ways results in four equivalence classes:x < 5∧ r ∧
x > 1, x > 5∧ r ∧x > 1, x < 5∧¬r ∧x≤ 1 andx > 5∧¬r ∧x≤ 1. The last of these predicates is

contradictory, so no test cases are created for it.

To summarize, the program must perform the following tasks:
2In practice, the program will use the four sub-partitionsx < 4, x = 4, x = 6, x > 6 to catch corner cases.

Revision: 1.43

3

2 SPECIFICATION

• Read the input characters and separate them into symbols in the scanner.

• In the parser, analyse these symbols and build a parse tree which represents the VDM-SL

specification.

• In the parse tree, find the function/operation definition that is to be analysed and create a

partition from the expressions it contains.

• Create equivalence classes from the partition and output them.

Revision: 1.43

4

3 DESIGN

3 Design

The program is written in the C++ programming language and makes use of its standard library

as described in [Stroustrup97]. It is expected that the VDM-SL input given to it is syntactically

and semantically correct – however, the program gives an error message and exits for all those

cases of invalid input that do not allow it to continue processing.

3.1 Lexical Analysis

The scanner is supplied a filename on the command line and reads characters from the specified

file, grouping them together and either ignoring them (comments and whitespace) or passing

them on to the parser as terminal tokens.

Because many symbols used in VDM-SL are not available with ASCII the Interchange Con-

crete Syntaxas defined in section 10 of [ISO93] is used. The code of the scanner is generated

with the lex or flex tool from a description file, which needs to be written with care to deal with

the following issues:

• Provide regular expressions in such a way that VDM-SL language constructs as described

by the ISO standard are recognized. Reject with an error message any character sequences

that cannot form part of VDM-SL language constructs. Silently process comments, without

passing on any information about them.

• Where necessary, e.g. for integer or string constants, process the recognized characters and

pass the additional information to the parser.

• Maintain a count of the current line number, for use with error and warning messages.

Along with each terminal token (whether consisting of just a single character or of several

characters), also pass the current line number to the parser.

Data Model and Functions

The scanner code (a function calledyylex()) is generated from the description file which is passed

to thelex or flex utility.

The scanner maintains a hash table in which it stores a pointer to each identifier it encounters.

Revision: 1.43

5

3 DESIGN 3.2 Parsing

3.2 Parsing

From the terminal tokens, a tree structure is built by means of a parser. This task is performed

by a program generated by theyacc or bison tool after the grammar of VDM-SL described in

section 9 of [ISO93] has been transformed into the LR(1) grammar accepted by it. The operator

precedence rules from section 9.8 are incorporated with specialyacc/bison extensions.

The grammar transformation is made very difficult by the fact that the supplied grammar is

not LR(1) and contains numerous ambiguities and errors, all of which need to be resolved to

make the parser work. It is likely that many of them will have been corrected in the final version

of the ISO VDM-SL standard, but that version is not available for free.

Even though later stages of the program only need to deal withpartsof the VDM-SL source,

the program recognizesall of the language (with the exception of statements) and provides a tree

representation for it, as it is intended to provide a basis for further projects dealing with VDM-SL.

Data Model and Functions

The part of the program which builds a tree out of the terminal tokens can be subdivided into

the grammar description for the parser generator, the parser code generated from it (consisting

mainly of a functionyyparse()) and the data structures for the parse tree.

In order to ease debugging and extending the program, the tree is not represented by instances

of a single “node” type. Instead, advantage is taken of the C++ type checking mechanism by

providing a separate class definition for each nonterminal rule in the grammar. The class name

(declared in theTree namespace) is very similar to the name of the nonterminal rule, e.g.class

ExplicitFunctionDefinition for the ruleexplicit-function-definition.

A hierarchy of classes is derived from the virtual base class for a nonterminal token,class

Tree::N. If one of the classes is only intended for use as a base class, it is made abstract – for

example, this is the case forclass N or for class FunctionDefinition, from whichExplicitFunction-

Definition andImplicitFunctionDefinition derive.

The constructor of each class takes arguments in the order in which the respective sub-

terminals or nonterminals appear in the grammar rule. Whenever one of these symbols is optional

in the grammar and is not present in the current input, this is indicated by passing a null pointer

to the constructor.

The destructor of each class deletes all subtrees and symbols they contain, with one exception:

Identifiers are not deleted because other pointers to them exist in the hash table.

Copying and assigning tree node objects is disallowed.

After the object has been constructed, references to the subtrees of a nonterminal node can

Revision: 1.43

6

3 DESIGN 3.3 Generation and Output of Test Data

be obtained through calls to member functions whose names are closely related to the type of

tree they return, e.g.ExplicitFunctionDefinition::preCondition() for the expression representing

the pre-condition of a function. If the sub-symbol is optional, the caller must first check for its

presence with, e.g.,hasPreCondition().

A nonterminal representing a listis a (derives publicly from the) standard libraryvector.

The parser supports the concept of name scopes, since knowledge about where variables are

defined must be accessible in order to correctly determine whether identifiers in pre-conditions

refer to “old” variable values even though they are spelled without a trailing˜.

3.3 Generation and Output of Test Data

Once the tree of a VDM-SL specification has been created, it is analysed according to the algo-

rithms explained in chapter 4 and 5 of [Meudec98]: For the function that the user has indicated,

the pre-condition and post-condition are examined, and a partition representing them is generated.

Subsequently, the partition is used to produce predicates which need to be passed to an external

solver to find out whether they are satisfiable, and, if they are, to choose a random sample from

each partition. The predicate expressions are printed to the screen or to a file.

It is assumed that it is possible for the tester not only to pass certain parameters to a function

when performing tests on an implementation, but also to instantiate a given state in advance, e.g.

by modifying global variables in the program.

The test data generation tool does not address the problem of data type transformations, such

as the necessity of storing the members of a set in a particular order in any implementation of a

specification.

Although the algorithm used is based on that described in [Meudec98], this implementation

is slightly different from the one proposed in chapter 5.3 of that work. The following sections

explain the differences and give justifications for the changes.

3.3.1 Processing the Input

In sections 5.3.1 and 5.3.4 of his thesis, Meudec describes his idea of using different parsers

to process the input tokens differently depending on the operators by which expressions are

combined into larger expressions. In practice, this is not feasible because the available parser

generator tools only have one lookahead token, which, in the case of infix operators, makes it

impossible to switch over to the correct parser before the left-hand operand is processed.

Revision: 1.43

7

3 DESIGN 3.3 Generation and Output of Test Data

One possible solution for this problem would be to make multiple passes over the input to-

kens, but a preferable way of achieving the same result is to build a “conventional” parse tree first

and create the operator-dependent information (which describes the partitions of the expression)

during a second pass over this tree.

Apart from being more efficient, this also allows for moving the partitioning code to a differ-

ent compilation unit, to stress the fact that parsing and partitioning are two major different parts

of the program. Finally, experience shows that having the parse tree available for later inspection

is essential for all but very simple compiler-like programs.

3.3.2 Partitioning Expressions

The process of generating the nested partition description is performed as outlined in section2,

with minor differences to [Meudec98, 5.3.4, p.134].

The term “nested partition description” is to be understood as: None of the equivalence class

“full combination” operators (denoted by the symbol ‘×’) have yet been applied to any of their

arguments – in other words, the partition description tree has not been flattened.

The behaviour of the program differs from the algorithm proposed by Meudec in the following

ways:

• Whereas Meudec’s algorithm suggests the use of parsers, this program uses a set of possi-

bly recursive methods, each one associated with a different node type of the parse tree.

• Instead of providing. . . True and . . . Undef along with aNegate function, the program

usespartTrue(), partFalse() andpartUndef() functions – obviously, this does not make a

difference, except that a callpartFalse(x) instead ofpartTrue(Negate(x)) leaves less work

to any expression simplification or solving which might take place later on.

• There are no separateCoarse andRefine versions of the partitioning rules/code. This is not

necessary because closer examination shows that the distinction is only conceptual (Coarse

for path expressions,Refine for path and non-path expressions)3 and that the subset of

the Refine partitioning rules applying to path sub-expressions is identical to theCoarse

partitioning rules.

• In [Meudec98, 4.2.2, p.93], the author remarks that it makes sense to provide partitions

not only for non-logical expressions, but also for expressions with a non-boolean result.

In particular, the possibility of division by zero should be addressed. This is implemented
3[Meudec98, 4.1.1, p.73] definespath expressionsto denoteif andcases expressions and logical expressions.

Revision: 1.43

8

3 DESIGN 3.3 Generation and Output of Test Data

using apartDef() method instead of the two methodspartTrue() andpartFalse() for all

operators whose result is not boolean.

It seems appropriate to introduce a more flexible notation to express combinations, with more

options than just ‘×’ for “all combinations” – from now on, this dissertation will use a bipartite

graph as an infix operator between two sets of equivalence classes to indicate how the classes

should be combined. For example,
a
b
c

@@A
A
A

��

@@�
�
�

��


d
e
f

 is equivalent to


a
b
c

×


d
e
f


and


a
b
c

@@

�
�
�

��


d
e
f

 is equivalent to


a∧d
a∧e
c∧d
c∧e
c∧ f


The distributed union operator,

⋃
{. . .}, is (incorrectly) omitted for the sake of a more concise

notation.

The program written for this project only deals with the following VDM-SL operators: The

logical operatorsnot, and, or, =>, <=>, the relational operators=, <>, >, <, >=, <= and the

arithmetic operators+, - , * , div. Variables can be of the typesbool andint only.4

Here are the partitioning rules for the operators. They are basically the same as Meudec’s,

but have been altered in accordance to the modifications described above. Allei denote sub-

expressions.

The behaviour of the logical operators is determined by VDM ’s three-valued logic, see

[Meudec98, table 4.1, p.85]:

partTrue(not e1) = partFalse(e1)

partFalse(not e1) = partTrue(e1)

partUndef(not e1) = partUndef(e1)

partTrue(e1 and e2) = partTrue(e1)×partTrue(e2)

4Notice that this simplification implies that invariants of user-defined types never need to be taken into account.

Revision: 1.43

9

3 DESIGN 3.3 Generation and Output of Test Data

partFalse(e1 and e2) =


partTrue(e1)
partFalse(e1)
partUndef(e1)

@@��

@@��


partTrue(e2)
partFalse(e2)
partUndef(e2)


partUndef(e1 and e2) =

{
partTrue(e1)
partUndef(e1)

}
@@��

{
partTrue(e2)
partUndef(e2)

}

partTrue(e1 or e2) =


partTrue(e1)
partFalse(e1)
partUndef(e1)

@@A
A
A

��

�
�
�


partTrue(e2)
partFalse(e2)
partUndef(e2)


partFalse(e1 or e2) = {partFalse(e1)×partFalse(e2)}

partUndef(e1 or e2) =
{

partFalse(e1)
partUndef(e1)

}
@@��

{
partFalse(e2)
partUndef(e2)

}

partTrue(e1 => e2) =


partTrue(e1)
partFalse(e1)
partUndef(e1)

��

@@�
�
�


partTrue(e2)
partFalse(e2)
partUndef(e2)


partFalse(e1 => e2) = partTrue(e1)×partFalse(e1)

partUndef(e1 => e2) =
{

partTrue(e1)
partUndef(e1)

}
@@��

{
partFalse(e2)
partUndef(e2)

}

partTrue(e1 <=> e2) =
{

partTrue(e1)×partTrue(e2)
partFalse(e1)×partFalse(e2)

}

partFalse(e1 <=> e2) =
{

partTrue(e1)×partFalse(e2)
partFalse(e1)×partTrue(e2)

}

partUndef(e1 <=> e2) =


partTrue(e1)
partFalse(e1)
partUndef(e1)

A
A
A@@�

�
�

��


partTrue(e2)
partFalse(e2)
partUndef(e2)


The rules for the relational operators are not “set in stone” like those for the logical oper-

ators above. Instead, they are heuristics which aim at finding the cases where errors are most

probable in an implementation. The following rules suggested in [Meudec98, p.139ff] are likely

to catch corner cases. Note that thepartUndef(. . .) rules can be made slightly simpler than

Meudec’s version because of the assumption that the input to the program is semantically cor-

rect.partUndef(e1◦e2) is identical for all◦ ∈ {<,>,<=,>=,=,<>}:

partUndef(e1◦e2) =
{

partDef(e1)
partUndef(e1)

}
@@��

{
partDef(e1)

partUndef(e1)

}

Revision: 1.43

10

3 DESIGN 3.3 Generation and Output of Test Data

partTrue(e1 < e2) = partDef(e1)×partDef(e2)×
{

e1 +1 = e2

e1 +1 < e2

}
partFalse(e1 < e2) = partTrue(e1 >= e2)

partTrue(e1 > e2) = partDef(e1)×partDef(e2)×
{

e1 = e2 +1
e1 > e2 +1

}
partFalse(e1 > e2) = partTrue(e1 <= e2)

partTrue(e1 <= e2) = partDef(e1)×partDef(e2)×
{

e1 = e2

e1 < e2

}
partFalse(e1 <= e2) = partTrue(e1 > e2)

partTrue(e1 >= e2) = partDef(e1)×partDef(e2)×
{

e1 = e2

e1 > e2

}
partFalse(e1 >= e2) = partTrue(e1 < e2)

partTrue(e1 = e2) = partDef(e1)×partDef(e2)×
{

e1 = e2
}

partFalse(e1 = e2) = partTrue(e1 <> e2)

partTrue(e1 <> e2) = partDef(e1)×partDef(e2)×


e1 = e2 +1
e1 > e2 +1
e1 +1 = e2

e1 +1 < e2


partFalse(e1 <> e2) = partTrue(e1 = e2)

The arithmetic operators+, - and* simply combine the partitions of their arguments, whereas

division by zero necessitates some additional possibilities for that operator. Again, because the

input specification is assumed to be semantically correct, certain cases which would lead to the

expression becoming undefined can be omitted. For all◦ ∈ {+, - ,* }:

partDef(e1◦e2) = partDef(e1)×partDef(e2)

partUndef(e1◦e2) =
{

partDef(e1)
partUndef(e1)

}
@@��

{
partDef(e2)

partUndef(e2)

}
partDef(e1 div e2) = partDef(e1)×partTrue(e2 <> 0)

Revision: 1.43

11

3 DESIGN 3.3 Generation and Output of Test Data

partUndef(e1 div e2) =
{

partDef(e1)
partUndef(e1)

}
@@��


partTrue(e2 <> 0){
partTrue(e2 = 0)
partUndef(e2)

} 
If e1 is an integer variable or constant, the partitioning is straightforward:5

partDef(e1) = true

partUndef(e1) = false

For boolean variables or constants, the following must be provided instead ofpartDef() and

partUndef():

partTrue(e1) = {e2}

partFalse(e1) = {not e2}

The program applies adynamic programmingtechnique; it avoids generating partitions for,

say,partTrue(x), more than once: IfpartTrue(x) is encountered a second time during generation

of the nested partition description, the previously generated version is re-used.

As an example, here is the nested partition description generated for the expressionx >

0 or y < 5 in [Meudec98, 5.4.1, p.148].

true× true×
{

x = 0+1
x > 0+1

}
true× true×

{
x = 0
x < 0

}
{

true
false

}
@@��

{
true
false

}


@@A
A
A

��

�
�
�



true× true

{
y+1 = 5
y+1 < 5

}
true× true

{
y = 5
y > 5

}
{

true
false

}
@@��

{
true
false

}


The obvious simplifications of eliminatingtrue andfalse are performed by the program during

the building of the partition, so the result will correspond to:
{

x = 0+1
x > 0+1

}
{

x = 0
x < 0

}
@@��


{

y+1 = 5
y+1 < 5

}
{

y = 5
y > 5

}


5The reason whytrue and false are not enclosed in{} here is that noTree::Expr or Part::Partition object is
generated for them, in contrast to everything inside{}. Instead, elimination of this specialtrue/false takes place
immediately during the tree construction.

Revision: 1.43

12

3 DESIGN 3.3 Generation and Output of Test Data

However, the implementation does not have a representation for the partial combination op-

erator, consequently its three different possibilities are enumerated in a partition set, the final

output being:

{
x = 0+1
x > 0+1

}
×

{
y+1 = 5
y+1 < 5

}
{

x = 0+1
x > 0+1

}
×

{
y = 5
y > 5

}
{

x = 0
x < 0

}
×

{
y+1 = 5
y+1 < 5

}


Data Model and Functions

partTrue(), partFalse(), partDef() andpartUndef() can be called in several ways: First, each

Tree::Expr6 class provides virtual member functions of that name, so that a callobj.partDef()

(without any arguments) can be used to generate the partition for an expression “obj”. However,

the member functions just make calls to normal functions in thePart namespace, for example

Part::Def::less(Tree::Expr*, Tree::Expr*). This system allows both for using the operator and

subexpression(s) stored in anExpr object and for supplying two subexpressions to functions for

specific operators. The latter is useful for cases likepartFalse(e1 = e2) = partTrue(e1 <> e2),

where an object for the<> would otherwise have to be created just to make the partitioning call.

The nested partition description is represented by a tree of nodes whose classes are derived

from the abstract base classPart::Partition. There are five such classes:

• FullComb represents the full combination operator and consists of two sub-partitions which

are to be combined in all possible permutations.

• PartSet is a set of equivalence classes – several sub-partitions enclosed in{} in the descrip-

tion above. The effect of the partial combination “bipartite graph” operator is achieved in

the program by enumerating the possibilities in aPartSet.

• ExprSet is equivalent toPartSet, except that it contains pointers toTree::Expr objects in-

stead of furtherPartition objects. Thus, it represents the leaves of the partition tree.

• ConstTrue and ConstFalse are used to denote anExprSet with just one entry which is

the boolean constanttrue or false. In contrast toExprSet, however, they are eliminated
6Tree::Expr is derived fromTree::N and is the abstract base class of all nodes which represent expressions.

Revision: 1.43

13

3 DESIGN 3.3 Generation and Output of Test Data

during partition generation, so they will not occur in the final partition unless that partition

evaluates to{true} or {false}. Only one instance is ever created for each class.

ThePartition classes have additional member functions, which are described later on.

3.3.3 Generation of Equivalence Classes

Now that the partition description is available, a set of expressions must be created, each repre-

senting one test case. This is where the program differs most from [Meudec98].

The technique used by Meudec is as follows: Recursively replace all combination operators

with a set of equivalence classes:

1. For each combination operator, first the left and right operand are turned into sets of equiva-

lence classes (or predicate expressions) by means of recursive application of the technique.

2. The new equivalence classes are generated by picking one expression from the left-hand

and one from the right-hand set argument for each possible permutation, and applying a

logicaland to the expressions.

If the left and right argument are independent from each other in the sense of the description

in [Meudec98, 5.3.3, p.133], not all permutations are tried. Instead, the algorithm only

ensures that each element of the left and each element of the right operand has been picked

at least once.

3. The new, larger equivalence class is passed to a solver which eliminates contradictory

cases.

It must be noted that this approach contains a flaw: Suppose a partition{{
a
b

}
@@��

{
c
d

}}
×e

is to be reduced to equivalence classes, and the arguments of the bipartite graph operator are

independent. Meudec’s algorithmmight (it is non-deterministic) decide to drop the permutation

a∧c and turn this into{
a∧d
b∧c

}
×e

On the other hand, it might also turn out to be

{}×e

Revision: 1.43

14

3 DESIGN 3.3 Generation and Output of Test Data

because botha∧d andb∧c are contradictory, whereas the discardeda∧c may have been soluble.

This is easily correctable: Just check which expressions cannot be solved and if any ofa, b, c or

d is eliminated completely, try the discarded permutations as a last resort.

However, assuming thata∧d andb∧c do have solutions, the following final partition would

be generated:{
a∧d∧e
b∧c∧e

}
At this point, it is possible that botha∧ d andb∧ c are soluble, but that neithera∧ d∧ e nor

b∧c∧e is soluble, whereasa∧c∧ecould have been soluble – and this may happen at any level

of depth, so it is impossible to account for.

To summarize, by throwing away certain combinations early, the algorithm may fail to gen-

erate important test cases later on. In the worst case, it might generate no test cases at all – and

even worse, an implementation could run for a very long time before this happens.

The algorithm used by the program has several advantages over Meudec’s technique even

though it does not take independence into account at all. It has disadvantages that may render

it as inapplicable to large problems as the original algorithm, but is believed to get closer to an

application that can be used in practice, i.e. for large input specifications.

The changes were motivated not only by the flaw in the first technique, but also by the follow-

ing consideration: Whatever algorithm is used, passing large expressions will cause the program

to run for a very long time (maybe months) because of the exponential explosion of the number of

combinations. In this light, it is completely unacceptable to first generate all equivalence classes

and then output them – not only will it take too long before they are output, they will also all

have to be stored in memory at one point, which might be impracticable because of the size of

the data.

Consequently, the algorithm should not be in O(NP) for both space and time – and while

polynomial complexity for time cannot be achieved, this is possible for the space requirements.

Furthermore, even if the program runs for months, thefirst equivalence class should be output (al-

most) immediately, so that testing can take place in parallel with the test data generation. Because

it may well be impossible to wait until all test cases have been generated, an additional require-

ment is that two subsequent test cases should be as different from each other as possible. By

swapping cases semi-randomly, the chances are higher that if the program is terminated prema-

turely, the equivalence classes generated so far represent the problem reasonably well. Moreover,

the semi-random swapping avoids cases of the program running into a branch of the partition

Revision: 1.43

15

3 DESIGN 3.3 Generation and Output of Test Data

where all generated expressions turn out to be contradictory – making the output of valid test

cases stop for some (possibly quite long) time.

The basic idea is outlined by the following paragraphs. Notice that in contrast to the solution

proposed in [Meudec98], the program only works with the initial nested partition description; the

tree representing it is not modified by the algorithm.

It seems that this approach only allows foreither semi-random generation of test casesor

taking independence relations between partitions into account, or it will suffer from the same

problem as Meudec’s version! Since it is expected that for large problems the program will

be terminated after only a small fraction of all combinations has been generated, semi-random

generation seems to be more important.

1. For each sub-partitionx, recursively calculate the number of combinations of expressions,

c(x), that need to be generated with it. For a full combination operation on the partitions

x1 andx2 (which will be sets of partitions in many cases),c(x) = c(x1) ·c(x2), and for sets

of partitions withn members,c(x) is ∑n
i=1c(xi). For the “bipartite graph” combination

operator applied to two partition setsl andr, c(x) = ∑i, j c(l i) · c(r j) for all combinations

indicated by the operator, of theith partition on the left and thejth partition on the right

side.

2. Assign a number in the range[0. . .c(x)) to each possible permutation of the whole par-

tition. Given that number, it is possible to calculate the particular permutation of sub-

partitions associated with the number. In order to achieve the required “shuffling” of the

permutations, count a variable upwards from 0 to the next higher power of 2 greater or

equal toc(x) – but before calculating the individual permutations from it, mirror the vari-

able value bit by bit. (If the number exceedsc(x) after the bit-mirroring, that combination

is ignored.)

3. Turn the “path” through the partition associated with each number into an expression by

connecting sub-partitions’ expressions with a logicaland. The resultant predicate would

have to be passed to a solver to determine whether it can be solved, and to generate sample

values for the variables if it can. However, since the implementation of a solver is beyond

the scope of this project, the program only outputs the predicate.

Revision: 1.43

16

3 DESIGN 3.3 Generation and Output of Test Data

When this algorithm is applied to the partition of the examplex > 0 or y < 5,
{

x = 0+1
x > 0+1

}
{

x = 0
x < 0

}
@@��


{

y+1 = 5
y+1 < 5

}
{

y = 5
y > 5

}


then the number of permutations is 12. The following table shows the expressions generated from

the partition, both in the original and the “shuffled” order.

ORIGINAL ORDER SHUFFLED ORDER

Binary Nr Generated expressionMirrored Nr Generated expression
0000 0 x = 0+1∧y+1 = 5 0000 0 x = 0+1∧y+1 = 5
0001 1 x > 0+1∧y+1 = 5 1000 8 x = 0+1∧y = 5
0010 2 x = 0+1∧y+1 < 5 0100 4 x = 0∧y+1 = 5
0011 3 x > 0+1∧y+1 < 5 1100 12 –
0100 4 x = 0∧y+1 = 5 0010 2 x = 0+1∧y+1 < 5
0101 5 x < 0∧y+1 = 5 1010 10 x = 0+1∧y > 5
0110 6 x = 0∧y+1 < 5 0110 6 x = 0∧y+1 < 5
0111 7 x < 0∧y+1 < 5 1110 14 –
1000 8 x = 0+1∧y = 5 0001 1 x > 0+1∧y+1 = 5
1001 9 x > 0+1∧y = 5 1001 9 x > 0+1∧y = 5
1010 10 x = 0+1∧y > 5 0101 5 x < 0∧y+1 = 5
1011 11 x > 0+1∧y > 5 1101 13 –
1100 12 – 0011 3 x > 0+1∧y+1 < 5
1101 13 – 1011 11 x > 0+1∧y > 5
1110 14 – 0111 7 x < 0∧y+1 < 5
1111 15 – 1111 15 –

Unfortunately, compared to the algorithm originally proposed in [Meudec98], the program

tends to pass larger expressions to the solver, and more of these predicates are unsatisfiable,

which might have a significant impact on performance. A more sophisticated implementation

would try to take advantage of both algorithms’ positive aspects by proceeding according to

Meudec’s algorithm first, but switching over to the algorithm used byvdmpart once the size of

all sets of equivalence classes in the partition exceeds a certain limit.

Data Model and Functions

Calculating the number of permutations is likely to yield extremely large numbers for non-trivial

inputs. Since the 32-bit or 64-bit integers of current hardware are not adequate for all cases, a

special concrete type::BigInt is introduced. The program only implementsBigInts usingunsigned

Revision: 1.43

17

3 DESIGN 3.3 Generation and Output of Test Data

long or the non-standardunsigned long long (if supported), but by providing theBigInt abstraction

it is made easy to replace this with an arbitrary-length integer implementation later on, should

this become necessary.

Most of the functionality ofBigInt is implemented by overloading of the respective operators.

However, there are some special methods:

• size t roundUp() rounds the value up to the next power of two, and returns which power of

two theBigInt now represents.

• mirrorInc(size t n) increments what is interpreted to be the bit-mirrored representation of

an integer withn bits, i.e. a call tomirrorInc() is equivalent to mirroring the number bit by

bit, increasing it by one and mirroring it once more.

• divrem(const BigInt& divisor, BigInt& result, BigInt& remainder) is preferred over the

usual integer division and remainder (/ and%) for efficiency reasons; with this method,

the division only needs to be carried out once, not twice.

The number of permutations is calculated for eachPartition node during its construction and

stored with the object. Its value is returned by thecombinations() member function.

Partition::partition(BigInt x) is a recursive member function which returns the expression

corresponding to a permutation given the permutation’s number.

Revision: 1.43

18

4 IMPLEMENTATION

4 Implementation

The program was written in a Unix environment, using the GNU C Compiler, version 2.95, and

the toolsmake, bison, flex, gawk (for the test suite and “make depend ”) and cvs (for version

management). The compilation process is made easier by the use of GNU autoconf and the

configure script it creates. The documentation was created using LATEX, xfig and lgrind for

formatting source code examples.

As the total project size (excluding generated files) is about 10 000 lines of code, the expla-

nations in this chapter do not attempt to describe it in detail. Instead, they focus on making

clear what concepts or algorithms were used for the implementation of each component, and give

small examples of the code where appropriate. Furthermore, in an attempt not to confuse with

too many details, the text does not even highlight every single aspect of the code excerpts.

4.1 Lexical Analysis

The implementation of the scanner comes in the form of a description filelex.yy that is passed

to flex. The scanner distinguishes between several types of input tokens, which are passed to the

parser in aSymbol<. . .> object containing the token value as well as the token’s position (line

number) in the input file. The different types of tokens are integer literals, character literals, string

literals, quote literals, identifiers, keywords, operators consisting of more than one character (e.g.

**) and single characters.

Whitespace and comments are ignored. The specification of comments is vague in [ISO93].

In particular, it is not clear whether multi-line comments may be nested and how they interact

with “– –” comments. The implementation ignoresannotation or end annotation in single-line “–

–” comments even if they are inside a multi-line comment, so that– – end annotation never ends

a multi-line comment. It allows nesting of multi-line comments. Within a multi-line comment,

words are formed in the same way as in the program text, so thatx end annotation or x‘end

annotation or x#end annotation does not end the comment, butx:end annotation does. On the

other hand, character and string literals arenot treated specially, so any occurrence ofannotation

inside’ ’ or ” ” is recognized during the processing of multi-line comments.

Here is a typical example of one of the regular expressions in the scanner description file

lex.yy and its associated action; the part of the file dealing with the recognition of quote

literals, i.e. strings of alphabetic characters and ‘’ enclosed in<>.

\<[[:alpha:]][[:alpha:]]* \>{WHITE} {
char* scanned = yytext + yyleng − 1;

Revision: 1.43

19

4 IMPLEMENTATION 4.1 Lexical Analysis

while (*scanned == ’ ’ | | *scanned == ’\v’ | | *scanned == ’\t’)
−−scanned;

*scanned = ’\0’ ; // overwrite ’>x

auto ptr<string> s(new string(yytext + 1));

if (CmdOptions::Debug::parse)

cout << "Quote <" << * s << ’>’ << endl;

xxlval.str.assign(s.release(), filePos);

return LIT QUOTE;

}

During the implementation and testing of multi-line comments (annotation . . . end annota-

tion) it became obvious that if a user accidentally makes use of the word “annotation” anywhere

in the input document, the exact position of the occurrence would be difficult to find if only a “un-

terminated comment at end of file” error message were given. Consequently, the error message

records all line numbers containingannotation or end annotation – see page47 in section4.6.2

for an example of the message.

The scanner is responsible for maintaining the hash tablehashTab which records the names

of all identifiers that are found. Initialisation and clean-up ofhashTab is implemented as a “Sin-

gleton” class, i.e. a class for which only one instance is ever created during program initialisation

and destroyed at program termination. The class definition is given below – the keyword tables

have been shortened.

struct Singleton InitHash : private DebugSingleton {
static const int values[] = {

MUNION, PSUBSET, SUBSET, DINTER, DUNION, INVERSE, . . .
};
static const char* const keywords[] = {

"munion" , "psubset" , "subset" , "dinter" , "dunion" , "inverse" , . . .
};
Singleton InitHash() {

for (size t i = 0; i < sizeof(keywords) / sizeof(char*); ++i)
hashTab[new IdToken(values[i], keywords[i])];

}
˜Singleton InitHash() {

Lex::IdToken::allowDelete();
for (myhashmap::iterator i = hashTab.begin(), e = hashTab.end();

i != e; ++i)
delete i−>first;

Revision: 1.43

20

4 IMPLEMENTATION 4.2 Parsing

Lex::IdToken::denyDelete();
}

} singleton InitHash;

When an identifier is encountered by the scanner, the following action is taken (seelex.yy

for the code):

• In the special case of an identifier reading “annotation”, change the scanner’s mode of

operation to skip the comment.

• Check whether the identifier begins with the letters “is” or “mk ”, as the parser requires

the scanner to distinguish between these two cases and “normal” identifiers.

• If the identifier begins with the character ‘$’, check whether the part following the ‘$’ is a

keyword and give an error if it is not. (See [ISO93, 10.3, p.203])

• Unless the identifier has already been added tohashTab, add it now.

• Return a pointer to the identifier’sLex::IdToken object to the parser, together with the

appropriate token type, which is eitherIDENTIFIER, MK IDENTIFIER or IS IDENTIFIER,

or another token type (such asOPERATIONS) if the identifier is a keyword.

4.2 Parsing

4.2.1 Creation of the LALR(1) grammar

The parser is implemented in the fileparse.y which was created by first translating the gram-

mar from [ISO93] into a form thatbison can parse, and then altering that representation. This

proved to be a very difficult task: From the “reduce/reduce conflict” error messages produced

by bison, it can take very long to determine exactly which part of the grammar is incorrect, and,

once this is clear, it is sometimes also extremely difficult to correct the behaviour without chang-

ing the language that the parser accepts, and without introducing new conflicts elsewhere. Quite

often, seemingly trivial changes “rippled” through large parts of the grammar, causing numerous

modifications. Furthermore, errors in the ISO grammar had to be identified and worked around.

Several techniques were used for correcting aspects of the grammar that the parser generator

cannot deal with. They include:

Revision: 1.43

21

4 IMPLEMENTATION 4.2 Parsing

Resolving shift/reduce conflicts by assigning precedence values to tokens or rules.Many

of the changes of this kind are carried out according to the precedence rules in [ISO93, 9.8].

The given precedence rules cause problems in some cases. Most notably, the character ‘* ’ is

given different precedence depending on whether it is used in type composition (“int×bool”) or

in expressions (“56·3”).

In other cases, precedence is assigned to tokens which are not treated specially in the ISO

grammar, to resolve shift/reduce conflicts for which the desired action of the parser is always to

shift, or always to reduce (i.e. there is no ambiguity). For example, the character ‘; ’ is given

highest precedence in order to allow graceful recovery from parse errors at the next occurrence

of ‘ ; ’.

“Inlining” of the definitions of sub-goals. To delay the reduction of goals, this method takes

advantage of the stack used by bottom-up parsers. For example, the following grammar is not

accepted by a parser generator:

input = x | y ;

x = a “+” “ x ” ;

y = b “+” “ y ” ;

a = “?” | “a” ;

b = “?” | “b” ;

The parser cannot deal with inputs like “?+y ” because after the “?” has been read, it needs

to be reduced to eithera or b before being pushed onto the stack. (It is not possible to push the

“?” itself as the reduce action would then later on have to be performed on something that is not

at the top of the stack.) However, at this point the lookahead token is “+”, so it is not yet clear

whether the non-terminal being parsed isx or y. Inlining of the definitions ofa andb solves the

problem:

input = x | y ;

x = “?” “ +” “ x ” | “a” “ +” “ x ” ;

y = “?” “ +” “ y ” | “b” “ +” “ y ” ;

Note that the single characters in the simple example above are often arbitrary non-terminals

in the VDM-SL grammar. Inlining is used extensively inparse.y , even though it has the

disadvantage that the complexity of the grammar increases noticeably.

Revision: 1.43

22

4 IMPLEMENTATION 4.2 Parsing

Simulating additional lookahead tokens. Sometimes, inlining of sub-goals is not a solution,

as in the case of the∈ operator, written as the two words “in set” in V DM-SL. The grammar

rules involved are as follows (only the rule alternatives relevant to the problem are given):

expression = def patternbind-expr-list in expression
| name

| expression in set expression ;

patternbind-expr-list = pattern-bind “=” expression ;

pattern-bind = pattern
| bind ;

pattern = name
| pattern union pattern ;

bind = pattern in set expression ;

The problem occurs because during the parsing of anexpression, it cannot be determined

whether the end ofpatternbind-expr-list has been reached, as any “in” following could be either

the “in” after thepatternbind-expr-list or the start of “in set” followed by another expression. All

attempts to inline some non-terminals fail because different problems arise from the changes.

The solution is simulating a further lookahead token to allow the parser to distinguish between

“ in” and “in set”. The parser itself cannot be altered to do this, but a common trick used in such

a situation is to make the scanner return a special terminal token. In this case, the two words

“ in set” are not returned as two tokensIN, SET. Instead, they are combined into just one token

IN SET.

Due to the requirement thatIN SET is returned even when “in” and “set” are separated by

any sequence of whitespace and/or comments, it is more appropriate not to change the scanner

itself, but to insert a new “layer” between the scanner and the parser.

This behaviour is implemented in the filelexqueue.cc : All tokens are passed straight on

to the parser, with one exception: If the token isIN, the scanner is called once more to see whether

the next token isSET. If it is, IN SET is returned to the parser, and if it is not,IN is returned and

the token following it is buffered and returned the next time the parser requests a token.

“Trial and error”. While this is not the most sophisticated way of proceeding, trying out a

few alternative ways of expressing the same language construct is often a good alternative to

exploring the problem in detail, which can take some time.

Revision: 1.43

23

4 IMPLEMENTATION 4.2 Parsing

The following ambiguities and errors in the ISO grammar were the most severe ones – con-

siderable effort was necessary to identify/work around them:

• The VDM-SL representation of the VDM expression “X-set” appears to be “set of X”, even

though this is not mentioned in [ISO93, 10].

• It is not clear what the difference between the VDM-SL map operatorsmerge andmunion

is.

• There is reason to believe that thelambda operator is a member of the family ofcon-

structors(see [ISO93, 9.8]), but this is not explicitly mentioned – the operator needs to be

assigned a precedence value according to what family of operators it is in.

• The identifier non-terminal does not seem to stand for the same thing in all parts of the

grammar: In some cases, it only denotes those identifiers beginning with “is ” or those

beginning with “mk ”. The absence of separate non-terminals for these cases is the cause

of numerous ambiguities.

This particular error in the ISO grammar needed more than 10 hours to identify. The

distinction between the different identifier types is implemented with special code in the

scanner, which checks for ais or mk prefix.

In addition to the changes described above, which are motivated by the need to transform the

grammar into a grammar that the parser generator can process, there are also changes to support

later stages of the program: The non-terminalsopenScope, closeScope, openComprehension-
Scope, beginPreCond andendPreCond are all empty, i.e. their rules are of the form

openScope =

Hence, inserting them into any rules does not alter the language that the parser recognizes.

However, the action associated with each of the rules is used to influence how subsequent input

is parsed.

Finally, as an example of the grammar transformation process, here is the rule forlet-be-
expression the way it appears in the ISO grammar and inparse.y . The rules in the ISO

grammar are as follows:

expression = let-be-expression | . . . ;

let-be-expression = let bind be stexpression in expression | . . . ;

Revision: 1.43

24

4 IMPLEMENTATION 4.2 Parsing

bind = set-bind | type-bind ;

set-bind = pattern in set expression ;

Inlining has been applied several times to these rules, as it was necessary to isolate the prob-

lematic “in set” case. Since the one “physical” rule inparse.y represents more than one

“logical” ISO grammar rule, the code associated with it needs to construct more than one parse

tree object. It does this with calls to the macroMK, whose definition is also given. Thedl()

functions simplydelete all of their arguments before throwing abad alloc() exception. The rule

is assigned the precedence of the family of constructors with a%prec CTOR declaration.

#define MK(dest, ToCreate, dels) \
if ((dest = new(nothrow) ToCreate) == 0) { dl dels; }

expression:
LET openScope pattern IN SET expression BE ST expression IN expression
closeScope %prec CTOR {

SetBind* sb; MK(sb, SetBind($3, $5), ($3, $5, $8, $10));

MK($$, LetBeExpr(sb, $8, $10, $1.pos), (sb, $8, $10)); } ;

4.2.2 Representation of the Parse Tree

As described in section3.2, the parse tree is represented by nodes of objects whose classes are

derived fromTree::N. The class declaration is as follows –Dassert is described in section4.4.3.

class N {
public:

/* no ctor of a class derived from N should throw any exception other
than bad alloc. dtors should not throw any exceptions. */

N() throw(std::bad alloc) { }
inline virtual ˜N() throw() = 0;
virtual ostream& put(ostream& s) const = 0;

private:

N(N&) { Dassert(false); abort(); } // need deep copy

void operator=(const N&) { Dassert(false); abort(); } // need deep copy

};

N::˜N() throw() { }

inline ostream& operator<<(ostream& s, const N& t) { return t.put(s); }

Revision: 1.43

25

4 IMPLEMENTATION 4.2 Parsing

The classes are declared in the filetree.h . For those classes in the hierarchy whose con-

structors are not inline, the constructors are defined inmktree.cc , whereas non-inline destruc-

tors are located intree.cc . The definitions of theput() methods (used for printing the tree to

the screen) are defined in the fileprinttree.cc .

The class hierarchy is quite “flat”; most classes derive either directly fromN or from an

abstract class that is derived from it.

Tree::TypeDefinition is an example of a class that derives directly fromN. It also illustrates

the close relation between the class layout and its corresponding non-terminal rule in the parser.

Furthermore, it serves to show how null pointers are used if optional sub-goals of the rule are not

present for a particular instance. Here are the grammar rules fortype-definition from parse.y ,

followed by the class declaration forTypeDefinition from tree.h :

type definition:
name ’=’ type { MK($$, TypeDefinition($1, $3), ($3));}

| name ’=’ type invariant {
MK($$, TypeDefinition($1, $3, $4), ($3, $4));}

| name DBL COLON field list {
MK($$, TypeDefinition($1, $3), ($3));}

| name DBL COLON field list invariant {
MK($$, TypeDefinition($1, $3, $4), ($3, $4));}

;

class TypeDefinition : public N {
public:

inline TypeDefinition(IdToken* id, N* tf, Invariant* i = 0);

inline TypeDefinition(TypeDefinition& t);

inline virtual ˜TypeDefinition();

virtual ostream& put(ostream& s) const;

const IdToken& identifier() const { return * identifierVal; }
IdToken& identifier() { return * identifierVal; }
inline const Type& type() const;

inline const FieldList& fieldList() const;

bool hasInvariant() const { return invariantVal != 0; }
const Invariant& invariant() const {

Assert(hasInvariant()); return * invariantVal;

}
Invariant& invariant() {

Assert(hasInvariant()); return * invariantVal;

Revision: 1.43

26

4 IMPLEMENTATION 4.2 Parsing

}
private:

IdToken* identifierVal;

N* typeOrField;

Invariant* invariantVal;

};

In contrast toTypeDefinition, it is convenient to have an abstract classDefinitionList for the

classesTypeDefinitionList, ValueDefinitionList, OperationDefinitionList andFunctionDefinition-

List. The rule fortype-definition-list and the class declaration forTypeDefinitionList below also

show how list-like non-terminals are implemented usingvector:

type definition list:
TYPES type definition { MK($$, TypeDefinitionList($2), ($2)); }

| type definition list ’;’ type definition {
try { $1−>push back($3); }
catch (. . .) { delete $1; delete $3; throw; } }

| type definition list ’;’ error { }
| type definition list error { }
;

class DefinitionList : public Definition {
public:

DefinitionList() { }
inline virtual ˜DefinitionList() = 0;
virtual ostream& put(ostream& s) const = 0;

};
DefinitionList::˜DefinitionList() { }

class TypeDefinitionList
: public DefinitionList, public vector<TypeDefinition*> {

public:
explicit TypeDefinitionList(TypeDefinition* td)

: vector<TypeDefinition*>(1, td) { Dassert(td != 0); }
virtual ˜TypeDefinitionList();
void push back(TypeDefinition* td) {

Dassert(td != 0); vector<TypeDefinition*>::push back(td);
}
virtual ostream& put(ostream& s) const;

};

Revision: 1.43

27

4 IMPLEMENTATION 4.2 Parsing

4.2.3 Scope Handling

The termname scopeis used to describe a feature found in many computer languages, including

VDM: Identifiers are only valid in a certain section of the input file and using them elsewhere

is not allowed, typically because it would not make sense to use them. Some examples of this

behaviour for VDM are:

• The identifiers for function/operation arguments are only valid within the definition of that

function or operation.

• In constructs like “let x = 1 in some expression”, the identifiers that are introduced (in this

case, ‘x’) are only valid until the end of the expression has been reached.

Furthermore, a local declaration may shadow a declaration of the same name in an enclosing

scope. That shadowed name is inaccessible, but becomes available again after the local scope has

been closed.

It was originally hoped that no support for scopes would need to be implemented, but the

following problem made this necessary: In operation pre-conditions, the external state variable

may be referred to either with or without a trailing ‘˜ ’, i.e. either as the old or the new value,

without any semantic difference. Thus, the following two operation definitions are equivalent:

opname()r: bool
ext wr x: int
pre x = 0
post r <=> true

opname()r: bool
ext wr x: int
pre x˜ = 0
post r <=> true

When the pre- and post-condition are combined using a logicaland during the partitioning

pass, all references to the state in the pre-condition must obviously be to theold state, so for both

cases, the expression “x˜ = 0 and r <=> true” must be generated.

In order to decide correctly when to turn a ‘x’ into a ‘x˜’, it must be known whether the

expression currently being parsed is part of a pre-conditition (this is achieved by modifying a flag

with thebeginPreCond andendPreCond non-terminals), and whether ‘x˜’ is defined in the local

scope.

The implementation of scope support also includes code to deal with the two error conditions

that a name is declared twice in a scope, or that a name is used even though it has not been

declared – see page48 in section4.6.2for an example of the error message.

Revision: 1.43

28

4 IMPLEMENTATION 4.2 Parsing

The interface and code for scope support are located in the filesscope.h andscope.cc .

The program creates oneVarDef instance for each variable and stores a pointer to it in the parse

tree. ThisVarDef object uniquely identifies the variable, function etc. that is being referred to,

even if the spelling of two different names is identical – if ‘x’ is both a function’s local variable

and a function name, there will be twoVarDef objects for ‘x’.

The data structures used for scope handling are probably the most complicated data structures

used in the program. They were designed with the following goals:

• Lookup of aVarDef object given an identifier spelling should be fast, i.e. the scanner’s hash

table should be used.

• There should be no overhead when looking for the most locally defined instance of a name.

For example, if 10 name scopes are currently open and a name is requested that is only

present in the outermost, top-level scope (orglobal scope), the program should not have to

search linearly through the other 9 scopes before arriving at the definition in the top-level

scope.

• The semantics described above should be correctly modelled, including shadowing of name

definitions.

• The following common operations should be cheap: Creating a new local scope that is

“active” (i.e. accessible at the moment); closing an active scope (by moving it to a list of

“old” scopes); inserting a newVarDef into the local scope or one of the scopes surrounding

it.

The implementation ensures these properties by using a grid-like structure of objects: In one

direction,VarDef objects whose names have the same spelling are accessed through the hash

table and are singly linked in the reverse order in which the scopes were opened, i.e. a pointer

from one of theIdTokens in the hash table points to the most locally defined variable with that

spelling7. In the other direction,VarDef objects that are declared in the same scope are connected

as a singly-linked list to support operations on whole scopes, e.g. closing them. The start of each

such list is stored in an ordered listactiveScopes for those scopes that are currently accessible, or

in an unordered collectionoldScopes for those scopes that are no longer accessible. Finally, each

VarDef object contains a pointer to theIdToken with its spelling.

7Thus, looking up a variable definition given its spelling is close to O(1) with a good hash table implementation.

Revision: 1.43

29

4 IMPLEMENTATION 4.2 Parsing

IdTokenIdTokenIdToken IdToken

VarDef VarDef

VarDef

VarDef

??

VarDefVarDef

? ?

VarDef VarDef

Pointer ? Undefined Pointer Null Pointer

Global
"x" is

shadowed

IdToken

ac
tiv

eS
co

pe
s

ol
dS

co
pe

s

VarDef

hashTab

a a~ i i~ x x~ r r~ o o~

Local variables for

Local variables for

Local variables for
function "a"

function "x"

Global scope

operation "o"

Figure 1: Data structures created for the example code, during the parsing of “o”

vdmpart’s scope handling is illustrated below with an example. Figure1 shows the current

state of the data structure at the moment that the post-condition of operationo in the specification

below is parsed. Notice that noVarDef object foro itself has yet been inserted at this point – this

only happensafter the whole operation definition has been parsed. This behaviour means that

recursive calls are not possible, but the rest of the program does not support recursive invocation

anyway.

Revision: 1.43

30

4 IMPLEMENTATION 4.3 Generation and Output of Test Data

functions
a(i: int) r: int
pre i = 0
post r = i ;

x(x: int) r: bool
pre x <> 5
post r <=> (x > 1)

operations
o() i: int
ext wr x: int
post i = 5 – – state is examined here, before local scope is closed

4.3 Generation and Output of Test Data

The central function ofvdmpart, which is passed a partition tree and generates a predicate ex-

pression for each possible permutation of the sub-partitions, is only 17 lines long. Its definition

is located in the filepartition.cc :

void createTestCases(ostream& s, const Part::Partition* part) {
BigInt comb(part−>combinations());
s << "# " << comb << " test cases\n" ;
if (comb == 0U) return;
BigInt limit(comb);
size t bits = limit.roundUp();
BigInt count;
SmartPtr<Tree::Expr> testCase;
do {

if (count < comb) {
testCase = part−>partition(count);
s << "# " << count << ’\n’ << * testCase << ’\n’ ;

}
} while (count.mirrorInc(bits) == success);

return;

}

createTestCases() directly and indirectly makes use of all other components that are con-

nected with the final stage of the program. Their implementation is described in the following

sections.

Revision: 1.43

31

4 IMPLEMENTATION 4.3 Generation and Output of Test Data

4.3.1 Functions For Partitioning

The four virtual methodspartTrue(), partFalse(), partDef() andpartUndef() are introduced as

methods of the abstract base classTree::Expr, and are consequently inherited by all parse tree

nodes that represent expressions.

For expression nodes that the program supports (e.g. integer division), the class declarations

provide their own versions of these methods. For the other, unsupported expression classes, the

default methods, e.g.Tree::Expr::partDef(), are called; they cause an error message to be printed

and the partitioning process to be aborted. Again, an example of the error message can be found

in section4.6.2, on page49.

The declaration of the classExpr is given below, together with that of its child classDivExpr.

Both are taken fromtree.h :

class Expr : public N, public SmartPtrBase {
public:

explicit Expr(const TextPos& pos) : posVal(pos) { }
virtual ostream& put(ostream& s) const = 0;

const TextPos& pos() const { return posVal; } // NB non-virtual

virtual Part::Partition* partDef();

virtual Part::Partition* partUndef();

virtual Part::Partition* partTrue();

virtual Part::Partition* partFalse();

private:

const TextPos posVal;

};

class DivExpr : public BinaryExpr {
public:

DivExpr(Expr* l, Expr* r, const TextPos& pos) : BinaryExpr(l, r, pos) { }
virtual ostream& put(ostream& s) const;

virtual Part::Partition* partDef();

virtual Part::Partition* partUndef();

virtual Part::Partition* partTrue();

virtual Part::Partition* partFalse();

};

The definitions ofDivExpr’s methods are located in the filepartvirt.cc . SincepartTrue()

andpartFalse() are only called for expressions that return boolean results, their being called for an

Revision: 1.43

32

4 IMPLEMENTATION 4.3 Generation and Output of Test Data

integer division is a clear indication that there is a semantic error in the input (e.g. the expression

reads “(x div y) and true”), so an error message is printed with a call toshouldBeBool():

Part::Partition* Tree::DivExpr::partDef() {
return Part::Def::integerDiv(&first(), &second());

}
Part::Partition* Tree::DivExpr::partUndef() {

return Part::Undef::integerDiv(&first(), &second());
}
Part::Partition* Tree::DivExpr::partTrue() {

return shouldBeBool(this);
}
Part::Partition* Tree::DivExpr::partFalse() {

return shouldBeBool(this);

}

As specified in section5, DivExpr::partX () only consists of a call toPart::X ::integerDiv().

The actual partition generation is then performed in that function. The code below is the imple-

mentation forUndef::integerDiv() from partition.cc . It is preceded by the corresponding

partitioning rule forpartUndef(e1 div e2), as given on page12:

partUndef(e1 div e2) =
{

partDef(e1)
partUndef(e1)

}
@@��


partTrue(e2 <> 0){
partTrue(e2 = 0)
partUndef(e2)

} 
Part::Partition* Part::Undef::integerDiv(Expr* a, Expr* b) {

SmartPtr<PartSet> pset(new PartSet());
pset−>reserve(3);
Partition* defA = Def::lookup(a);
Partition* undefA = Undef::lookup(a);
Tree::ExprPtr zero(new Tree::IntegerExpr(0, b−>pos()));
Tree::ExprPtr bEqual0(new Tree::EqualExpr(b, zero.get(), b−>pos()));
Partition* defB = False::lookup(bEqual0.get());
SmartPtr<PartSet> undefB(new PartSet());
undefB−>reserve(2);
undefB−>push back(True::lookup(bEqual0.get()));
undefB−>push back(Undef::lookup(b));
pset−>push back(new FullComb(undefA, defB));
pset−>push back(new FullComb(defA, undefB.get()));
pset−>push back(new FullComb(undefA, undefB.get()));
return pset.release();

}

Revision: 1.43

33

4 IMPLEMENTATION 4.3 Generation and Output of Test Data

The source code models the specified behaviour with the following steps (e1 ande2 corre-

spond toa andb):

• Create aPartSet (pointed to bypset) with three entries, for enumerating the three possibil-

ities indicated by the bipartite graph operator.

• Create partitions for the left hand argument of the bipartite graph operator: “a de-

fined/undefined” is represented by (defA/undefA).

• The division partitioning rule is special in that it introduces a new expression which is not

already a part of the parse tree. Hence, the partition for the expression “b = 0” can only be

constructed after that expression itself has been created. Do this by allocating anExpr for

the constant “0” (zero in the code) and using it to createbEquals0.

• Now create partitions for the right hand argument of the bipartite graph operator.bEquals0

can be used twice becausepartTrue(e2 <> 0) is equivalent topartFalse(e2 = 0). defB is

the partition which represents “b is not zero”.

Create anotherPartSet for the two alternatives “b is zero” and “b is undefined” which make

upundefB.

• Finally, enumerate the three possibilities of the bipartite graph operator by connecting with

FullComb operations the partitions obtained during the previous steps, and adding them to

pset with push back().

The calls to thePart::X ::lookup(x) functions implement the dynamic programming: They

return the result of the callx-> partX (), but they also store this result, so the partioning call is

only made once for each expression; on subsequent calls, the value is returned immediately after

a table lookup.

Throughout the program, attention was paid to the possibility that a function call may raise

an exception, and the code was made exception-safe. In the example ofUndef::integerDiv()

above, this is reflected in the fact thatreserve() is called for thevector part of thePartSet, so that

push back cannot fail – if it failed, thenew FullComb that was about to be added to thevector

would be left behind unreferenced. Furthermore, the use ofSmartPtr ensures that objects are

automatically deleted once the function returns, except whenrelease() has been called for the

SmartPtr.

One may argue that this level of exception safety is overzealous since the program will be

terminated with “out of memory” (or similar) anyway, and indeed it is not necessary forvdmpart,

Revision: 1.43

34

4 IMPLEMENTATION 4.3 Generation and Output of Test Data

but forgetting about the possibility of exceptions can lead to serious and difficult-to-find bugs in

other types of programs, so it is a good ideaalwaysto take it into consideration.

4.3.2 Representation of the Partition Tree

The implementation of the partition tree representation is similar to that of the parse tree –

the largest difference is that there are far fewer classes that derive from the abstract base class

Part::Partition. As specified in section5, they are calledFullComb, PartSet, ExprSet andConst-

True/ConstFalse.

Another important difference between the parse tree and the partition tree is that the latter is

not actually a tree, but just a directed, a-cyclic graph in many cases, due to the fact that the same

partition tree object may be pointed to by two or more other objects. This must be permitted

in order for the dynamic programming technique to be implemented, which, as mentioned on

page12, is used to avoid repeated evaluation of the same expression during the generation of the

partition tree.

This sharing of objects introduces a problem: The destructor of eachPartition class is ex-

pected to delete the objects it points to – however, if more than one reference to an object exists,

simply usingdelete results in attempts to delete the object more than once, with disastrous con-

sequences. On the other hand, not deleting the object at all is a memory leak.

The problem is solved with the introduction of a reference count that is stored in allParti-

tion objects and updated whenever a new reference to the object is created or destroyed. The

SmartPtr template used for this is described in detail in section4.4.1– the only consequence for

the implementation ofPartition is that the class must be derived fromSmartPtrBase.

The declaration of thePartition base class below introduces virtual methods that are imple-

mented for all the classes deriving from it, includingcombinations() to return the number of

predicates that a partition tree node can “produce”, andpartition() to create and return one of

these predicates. It is taken from the filepartition.h .

class Part::Partition : public SmartPtrBase {
public:

Partition() { }
virtual inline ˜Partition() throw() = 0;
virtual bool isConstTrue() const throw() = 0;
virtual bool isConstFalse() const throw() = 0;

// nr of possible permutations for this node (and the nodes it contains)

virtual const BigInt& combinations() const throw() = 0;

Revision: 1.43

35

4 IMPLEMENTATION 4.3 Generation and Output of Test Data

/* create expr. corresponding to particular permutation of

sub-partitions. arg must not be out of range. */

virtual Tree::Expr* partition(const BigInt& x) const = 0;

virtual ostream& put(ostream& s) const = 0;

protected:

static const BigInt zero;

static const BigInt one;

private:

// not necessary ATM:

explicit Partition(Partition&) : SmartPtrBase() {
Dassert(false); abort(); // virtual needed?

}
void operator=(const Partition&) {

Dassert(false); abort(); // ditto?

}
};

Part::Partition::˜Partition() throw() { }

inline ostream& operator<<(ostream& s, const Part::Partition& t) {
return t.put(s);

}

The child classes ofPartition are laid out according to the concept they represent. Whereas

PartSet andExprSet usevectors to store sets of sub-partitions/expressions,ConstTrue/ConstFalse

are just dummy classes that do not add any data members.

FullComb, whose declaration is given below, contains pointers to the two sub-partitions to

which the full combination operator is applied – more accurately,PartPtr (which istypedef ’d to

SmartPtr<Partition>) is used instead ofPartition*. The isConstTrue/False methods are imple-

mented in such a way that any occurrances ofConstTrue/ConstFalse objects are eliminated.

class Part::FullComb : public Partition {
public:

FullComb(Partition* l, Partition* r);
virtual ˜FullComb() { }
Partition& left() const { return * leftVal; }
Partition& right() const { Assert(!rightVal.isNull()); return * rightVal; }
virtual bool isConstTrue() const {

Revision: 1.43

36

4 IMPLEMENTATION 4.3 Generation and Output of Test Data

if (rightVal.isNull()) return leftVal−>isConstTrue(); else return false;
}
virtual bool isConstFalse() const {

if (rightVal.isNull()) return leftVal−>isConstFalse(); else return false;
}
virtual const BigInt& combinations() const { return combinationsVal; }
virtual Tree::Expr* partition(const BigInt& x) const;
virtual ostream& put(ostream& s) const;

private:
PartPtr leftVal;
PartPtr rightVal;
BigInt combinationsVal;

};

4.3.3 Building the Test Case Predicates

As soon as the partition tree has been built, the individual test case predicates can be requested

with calls topartition(x) for the root object of the partition tree, wherex is aBigInt between zero

and the value returned bycombinations() for that node.

The implementation ofpartition() creates the predicate by calculating which part of the par-

tition tree is relevant for theBigInt argument given, recursively callingpartition() for the ap-

propriate sub-partition(s) (but with a different argument) and, if more than one sub-partition is

involved, combining the expressions into one.

As shown in section3.3.3, the number of combinationsc(p) for a wholePartSet is the sum

of the number of combinations for all then sub-partitions it contains;∑n
i=1c(pi). The implemen-

tation ofpartition(x) for this node type must reverse the sum operation in the sense that it must

find the smallestmso that∑m−1
i=1 c(pi)≤ x. Next, it must callpartition() for themth sub-partition

with an argument ofx−∑m−1
i=1 c(pi).

For example, if aPartSet contains three subpartitions with 300, 200 and 100 combinations,

its partition() method can be called with values from 0 to 599. If it is called with a value of 505,

the third sub-partition is selected (since 300+200≤ 505) and the third sub-partition’spartition()

method is called with an argument of 5.

The code forPartSet::partition() performs a binary search to find the right sub-partition. A

simple linear search would probably even have been more efficient in this case because at present,

noPartSet ever contains more than three sub-partitions, but binary search was favoured neverthe-

less in anticipation of the possible improvements to the algorithm described on page17. If they

are ever carried out,PartSets will sometimes contain hundreds or thousands of sub-partitions.

Revision: 1.43

37

4 IMPLEMENTATION 4.4 Further Components of the Implementation

In the FullComb class’s version ofpartition(), the expressions returned by recursive calls

for the left-hand and right-hand operands to the full combination operator are combined with a

logical and. The value returned bycombinations() for a FullComb object is the product of the

number of combinations for the two sub-partitions, so the implementation only needs to perform

an integer division/remainder calculation to determine the argument values for the two recursive

calls topartition(). This code excerpt is taken frompartvirt.cc :

Tree::Expr* Part::FullComb::partition(const BigInt& x) const {
BigInt val, rem;
if (rightVal.isNull()) return left().partition(x);
x.divrem(left().combinations(), val, rem);
SmartPtr<Tree::Expr> l(left().partition(rem));
SmartPtr<Tree::Expr> r(right().partition(val));
return new Tree::AndExpr(l.get(), r.get(), TextPos::none);

}

4.3.4 TheBigInt Integer Abstraction

TheBigInt concrete type is implemented inbigint.h andbigint.cc according to the de-

scription in section3.3.3. Since the class declaration is straightforward, it is not reproduced here.

However, one part of the code that deserves to be mentioned is howmirrorInc() has been

carried out: Rather than mirroring the integer bit by bit, adding one and then mirroring it again,

mirrorInc() performs the increment operation directly on the mirrored representation. This is the

function definition frombigint.cc :

bool BigInt::mirrorInc(size t n) { // increase by 1

while (n > 0) {
ValueType toggle = 1 << −−n;

if (((val ˆ = toggle) & toggle) != 0) return success;

}
return failure;

}

4.4 Further Components of the Implementation

This section of the dissertation describes some important components of the implementation that

have the common property that they cannot be associated with any particular stage of the test data

Revision: 1.43

38

4 IMPLEMENTATION 4.4 Further Components of the Implementation

generation. Instead, they are “standard components” which are general-purpose – as such, they

can be re-used for other programs.

4.4.1 TheSmartPtr Template

“Smart pointers” are a useful concept in C++ to improve the low-level memory allocation scheme

of the language. They allow the programmer to express which data structures “own” other data

structures and which only reference them. Furthermore, just like the library templateauto ptr,

they make it easy to improve exception safety. For further discussion of these issues, see

[Stroustrup97, 14.4].

The idea behind the so-called “resource acquisition is initialisation” technique supported by

smart pointers is to provide a class that only contains a pointer, and for which operators have

been overloaded in such a way that its usage is very similar to that of a pointer. An important

feature of a smart pointer class is that when its destructor is called, it may delete the object it

is pointing to. By making smart pointers local objects of a function, this feature can be used to

have objects deleted automatically when the local scope is destroyed – regardless of whether this

happens because the function returns or because an exception has been raised.

A SmartPtr<X> behaves much like a regularX*, with the difference that theX object always

contains a count which represents the number of smart pointers pointing to it. When anX object

is first created, the count is zero. Subsequently, it is updated whenever smart pointers to it are

created, assigned or destroyed. If the count ever reaches zero during a call to˜SmartPtr<X>,

the X object is deleted.X must have been derived fromSmartPtrBase if it is to be used with

smart pointers.

TheSmartPtr template and a number of further functions are defined insmartptr.h . They

provide the following interface:

• Initialisation of SmartPtr<X> objects with the null pointer, with a pointer toX or to a

class derived fromX, or with anotherSmartPtr pointing toX or to a class derived fromX.

• Assignment toSmartPtr of a pointer or smart pointer, which may point to the same class

or a class derived from it. Assigning null requires an explicit cast, e.g. “ptr = (X*)0;”.

• Dereferencing (prefix ‘* ’) and indirection (infix ‘-> ’) work just like for ordinary pointers.

• Likewise, the comparison operators ‘<’, ‘ >’, ‘ <=’ and ‘>=’ result in comparisons of the

pointers contained within theSmartPtr objects. For ‘==’ and ‘!= ’, one of the objects can

even be a regular pointer instead of a smart pointer.

Revision: 1.43

39

4 IMPLEMENTATION 4.4 Further Components of the Implementation

• In contrast, the meaning of the “address of” operator (prefix ‘&’) hasnot been changed – it

returns a pointer to theSmartPtr object. The methodget() returns the address of the object

that the smart pointer references.

• Therelease() method is equivalent to assigning null to theSmartPtr, except that the object

being pointed to is never deleted, not even if thatSmartPtr was the last one referencing it.

• swap() (available both as a method taking one argument and a global function taking two

arguments) is an efficient way of swapping the contents of twoSmartPtr objects.

• For convenience, the methodisNull() is provided to make testing for null possible without

an explicit cast.

• The global functionmakeSmartPtr(x) creates aSmartPtr to the class ofx without the need

for the caller to specify the class name. This is convenient for cases when only a normal

pointer to an object is available, but a function needs to be called which takes aSmartPtr

argument; no localSmartPtr variables need to be created.

• The global functiondeleteSmart(x), which takes a normal pointer as an argument, performs

“delete x;” if the reference count for the object pointed to byx is zero.

• The global functionreleaseSmart(x) is also given a normal pointer as its argument. Its only

effect is that the reference count for the object pointed to byx is decreased by one. It must

be used with care because it can easily result in an object being deleted too early, i.e. while

otherSmartPtrs to it still exist.

• If instances of classes that derive fromSmartPtrBase are not created on the heap, their

reference count defaults to zero. This is not desirable because it can result in at-

tempts by˜SmartPtr to perform adelete operation on them. The memberless class

SmartPtr lockStatic is designed to overcome this problem: If aSmartPtr lockStatic is

defined immediately after the definition of the variable, and is initialised with a reference

to that variable, it will increase its reference count by one. For example, a global variable

can be “locked” against deletion like this:

SmartPtr<X> x;

SmartPtr lockStatic lock(x);

Revision: 1.43

40

4 IMPLEMENTATION 4.4 Further Components of the Implementation

Note that theSmartPtr lockStatic object must be definedafter theSmartPtr, and must be

defined in the same compilation unit – otherwise, the order of initialisation is not guaran-

teed.

The definition of theSmartPtr template probably constitutes the most advanced usage of C++

in the program. For this reason, a cut-down version of the code (without the debugging support)

is included in this dissertation despite its length. It is reproduced in appendixD.1.

4.4.2 Error Handling

All functions related to the reporting of errors are located in the fileserror.h anderror.cc .

There are three types of error messages: Genuine errors, warnings, and “not implemented” errors.

A count of the number of errors and warnings that occurred so far is maintained in the variables

Error::errorCount andError::warningCount and can be used in other parts of the program, e.g. to

abort execution before the test data generation stage in case there were any errors during parsing.

The three functionserror(), warning() and unimplemented() print the appropriate type of

message. There are four variants of each of the functions, since the text to be printed in the

message can be supplied either as aconst string object or asconst char*, and additionally, the

function can optionally be given aTextPos argument containing line number information. For

error(), the function prototypes are:

void error(const string& s, const TextPos& t);
void error(const char* s, const TextPos& t);
void error(const string& s);

void error(const char* s);

Calls to these functions are made from many different parts of the program. Section4.6.2

lists numerous examples for the output they generate.

4.4.3 Debugging Aids

Experience has shown that it makes sense to leave some debugging code enabled even in “release”

versions of a program. In particular, assertions (i.e. checking for the violation of invariants) are

often very useful to track down a bug that a user has encountered in the program: Instead of just

crashing, the program will print a message that can help to identify the source of the problem.

On the other hand, the release version should not containall assertions, either. Often, the tests

are very simple and only serve the purpose of catching programming errors during the implemen-

Revision: 1.43

41

4 IMPLEMENTATION 4.5 Tests of the Program Components

tation stage. They may also be so numerous that they considerably increase the executable size

or – if they are located in inner loops or inline functions – the program’s performance.

The policy that was adopted forvdmpart was only to compile in those assertions in all cases

that check for violations of the interface between individual components of the program. Addi-

tional checks within each component are only enabled if the program is compiled with debug-

ging support, using the-DDEBUGcompiler switch (which is passed on bymake if the command

“make X=-DDEBUG” is used).

As the standard ANSI C libraryassert() facility only allows to either compile in all assertions

or none, a slightly enhanced version is provided in the filedebug.h . It defines two macros

Assert() andDassert(). Both of them check whether a condition is fulfilled and print an error

message tostderr if it isn’t. However, whereasAssert() checks are always compiled into the

program, theDassert() macro only produces code if debugging has been enabled with-DDEBUG.

Unlike the standard libraryassert(), Assert() andDassert() do not callabort() if the assertion

fails, but let program execution continue.

4.5 Tests of the Program Components

The various components that make upvdmpart have been identified and separated from each

other in previous sections. Before they were integrated into one program, each component was

tested separately.

Scanner Because the scanner directly processes the input, testing it was easily achieved by

confronting it with a selection of inputs consisting of valid and invalid tokens. Debugging code

(triggered by a command line switch) prints out the value of the token that is output, and, if

necessary, any additional information such as the contents of a string constant.

Parser The interface between scanner and parser is trivial and the scanner/parser generator

tools are designed to work with each other, so the concept of separate testing was violated in

this case; the parser was given its input by the scanner during testing. The parser generation tool

includes an option to generate debugging code which prints out the state of the stack, rules applied

and other information. Together with they.output file (created by the parser generator) that

describes the generated states, it proved an invaluable tool for identifying problems with the

grammar. This debugging information can be switched on with the--debug-parse switch.

The parser component also includes the parse tree. In order to determine whether the cor-

rect tree was being generated, theput() methods were implemented for all tree node objects.

Revision: 1.43

42

4 IMPLEMENTATION 4.6 Tests of the Final Program

Triggered by the--debug-printtree command line switch, they can be used to print out

a textual representation of the parse tree. Inputs forall tree node types were written and the

parser was presented with them – they now form part of the automatic test suite described in

section4.6.1.

Partitioning The turning of expressions into partition trees was tested with a small driver pro-

gram which builds an expression by constructing a tree ofExpr objects, and invoking one of the

part. . . () methods on the top-level object. Analogous to the parse tree,put() was implemented

for all partition tree classes. At this point, it became obvious that the ability to visualise the par-

tition was not only useful for testing, but also for the users of the program, so output of partitions

was made an “official feature”. The--partition switch was added to enable it.

Even though the creation of equivalence classes has previously been described as belonging

into a separate stage of the program, the implementation of thepartition() method is dependent

on the data structures used in the partition tree to such a degree that it makes sense to test the two

together. Thus, testing was conducted by callingpartition() for partition trees generated by the

partitioning functions. The partition tree was first output using the--partition switch, and

the displayed test cases were then verified manually.

Further Components The other, minor components of the system were not always tested sep-

arately, either because they are very simple (as in the case of the error reporting and debugging

support) or because they were adapted to the changing needs of other components many times

during program development – this happened with theSmartPtr code. While initial, separate

testingwasperformed, this did not happen again each time the interface was changed.

4.6 Tests of the Final Program

4.6.1 Portability

In order to determine how portablevdmpart is, it was attempted to compile the program in a

variety of environments. In general, there were few or no problems doing this. However, it

became clear that the largest obstacle to compiling is that the C++ compiler used may not be

recent enough to support the programming constructs and library facilities used by the program.

Linux Linux 2.2.13 running on the x86 architecture was the original development platform,

consequently there were no problems during compilation. GCC 2.95 had to be installed to replace

a slightly older version supplied with the original OS distribution.

Revision: 1.43

43

4 IMPLEMENTATION 4.6 Tests of the Final Program

Solaris The program was compiled without problems on two different Solaris systems:

On a x86 Pentium machine running Solaris 5.5, compilation was successful after GNU make

and GCC 2.95 had been compiled and installed.

On a Sun Ultra-60 (two UltraSparc II processors, running Solaris 5.7), no additional work

was necessary since GCC 2.95 had already been installed on the system earlier; compilation was

immediately successful.

HP-UX An attempt to compile the program on a HP 9000/720 running HP-UX B.10.20 was

abandoned because it turned out that too many components of the system needed upgrading in

order to run GCC 2.95.

CygWin (Windows) CygWin by Cygnus Solutions provides a Unix-like environment under

Windows 98 and Windows NT. To makevdmpart compile properly, a very minor change had to

be made to thegetopt long() call made by the program.

An addititional measure was taken to ensure that any problems with the compiled program are

noticed: A small test suite is supplied in theexamples subdirectory of the source distribution.

The command “make check” causes the program to be run on a number of input files in this

subdirectory and its output to be compared with that of a version of the program that is known

to work. If there are any differences between the expected and the actual output, “make check”

produces an error. For example, if there were a problem with the “err08” test, the output of “make

check” might look like this:

examples> make check

gawk -f check.awk

Testing ‘division’... OK

Testing ‘err01’... OK

Testing ‘err02’... OK

Testing ‘err03’... OK

Testing ‘err04’... OK

Testing ‘err05’... OK

Testing ‘err06’... OK

Testing ‘err07’... OK

Testing ‘err08’... FAILED!

Output was:

Revision: 1.43

44

4 IMPLEMENTATION 4.6 Tests of the Final Program

err08.t.out - differ: char 255, line 8

Testing ‘err09’... OK

Testing ‘err10’... OK

Testing ‘huge’... OK

Testing ‘relations’... OK

Testing ‘tree01’... OK

Testing ‘tree02’... OK

Testing ‘tree03’... OK

Testing ‘tree04’... OK

Testing ‘tree05’... OK

Testing ‘tree06’... OK

Finished: 1 out of 19 tests failed (5%)

make: *** [check] Error 1

Obviously, in practice none of the tests should fail.

4.6.2 Robustness

The robustness tests of the program can be subdivided into two categories: Very large, but correct

input, and input with syntactic and/or semantic errors. (An example of a small, correct input file

together with the resultant output is given in appendixB.)

For the first category, the following input was given tovdmpart:

operations

operation(a, b: int, c: bool, d, e, f, g: int, h, i: bool) r: int

ext wr x: int

rd y, z: bool

wr s, t, u, v: int

pre x˜ + s + t = v * u * d

or ((h => i) and (y and not z <=> false) or (not c))

post (d div e >= f or a < b or b < a) => g <= f

or x div g <= 0 and r = a div b div d

The input expressions may not seem to beverylarge, but as the number of generated test cases

increases exponentially, a huge number of cases is output.vdmpart reported the generation of

Revision: 1.43

45

4 IMPLEMENTATION 4.6 Tests of the Final Program

129 537 408 test cases. Generating them and counting the number of characters that were output

took 10 hours on a 266 MHz Pentium II. The size of the data that was output amounted to 38 GB.

The reaction of the program to the second category of input is best illustrated with a number

of examples of the different error messages that it outputs, which are shown to the right of the

input. Notice that a line number is output for most messages and that the program distinguishes

between warnings, which are not considered fatal, and errors, which cause the test data genera-

tion to be aborted. In the examples below, only the message “err05.t.vdm:8: Warning:

Illegal use of ‘$’ in identifier ” is a warning.

1 state x of
2 a : int
3 b : rat
4 init x == 0
5 inv x == 0
6 end

> vdmpart err02.t.vdm -1
err02.t.vdm:6: Initialization must be
specified before invariant
(Lines 4 and 5 should be swapped)
err02.t.vdm: File does not declare any
implicit functions or operations

1 types
2 a = int
3 inv p == mk (1)

> vdmpart err03.t.vdm -1
err03.t.vdm:3: ‘mk (...)’ must be given at
least 2 expressions
(The requirement “at least two arguments” could have been
encoded in the grammar, but it was more convenient to allow one or
more arguments and to add an additional check.)

Revision: 1.43

46

4 IMPLEMENTATION 4.6 Tests of the Final Program

1 annotation
2 annotation
3 – – end annotation
4 ”annotation” starts new

annotation
5 ’– –’ annotation
6 :end
7 annotation
8 ’end annotation
9 #end annotation

10 end annotation#
11 end annotation
12 end annotation– –

> vdmpart err04.t.vdm -1
err04.t.vdm:1: Unterminated annotation.
err04.t.vdm:2: This line starts an
annotation
err04.t.vdm:4: This line starts an
annotation
err04.t.vdm:4: This line starts an
annotation
(Line 4 starts two nested annotations)
err04.t.vdm:7: This line ends an
annotation
err04.t.vdm:8: This line ends an
annotation
err04.t.vdm:9: This line starts an
annotation
(Identifiers may contain “greek” characters – characters preceded
by ‘#’ – this causes the ‘#’ in lines 9 and 10 to be considered part of
the identifier.)
err04.t.vdm:11: This line ends an
annotation
err04.t.vdm:12: This line ends an
annotation
err04.t.vdm:13: parse error

Revision: 1.43

47

4 IMPLEMENTATION 4.6 Tests of the Final Program

1 types
2 a = int
3 inv p == 10E10 + ’#i’

+ ’a’ + id
4 + $types + i#d
5 + 66E
6 + ’#j’ – – no greek letter
7 + ’as’ – – >1 character
8 + $id
9 + i#j

10 + ”unterminated string

> vdmpart err05.t.vdm
err05.t.vdm: Sorry, not implemented:
Exponents for number constants.
err05.t.vdm:3: ‘id’ undeclared
err05.t.vdm:4: ‘$types’ undeclared
err05.t.vdm:4: ‘i#d’ undeclared
err05.t.vdm:5: Illegal numeric constant ‘66E’
err05.t.vdm:6: Illegal character constant
(Whereas “#i” stands forι (iota), “#j” does not correspond to any
greek character, so it is not allowed.)
err05.t.vdm:7: Illegal character constant
err05.t.vdm:7: Illegal character constant
err05.t.vdm:7: ‘s’ undeclared
err05.t.vdm:8: Warning: Illegal use of ‘$’ in
identifier - ‘id’ is not a keyword
err05.t.vdm:8: ‘$id’ undeclared
err05.t.vdm:9: Illegal greek letter code
after ‘i#’
err05.t.vdm:9: ‘j’ undeclared
err05.t.vdm:10: Illegal string constant
(End of file instead of closing”.)
err05.t.vdm:10: parse error

1 functions
2 f() r: bool
3 post r or n;
4

5 g(r: int)
6 r: bool
7 post true

> vdmpart err06.t.vdm h
err06.t.vdm:3: ‘n’ undeclared
err06.t.vdm:6: Redefinition of ‘r’
err06.t.vdm:5: ‘r’ previously defined here
err06.t.vdm: File does not declare implicit
function or operation ‘h’

1 functions
2 f1: int -> rat
3 f2() == 0
4

5 operations
6 o1: () ==> ()
7 o2() == skip

> vdmpart err07.t.vdm -1
err07.t.vdm:2: Names in function definition
must be identical: ‘f1’, ‘f2’
err07.t.vdm:6: Names in operation definition
must be identical: ‘o1’, ‘o2’
err07.t.vdm: File does not declare any
implicit functions or operations

Revision: 1.43

48

4 IMPLEMENTATION 4.6 Tests of the Final Program

1 operations
2 o() r: bool
3 ext wr x: int
4 pre (x + 1)
5 and r
6 and x
7 post r =
8 true

> vdmpart err08.t.vdm -1
err08.t.vdm:8: Result of expression is
boolean, should be integer
err08.t.vdm:7: Type of ‘r’ is not int
err08.t.vdm:6: Type of ‘x˜’ is not bool
err08.t.vdm:4: Result of expression is
integer, should be boolean
(The operator “=” requires numeric operands. It would have to be
replaced with “<=>” for the expression to be correct.)

1 functions
2 o(x, y: rat) r: rat
3 post r = x
4 /
5 y

> vdmpart err09.t.vdm o
err09.t.vdm:4: Sorry, test case generation
not implemented
err09.t.vdm:4: for this kind of expression
(Only integer division – thediv operator – is supported.)

1 values err10.t.vdm:2: parse error
(End of file instead of value definitions.)

Revision: 1.43

49

5 CONCLUSION

5 Conclusion

In section1, the nature of the problem that was to be solved in this Software Engineering Project

was outlined, and in section2, the VDM specification language was described in more detail in

order to show the fundamental approach to test data generation taken by a program that was to

be implemented as part of the project. The functionality of the program was also specified more

accurately and broken down into several stages:

• Read the input characters of a VDM-SL specification and separate them into symbols in a

scanner.

• In a parser, analyse these symbols and build a parse tree which represents the VDM-SL

specification.

• In the parse tree, find the function/operation definition that is to be analysed and create a

partition from the expressions it contains.

• Create equivalence classes from the partition and output them.

Prior to the design of these program components, the theoretical work the last two stages are

based on – the Ph.D. thesis of Christophe Meudec – was analysed. Because of undesirable prop-

erties of the test data generation algorithm (in particular the fact that its memory requirements

grow exponentially with the size of the input specification) and because of the possibility of a

flaw in the algorithm itself, it was decided to modify the test data generation technique. The re-

sulting algorithm is described in section3.3.3. It turns out to be less efficient as far as the higher

number of test cases that are created for an input is concerned. However, on the other hand its

space complexity is far better and it allows that the test cases are generated in semi-random order.

The role of each of the components listed above was next defined in detail: Not only was its

functionality given, but also its program interface (see section3). Finally, all of the components

were successfully implemented and integrated into one program. The components as well as the

final program were tested as outlined in sections4.5and4.6.

The tools and environment used for the implementation of the program proved to be well

suited for the task. Previous experience with the scanner and parser generation toolsflex and

bison allowed the implementation to proceed relatively quickly. The C++ programming language

used for the program was also a good choice as it could easily be interfaced to the C output of

Revision: 1.43

50

5 CONCLUSION

the code generators, and is both both powerful and fast; because of the bad complexity of the

problem, the latter property is not unimportant.

The program written for the project is suitable for further development – in fact, many parts

have been written carefully in a way that makes later extension easy. First and foremost, the

program is not ready for practical use in its current state – its output needs to be passed through

an as yet unwritten solver to produce the final test data.

In addition to this, the support for VDM-SL is currently restricted to very few VDM operations

and data types. Even though [Meudec98] states that it will not be possible to automate test data

generation for all VDM constructs, support for a number of them could still be added tovdmpart.

The most probable candidate for this kind of expansion are user-defined types, since they appear

in almost every VDM-SL specification.

Furthermore, the partitioning and test data generation process as implemented invdmpart can

be enhanced in the way described on page17as soon as a solver is available.

Finally, it would also make sense to write a support program which can be used for the actual

testing procedure. It will need to read in the test data produced by the extendedvdmpart (because

of the large amount of test data, preferably not from a file, but through a Unix pipe), instantiate

the indicated state for a component of the program to be tested, execute that part of the program,

and take notice of any errors and program crashes.

All in all, the program that was created during the course of the Software Engineering Project

meets all requirements specified at the start of the project, and it is felt that it provides a sound

basis for further work in the area of VDM-SL processing and test data generation.

Revision: 1.43

51

A USER MANUAL FOR VDMPART

A User Manual For vdmpart

A.1 Installation

The following is required to build the program from the source archive,vdmpart-x.x.x.

tar.gz or vdmpart-x.x.x.tar.bz2 :

• A Unix-like system, or CygWin under Windows.

• A C++ compiler conforming to the 1998 ISO C++ standard. While any such compiler

should work, only GCC 2.95.x has been tested.

• A make utility, preferably GNU make.

• LATEX 2ε to create the documentation anddvips to turn it into PostScript, as well asxdvi,

ghostview or similar to view it.

• An implementation ofawk, e.g.gawk, to run the test suite.

• Various other standard Unix tools: A shell,tar, gzip or bzip2, cmp, cat, touch etc.

Since the source archive comes with pre-generated source, the following programs are only

needed when the source code is modified:bison, flex, autoconf, makedepend.

To compile the program:

• Untar the archive with one of the following commands, depending on which program it has

been compressed with:

bzcat vdmpart-x.x.x.tar.bz2 | tar -xvf -

gzip -cd vdmpart-x.x.x.tar.gz | tar -xvf -

• Change into the directory that has been created and execute “./configure ”. This will

perform some checks for features and programs available on your system, and in response

alter the way the program is compiled.

• Execute the command “make” to compilevdmpart and to create its documentation. Since

some of the code (in particular the parser) takes extremely long to compile with GCC 2.95,

optimisation is switched off by default; if you want to compile the program with optimisa-

tion, use “make X=’-O2’ ”.

Revision: 1.43

52

A USER MANUAL FOR VDMPART A.2 Program Usage

• Finally, if compilation has successfully completed, it is recommended that you execute

“make check ” to test whethervdmpart works correctly. This command will cause the

program to be run on the files in theexamples subdirectory.

A.2 Program Usage

The programvdmpart is a command line utility. It is invoked as

vdmpart 〈options〉 〈input-file〉 〈function-name〉

It reads a VDM-SL program from the specifiedinput-file(the filename of which should have

a “.vdm ” extension) and writes test data information to standard output, or to a file specified

with the--testcases switch.

Alternatively, the special value “- ” can be given instead of the input filename, in which case

the program reads from standard input.

Test data is generated for the implicit function or operation specified by thefunction-name

argument.

The input-file and function-nameparameters may only be omitted completely if one of the

following two options is used:

-h or --help

Output information on the available option switches and exit immediately without pro-

cessing the input.

-v or --version

Output the version number and exit immediately without processing the input.

The other options understood by the program are:

-1 or --first

This option replaces thefunction-nameparameter and causes the program to analyse

the first implicit operation or function definition that the specified file defines.

-t or --testcases

Create test data and print it to standard output. Since this already is the de-

fault behaviour, the switch will only be used to redirect the output to a file using

--testcases=data.txt or similar.

Revision: 1.43

53

A USER MANUAL FOR VDMPART A.3 LATEX Macro Definitions For Use With vdmpart

-n or --no-testcases

Suppress generation of test data.

-p or --partition

After the final partition for the specified function or operation has been generated, print

it in a format suitable for processing by LATEX. The output does not contain definitions

for the macros used – a file which contains example definitions is included with the

source distribution and in appendixA.3. Standard output is used, unless a filename is

explicitly specified, e.g. with--partition=part.tex

--debug-noterm

When finished, do not exit, instead sleep forever. This allows for examination of the

program’s state, e.g. to find memory leaks.

This option is only available if the program has been compiled with-DDEBUG.

--debug-noversion

Do not include the version number of the program in the generated partition or test

data. This switch is mainly useful in the following case: The test suite compares the

program output with the saved output from a workingvdmpart and considers a test

to have failed if the output differs. The tests would fail whenever the version number

changes, and would have to be adapted to the new version manually.

--debug-parse

Turn on output of debugging information in the generated parser.

--debug-printtree

“Pretty-print” the program using the parse tree once parsing has successfully fin-

ished. Standard output is used, unless a filename is explicitly specified, e.g. with

--debug-printtree=tree.txt

A.3 LATEX Macro Definitions For Use With vdmpart

The following file can be used to process the output generated withvdmpart’s --partition

switch with LATEX. It is expected that the generated partition has been written to the file

partition.tex .

\documentclass[10pt,fleqn]{article}

Revision: 1.43

54

A USER MANUAL FOR VDMPART A.3 LATEX Macro Definitions For Use With vdmpart

\newcommand{\vdmComb}[2]{\ensuremath{#1 \times #2}}
\newcommand{\vdmSet}[1]{\ensuremath{%
\left\{\begin{array}{c}#1\end{array}\right\}}}

\newcommand{\vdmVar}[1]{\mbox{#1}}
\newcommand{\vdmOp}[1]{\mbox{\textsf{#1}}}

\addtolength{\oddsidemargin}{−1in}
\addtolength{\evensidemargin}{−1in}
\addtolength{\textwidth}{2in}
\addtolength{\topmargin}{−1in}
\addtolength{\textheight}{2in}

\begin{document}
\noindent\(\input{partition.tex}\)

\end{document}

Revision: 1.43

55

B EXAMPLE OF INPUT/OUTPUT FOR A SMALL PROBLEM

B Example of Input/Output For a Small Problem

The commandvdmpart relations.vdm --first --partition=partition.tex

was used on the following input file:

functions

fnc(x, y: int) r: bool
post r <=> x > 0 or y < 5

The partition output by the program looks like this in ASCII:

% generated from ‘fnc’ in file ‘relations.vdm’ by vdmpart 0.9.0

\vdmSet{%
\vdmComb{%
\vdmSet{%
\vdmVar{r}}%

}{%
\vdmSet{%
\vdmComb{%
\vdmSet{%

(\vdmVar{x} = (0 + 1))\\%
(\vdmVar{x} > (0 + 1))}%

}{%
\vdmSet{%

((\vdmVar{y} + 1) = 5)\\%
((\vdmVar{y} + 1) < 5)}%

}%
\\%
\vdmComb{%
\vdmSet{%

(\vdmVar{x} = 0)\\%
(\vdmVar{x} < 0)}%

}{%
\vdmSet{%

((\vdmVar{y} + 1) = 5)\\%
((\vdmVar{y} + 1) < 5)}%

Revision: 1.43

56

B EXAMPLE OF INPUT/OUTPUT FOR A SMALL PROBLEM

}%
\\%
\vdmComb{%
\vdmSet{%

(\vdmVar{x} = (0 + 1))\\%
(\vdmVar{x} > (0 + 1))}%

}{%
\vdmSet{%

(\vdmVar{y} = 5)\\%
(\vdmVar{y} > 5)}%

}%
}%

}%
\\%
\vdmComb{%
\vdmSet{%

(\vdmOp{not } \vdmVar{r})}%
}{%
\vdmComb{%
\vdmSet{%

(\vdmVar{x} = 0)\\%
(\vdmVar{x} < 0)}%

}{%
\vdmSet{%

(\vdmVar{y} = 5)\\%
(\vdmVar{y} > 5)}%

}%
}%

}%

When the partition is processed by LATEX using the provided filevdmpart-macros.tex ,

Revision: 1.43

57

B EXAMPLE OF INPUT/OUTPUT FOR A SMALL PROBLEM

the following output is created:

{
r

}
×



{
(x = (0+1))
(x > (0+1))

}
×

{
((y+1) = 5)
((y+1) < 5)

}
{

(x = 0)
(x < 0)

}
×

{
((y+1) = 5)
((y+1) < 5)

}
{

(x = (0+1))
(x > (0+1))

}
×

{
(y = 5)
(y > 5)

}

{
(not r)

}
×

{
(x = 0)
(x < 0)

}
×

{
(y = 5)
(y > 5)

}


Finally, here is the set of test cases as output byvdmpart:

generated from ‘fnc’ in file ‘relations.vdm’ by vdmpart 0.9.0
16 test cases
0
(r and ((x = (0 + 1)) and ((y + 1) = 5)))
8
(r and ((x = (0 + 1)) and (y = 5)))
4
(r and ((x = 0) and ((y + 1) = 5)))
12
((not r) and ((x = 0) and (y = 5)))
2
(r and ((x = (0 + 1)) and ((y + 1) < 5)))
10
(r and ((x = (0 + 1)) and (y > 5)))
6
(r and ((x = 0) and ((y + 1) < 5)))
14
((not r) and ((x = 0) and (y > 5)))
1
(r and ((x > (0 + 1)) and ((y + 1) = 5)))
9
(r and ((x > (0 + 1)) and (y = 5)))
5
(r and ((x < 0) and ((y + 1) = 5)))
13
((not r) and ((x < 0) and (y = 5)))
3
(r and ((x > (0 + 1)) and ((y + 1) < 5)))
11
(r and ((x > (0 + 1)) and (y > 5)))
7

Revision: 1.43

58

B EXAMPLE OF INPUT/OUTPUT FOR A SMALL PROBLEM

(r and ((x < 0) and ((y + 1) < 5)))
15
((not r) and ((x < 0) and (y > 5)))

Revision: 1.43

59

C LR(1) GRAMMAR FOR VDM-SL

C LR(1) Grammar For VDM-SL

Below is a copy of the transformed grammar used by the parser generator, based on section 9 of

[ISO93]. Keywords and other terminal symbols are printed in abold typeface, terminal symbols

consisting of non-alphabetic ASCII characters appear like “this ”, and nonterminals areslanted.

Note that there are several symbols (for example “identifier”) that are nonterminals in the ISO

grammar, but terminals here, because they are handled by the scanner.

A number of ambiguities remain in this grammar. They are resolved using the precedence

declarations for terminal symbols and rules thatbison andyacc provide as an extension.

This LATEX representation of the grammar has been automatically generated from the parser

description filesrc/parse.y using the programyacc2tex, which was written especially for

this purpose. It is supplied in thedoc subdirectory of the source archive.

document = openScope definition-block
| document definition-block ;

definition-block = type-definition-list
| state-definition
| state-definition error
| value-definition-list
| function-definition-list
| operation-definition-list ;

type-definition-list = typestype-definition
| type-definition-list “ ; ” type-definition
| type-definition-list “ ; ” error
| type-definition-list error ;

type-definition = name “=” type
| name “=” type invariant
| name “ :: ” field-list
| name “ :: ” field-list invariant ;

type-list = type
| type-list “ , ” type
| type-list error ;

type = “(” type “) ”
| bool
| nat
| nat1
| int
| rat
| real

Revision: 1.43

60

C LR(1) GRAMMAR FOR VDM-SL

| char
| token
| lit-quote
| composename of field-list end
| type “ | ” type
| type “* ” type
| “ [” type “] ”
| set oftype
| seq oftype
| seq1 oftype
| map type to type
| inmap type to type
| function-type
| type-variable-identifier
| name ;

function-type = type “ -> ” type
| “ (” “) ” “ -> ” type
| type “+>” type
| “ (” “) ” “ +>” type ;

discretionary-type = type
| “ (” “) ” ;

field = name “ : ” type
| type ;

field-list = empty
| field-list field ;

state-definition = statename of field-list end
| statename of field-list invariant end
| statename of field-list initialization end
| statename of field-list invariant initialization end
| statename of field-list initialization invariant end ;

invariant = inv pattern “==” expression ;

initialization = init pattern “==” expression ;

value-definition-list = valuesvalue-definition
| value-definition-list “ ; ” value-definition
| value-definition-list “ ; ” error
| value-definition-list error ;

value-definition = pattern “=” expression
| pattern “ : ” type “=” expression ;

function-definition-list = functions openScope function-definition closeScope
| function-definition-list “ ; ” openScope function-definition closeScope

Revision: 1.43

61

C LR(1) GRAMMAR FOR VDM-SL

| function-definition-list “ ; ” error
| function-definition-list error ;

function-definition = explicit-function-definition
| implicit-function-definition ;

explicit-function-definition = name “ : ” function-type name parameters-list “==” expression
maybe-precondition

| name “ [” type-variable-list “] ” “ : ” function-type name
parameters-list “==” expression maybe-precondition ;

implicit-function-definition = name parameter-type-list declName “ : ” type maybe-precondition
post expression

| name “ [” type-variable-list “] ” parameter-type-list declName “ : ”
type maybe-precondition post expression ;

type-variable-list = type-variable-identifier
| type-variable-list “ , ” type-variable-identifier ;

type-variable-identifier = “@” name ;

parameter-type-list = “(” “) ”
| “ (” pattern-type-pair-list “) ” ;

pattern-type-pair-list = pattern-list “ : ” type
| pattern-type-pair-list “ , ” pattern-list “ : ” type ;

parameters-list = brack-maybe-pattern-list
| parameters-list brack-maybe-pattern-list ;

maybe-precondition = empty
| pre beginPreCond expression endPreCond ;

brack-maybe-pattern-list = “(” “) ”
| “ (” pattern-list “) ” ;

operation-definition-list = operationsopenScope operation-definition closeScope
| operation-definition-list “ ; ” openScope operation-definition

closeScope
| operation-definition-list “ ; ” error
| operation-definition-list error ;

operation-definition = explicit-operation-definition
| implicit-operation-definition ;

explicit-operation-definition = name “ : ” discretionary-type “==>” discretionary-type name
brack-maybe-pattern-list “==” statement maybe-precondition ;

implicit-operation-definition = name parameter-type-list maybe-externals maybe-precondition
post expression

| name parameter-type-list maybe-externals maybe-precondition
post expression errs exception-list

Revision: 1.43

62

C LR(1) GRAMMAR FOR VDM-SL

| name parameter-type-list declName “ : ” type maybe-externals
maybe-precondition post expression

| name parameter-type-list declName “ : ” type maybe-externals
maybe-precondition post expression errs exception-list ;

maybe-externals = empty
| externals ;

externals = ext var-information
| externals var-information
| externals error ;

var-information = rd name-list
| wr name-list
| rd name-list “ : ” type
| wr name-list “ : ” type ;

exception-list = name “ : ” expression “ -> ” expression
| exception-list name “ : ” expression “ -> ” expression ;

expression-list = expression
| expression-list “ , ” expression
| expression-list error ;

addto-expression-list = expression
| addto-expression-list “ , ” expression
| addto-expression-list error ;

expression = “(” expression “) ”
| let openScope local-definition-list in expression closeScope
| let openScope pattern in set expression in expression closeScope
| let openScope name “ : ” type in expression closeScope
| let openScope pattern2 “ : ” type in expression closeScope
| let openScope pattern in set expression be stexpression in expression closeScope
| let openScope name “ : ” type be stexpression in expression closeScope
| let openScope pattern2 “ : ” type be stexpression in expression closeScope
| def openScope patternbind-expr-list in expression closeScope
| if-expression
| casesopenScope expression “ : ” cases-alternatives end closeScope
| casesopenScope expression “ : ” cases-alternatives “ , ” others “ -> ” expression

end closeScope
| “+” expression
| “ - ” expression
| absexpression
| floor expression
| not expression
| card expression
| power expression
| dunion expression

Revision: 1.43

63

C LR(1) GRAMMAR FOR VDM-SL

| dinter expression
| hd expression
| tl expression
| len expression
| elemsexpression
| inds expression
| concexpression
| dom expression
| rng expression
| mergeexpression
| inverseexpression
| expression “+” expression
| expression “ - ” expression
| expression “* ” expression
| expression “ / ” expression
| expression div expression
| expression rem expression
| expression mod expression
| expression “<” expression
| expression “<=” expression
| expression “>” expression
| expression “>=” expression
| expression “=” expression
| expression “<>” expression
| expression or expression
| expression and expression
| expression “=>” expression
| expression “<=>” expression
| expression in set expression
| expression not in set expression
| expression subsetexpression
| expression psubsetexpression
| expression union expression
| expression mergeexpression
| expression “\” expression
| expression inter expression
| expression “ ˆ ” expression
| expression “++” expression
| expression munion expression
| expression “<: ” expression
| expression “<-: ” expression
| expression “ :> ” expression
| expression “ :-> ” expression
| expression comp expression

Revision: 1.43

64

C LR(1) GRAMMAR FOR VDM-SL

| expression “** ” expression
| forall openScope bind-list “&” expression closeScope
| existsopenScope bind-list “&” expression closeScope
| exists1openScope bind “&” expression closeScope
| iota openScope bind “&” expression closeScope
| “ { ” “ } ”
| “ { ” expression “ } ”
| “ { ” expression “ , ” expression “ } ”
| “ { ” expression “ , ” expression “ , ” addto-expression-list “ } ”
| “ { ” expression “ | ” openComprehensionScope bind-list “ } ” closeScope
| “ { ” expression “ | ” openComprehensionScope bind-list “&” expression “ } ”

closeScope
| “ { ” expression “ , ” “ ... ” “ , ” expression “ } ”
| “ [” “] ”
| “ [” expression-list “] ”
| “ [” expression “ | ” openComprehensionScope bind-list “] ” closeScope
| “ [” expression “ | ” openComprehensionScope bind-list “&” expression “] ”

closeScope
| expression “ (” expression “ , ” “ ... ” “ , ” expression “) ”
| “ { ” “ |-> ” “ } ”
| “ { ” map-enumeration-list “ } ”
| “ { ” expression “ |-> ” expression “ | ” openComprehensionScope bind-list “ } ”

closeScope
| “ { ” expression “ |-> ” expression “ | ” openComprehensionScope bind-list “&”

expression “ } ” closeScope
| mk “ (” expression-list “) ”
| mk identifier “ (” “) ”
| mk identifier “ (” expression-list “) ”
| mu “ (” expression “ , ” record-modification-list “) ”
| expression “ (” “) ”
| expression “ (” expression “) ”
| expression “ (” expression “ , ” addto-expression-list “) ”
| expression “ . ” name
| name “ [” type-list “] ”
| lambda type-bind-list “&” expression
| is identifier “ (” expression “) ”
| identifier
| name “ ˜ ”
| symbolic-literal ;

symbolic-literal = lit-int
| true
| false
| nil
| lit-char

Revision: 1.43

65

C LR(1) GRAMMAR FOR VDM-SL

| lit-string
| lit-quote ;

patternbind-expr-list = pattern-bind “=” expression
| patternbind-expr-list “ ; ” pattern-bind “=” expression
| patternbind-expr-list error ;

local-definition-list = local-definition
| local-definition-list “ , ” local-definition
| local-definition-list error ;

if-expression = if expression then expression elseexpression
| if expression then expression elseif-expression elseexpression ;

elseif-expression = elseifexpression then expression
| elseif-expression elseifexpression then expression ;

cases-alternatives = pattern-list “ -> ” expression
| cases-alternatives “ , ” pattern-list “ -> ” expression
| cases-alternatives error ;

name-list = name
| name-list “ , ” name ;

map-enumeration-list = expression “ |-> ” expression
| map-enumeration-list “ , ” expression “ |-> ” expression
| map-enumeration-list error ;

record-modification-list = name “ |-> ” expression
| record-modification-list “ , ” name “ |-> ” expression
| record-modification-list error ;

name = identifier
| mk identifier
| is identifier ;

declName = name ;

state-designator = name
| state-designator “ . ” name
| state-designator “ (” expression “) ” ;

statement = let local-definition-list in statement
| let pattern in set expression in statement
| let name “ : ” type in statement
| let pattern2 “ : ” type in statement
| let pattern in set expression be stexpression in statement
| let name “ : ” type be stexpression in statement
| let pattern2 “ : ” type be stexpression in statement
| def equals-definition-list in statement
| “ (” maybe-dcl-statement-list statement-list “) ”

Revision: 1.43

66

C LR(1) GRAMMAR FOR VDM-SL

| call-statement
| skip ;

call-statement = name “ (” “) ”
| name “ (” expression-list “) ”
| name “ (” “) ” using state-designator
| name “ (” expression-list “) ” using state-designator ;

equals-definition-list = pattern-bind “=” expression
| equals-definition-list “ ; ” pattern-bind “=” expression ;

maybe-dcl-statement-list = empty
| maybe-dcl-statement-list name “ : ” type “ ; ”
| maybe-dcl-statement-list name “ : ” type “ := ” expression “ ; ” ;

statement-list = statement
| statement-list “ ; ” statement ;

pattern = name
| pattern2 ;

pattern2 = “ ”
| “ (” expression “) ”
| symbolic-literal
| “ { ” pattern-list “ } ”
| pattern union pattern
| “ [” pattern-list “] ”
| pattern “ ˆ ” pattern
| mk “ (” pattern-list “) ”
| name brack-maybe-pattern-list ;

pattern-list = pattern
| pattern-list “ , ” pattern
| pattern-list error ;

pattern-bind = pattern
| bind ;

bind = pattern in set expression
| pattern “ : ” type ;

bind-list = multiple-set-bind
| multiple-type-bind
| bind-list “ , ” multiple-set-bind
| bind-list “ , ” multiple-type-bind
| bind-list error ;

multiple-set-bind = pattern-list in set expression ;

multiple-type-bind = pattern-list “ : ” type ;

Revision: 1.43

67

C LR(1) GRAMMAR FOR VDM-SL

type-bind-list = pattern “ : ” type
| type-bind-list “ , ” pattern “ : ” type
| type-bind-list error ;

local-definition = pattern “=” expression
| name “ : ” type “=” expression
| pattern2 “ : ” type “=” expression
| name “ : ” function-type name parameters-list “==” expression

maybe-precondition
| name “ [” type-variable-list “] ” “ : ” function-type name parameters-list “==”

expression maybe-precondition
| name parameter-type-list declName “ : ” type maybe-precondition post

expression
| name “ [” type-variable-list “] ” parameter-type-list declName “ : ” type

maybe-precondition post expression ;

openScope = empty;

closeScope = empty;

openComprehensionScope = empty;

beginPreCond = empty;

endPreCond = empty;

Revision: 1.43

68

D PROGRAM CODE

D Program Code

The complete program source is submitted on floppy disc together with this document. It is also

available online fromhttp://www.in.tum.de/˜atterer/uni/sep/

D.1 TheSmartPtr template

The code excerpt below is included as an example of a complete compilation unit;

smartptr.h . Only the initial copyright comment and some debugging code have been omitted.

TheSmartPtr template is described in detail in section4.4.1.

struct SmartPtr lockStatic;

struct SmartPtrBase {
friend struct SmartPtr lockStatic;
SmartPtrBase() throw() : smartPtr refCount(0) { }
int smartPtr refCount;

};

//

/* If static objects are accessed through smart pointers, ensure that

there are no attempts to delete them, by defining a non-static

SmartPtr lockStatic(object), which MUST be DEFINED (not declared)

AFTER the object being locked, in the SAME translation

unit. Otherwise, order of construction is not defined. */

struct SmartPtr lockStatic {
SmartPtr lockStatic(SmartPtrBase& obj) { ++obj.smartPtr refCount; }
˜SmartPtr lockStatic() { }

};

//

// There are no implicit conversions from/to the actual pointer.

template<class X>

class SmartPtr {
public:

typedef X element type;

Revision: 1.43

69

http://www.in.tum.de/~{}atterer/uni/sep/

D PROGRAM CODE D.1 The SmartPtr template

SmartPtr() throw() : ptr(0) { }
˜SmartPtr() throw() { decRef(); }

// init from SmartPtr<X>

SmartPtr(const SmartPtr& x) throw() : ptr(x.get()) { incRef(); }
// init from SmartPtr to other type; only works if implicit conv. possible

template<class Y> SmartPtr(const SmartPtr<Y>& y) throw() : ptr(y.get()) {
incRef();

}
// init from pointer

explicit SmartPtr(X* x) throw() : ptr(x) { incRef(); }

/* This one is necessary, the compiler will *not* generate one from

the template below. */

SmartPtr& operator=(const SmartPtr& x) throw() {
if (ptr != x.get()) { decRef(); ptr = x.get(); incRef(); }
return * this;

}
template<class Y> SmartPtr& operator=(const SmartPtr<Y>& y) throw() {

if (ptr != y.get()) { decRef(); ptr = y.get(); incRef(); }
return * this;

}
template<class Y> SmartPtr& operator=(Y* y) throw() {

if (ptr != y) { decRef(); ptr = y; incRef(); }
return * this;

}

X& operator*() const throw() { return *ptr; }
X* operator−>() const throw() { return ptr; }
X* get() const throw() { return ptr; }
X* release() throw() { // relinquish ownership, but never delete

if (ptr != 0) −−(ptr−>SmartPtrBase::smartPtr refCount);

X* tmp = ptr; ptr = 0; return tmp;

}
void swap(SmartPtr& x) throw() { X* tmp = ptr; ptr = x.ptr; x.ptr = tmp; }

Revision: 1.43

70

D PROGRAM CODE D.1 The SmartPtr template

bool isNull() const throw() { return ptr == 0; }

private:

void incRef() throw() {
if (ptr != 0) ++(ptr−>SmartPtrBase::smartPtr refCount);

}
void decRef() throw() {

if (ptr != 0 && −−(ptr−>SmartPtrBase::smartPtr refCount) <= 0)

delete ptr;

}
X* ptr;

};

//

template<class X>

inline SmartPtr<X> makeSmartPtr(X* x) { return SmartPtr<X>(x); }

// only delete if count is zero

// ’deleteSmart(x);’ is equivalent to ’{ SmartPtr<X> tmp(x); }’
template<class X> // need template for ’delete ptr’ to call the right dtor

inline bool deleteSmart(X* ptr) {
if (ptr != 0 && ptr−>SmartPtrBase::smartPtr refCount <= 0) {

delete ptr; return true;

} else {
return false;

}
}

template<class X>

inline X* releaseSmart(X* ptr) {
if (ptr != 0) −−ptr−>SmartPtrBase::smartPtr refCount;

return ptr;

}
//

Revision: 1.43

71

D PROGRAM CODE D.1 The SmartPtr template

template<class X> inline void swap(SmartPtr<X>& a, SmartPtr<X>& b) {
a.swap(b);

}
template<class X>

inline bool operator<(const SmartPtr<X> a, const SmartPtr<X> b) {
return a.get() < b.get();

}
template<class X>

inline bool operator>(const SmartPtr<X> a, const SmartPtr<X> b) {
return a.get() > b.get();

}
template<class X>

inline bool operator<=(const SmartPtr<X> a, const SmartPtr<X> b) {
return a.get() <= b.get();

}
template<class X>

inline bool operator>=(const SmartPtr<X> a, const SmartPtr<X> b) {
return a.get() >= b.get();

};

// allow comparison with pointers

template<class X>

inline bool operator==(const SmartPtr<X> a, const X* b) {
return a.get() == b;

}
template<class X>

inline bool operator==(const X* a, const SmartPtr<X> b) {
return a == b.get();

}
template<class X>

inline bool operator!=(const SmartPtr<X> a, const X* b) {
return a.get() != b;

}
template<class X>

inline bool operator!=(const X* a, const SmartPtr<X> b) {

Revision: 1.43

72

D PROGRAM CODE D.1 The SmartPtr template

return a != b.get();

}

Revision: 1.43

73

REFERENCES REFERENCES

References

[ISO93] International Standards Organization.Information Technology Programming

Languages – VDM-SL. First committee draft CD 13817-1, Document ISO/IEC

JTC1/SC22/WG19 N-20, November 1993

Available online at
ftp://ftp.cs.uq.oz.au/pub/vdmsl standard/

ftp://gatekeeper.dec.com/pub/standards/vdmsl/

ftp://ftp.imada.ou.dk/pub/vdmsl standard/

[Meudec98] Christophe Meudec.Automatic Generation of Software Test Cases From Formal

Specifications. Ph.D. thesis, The Queen’s University of Belfast, May 1998

Available online as
http://www.geocities.com/CollegePark/Square/4148/research/

thesis/thesis.zip

http://www.in.tum.de/˜atterer/uni/sep/meudec-thesis.ps.gz

[Stroustrup97]Bjarne Stroustrup.The C++ Programming Language. 3rd edition, Addison Wes-

ley, Reading (Massachusetts), 1997 (9th printing 1999)

Revision: 1.43

74

http://www.geocities.com/CollegePark/Square/4148/research/thesis/thesis.zip
http://www.geocities.com/CollegePark/Square/4148/research/thesis/thesis.zip
http://www.in.tum.de/~{}atterer/uni/sep/meudec-thesis.ps.gz

	Introduction
	Specification
	Design
	Lexical Analysis
	Parsing
	Generation and Output of Test Data
	Processing the Input
	Partitioning Expressions
	Generation of Equivalence Classes

	Implementation
	Lexical Analysis
	Parsing
	Creation of the LALR(1) grammar
	Representation of the Parse Tree
	Scope Handling

	Generation and Output of Test Data
	Functions For Partitioning
	Representation of the Partition Tree
	Building the Test Case Predicates
	The BigInt Integer Abstraction

	Further Components of the Implementation
	The SmartPtr Template
	Error Handling
	Debugging Aids

	Tests of the Program Components
	Tests of the Final Program
	Portability
	Robustness

	Conclusion
	User Manual For vdmpart
	Installation
	Program Usage
	LaTeX Macro Definitions For Use With vdmpart

	Example of Input/Output For a Small Problem
	LR(1) Grammar For VDM-SL
	Program Code
	The SmartPtr template

	References

