Knowing the User’s Every Move — User Activity Tracking
for Website Usability Evaluation and Implicit Interaction

Richard Atterer
Media Informatics Group
University of Munich
Amalienstr. 17
80333 Munich, Germany

richard.atterer@ifi.Imu.de

ABSTRACT

In this paper, we investigate how detailed tracking of user
interaction can be monitored using standard web technolo-
gies. Our motivation is to enable implicit interaction and
to ease usability evaluation of web applications outside the
lab. To obtain meaningful statements on how users inter-
act with a web application, the collected information needs
to be more detailed and fine-grained than that provided by
classical log files. We focus on tasks such as classifying the
user with regard to computer usage proficiency or making a
detailed assessment of how long it took users to fill in fields
of a form. Additionally, it is important in the context of
our work that usage tracking should not alter the user’s ex-
perience and that it should work with existing server and
browser setups. We present an implementation for detailed
tracking of user actions on web pages. An HTTP proxy
modifies HTML pages by adding JavaScript code before de-
livering them to the client. This JavaScript tracking code
collects data about mouse movements, keyboard input and
more. We demonstrate the usefulness of our approach in a
case study.

Categories and Subject Descriptors

H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems— Evaluation/methodology;
H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Interaction styles; D.2.5 [Software En-
gineering]: Testing and Debugging; H.5.4 [Information
Interfaces and Presentation]: Hypertext/Hypermedia—
User issues

General Terms

Experimentation, Human Factors

Keywords

Website usability evaluation, implicit interaction, mouse
tracking, user activity tracking, HT'TP proxy

1. INTRODUCTION

In recent years, the web has constantly been gaining
importance as a platform for applications. Whereas ear-

Copyright is held by the author/owner(s).
WWW2006, May 22-26, 2006, Edinburgh, UK.

Monika Wnuk
Media Informatics Group
University of Munich
Amalienstr. 17
80333 Munich, Germany

wnukm@ifi.Imu.de

Albrecht Schmidt
Embedded Interaction
Research Group
University of Munich
Amalienstr. 17
80333 Munich, Germany

albrecht.schmidt@acm.org

lier web applications were simple and used straightforward
page layouts, now websites offer applications with sophis-
ticated user interfaces. Additionally, there is a noticeable
tendency to move more of the application to the client:
Earlier web applications followed the HTTP protocol’s re-
quest /response paradigm, but many newer applications are
JavaScript-based and only contact the server in order to load
or save data.

These developments pose a problem when it comes to ob-
taining feedback about the usage of web applications. The
data left by many interactive applications in the server’s log
file is minimal and not sufficient for extracting detailed in-
formation about the actual usage of the application. For
instance, it is not possible to say in which order the fields of
a form were filled in.

In this work, we investigate means for obtaining more in-
formation about the usage of websites and web applications.
This includes a detailed tracking of all interaction with the
displayed browser page, such as moving the mouse pointer
around or scrolling the page. Additionally, the interaction
should be tracked at the widget level, i.e. the mouse coordi-
nates are mapped to elements like buttons, links etc. Com-
bined with knowledge about the layout of the HTML pages,
complete tracking of all user activity becomes possible.

The information which can be obtained using activity
tracking is interesting for a number of scenarios. So far,
the main application has been usability tests of websites,
but with a tracking approach that is flexible enough, it is
also possible to use the tracking during web application de-
velopment, beta-testing or constant/repeated evaluation of
live websites. On a more abstract level, it can be employed
for profiling users and for implicit interaction with websites.

The term “implicit interaction” is explained in detail in
section 3.2. In contrast to explicit interaction with a website
which the user is aware of (such as filling in a form field), im-
plicit interaction usually happens unconsciously. For exam-
ple, the user may hesitate before filling in the field because
he is not certain about the correct answer — a fact which we
can observe and make use of.

As part of our research, we present an advanced, non-
intrusive tracking solution which does not require special
setup at the client or server side. Working as an HTTP
proxy, the software performs detailed user activity tracking
while modifying HTML pages “on the fly” before passing
them on to the client browser.

This paper is organised as follows: In section 2, our re-
quirements for user tracking and the chosen approach are
described. Next, section 3 discusses the types of data that
can be obtained using activity tracking as well as its use for
implicit interaction and usability testing. In section 4, the
implementation of our HTTP proxy for activity tracking is
explained, followed by a case study in section 5 which illus-
trates its usefulness. Section 6 discusses previous work, it is
followed by the conclusion in section 7.

2. OVERVIEW: AN APPROACH TO
TRACKING USER ACTIONS ON WEB
PAGES

In this section, we will outline our requirements for a flex-
ible, non-invasive tracking technology for web page usage,
and briefly describe the approach taken by our solution. Our
overall goal was to design a tracking solution which records
detailed data for the analysis of user actions, without many
of the restrictions of existing tools. Section 4 discusses the
implementation in detail.

General requirements The general requirements for the
user tracking approach are as follows. The technical require-
ments resulting from these are listed in section 4.1.

e Detailed tracking of user actions, such as navigation
between pages, actions on a page (mouse movements,
scrolling), and any input provided to the browser
(clicks, text input).

e Platform independence both from the server technol-
ogy and the client operating system/browser

e Transparent operation — the user’s browsing experi-
ence should not be altered in any way.

e As few client-side changes as possible: In order to be
useful in a wide variety of cases, user tracking should
be possible without special equipment or preparation
at the client side.

o As few server-side changes as possible: The server for
which user actions need to be tracked might belong to
someone other than the person doing the tracking, so
one should not assume that changes to the server-side
setup are possible. Furthermore, standard web server
logs do not usually provide sufficient data for detailed
tracking.

e More automation: For web usability tests, this will re-
duce the costs of the test (see section 3.1.1). Other us-
age scenarios of our approach (e.g. self-adapting web-
sites) are not possible if manual steps are necessary.

Approach: A proxy for user tracking Some of the
requirements above may seem contradictory; the tracking
must take place either at the client or server end, which
implies significant changes in the setup. However, our pro-
posed solution addresses this issue simply by allowing the
tracking to take place either client-side or server-side — this
way, the type of setup can be chosen on a case-to-case basis
depending on the task for which the tracking is employed.

In order to collect data about users’ actions, we use the
approach of an HTTP proxy which is inserted between the
client and server (see figure 1). It intercepts all traffic and
outputs log data with details about any requests sent to

Standard

Server

Request
—_—

Request
—_—

-
modified Response

Response

* Tracking data

Figure 1: The HTTP proxy for activity tracking
augments all HTML with JavaScript to monitor
mouse movements and other types of interaction.

servers as well as the replies that a server sends back to the
client.

However, if only the requests were logged, the data col-
lected by the proxy would be comparable to standard web
server logs. Only things like the URLs of requested pages
and input data typed into forms by the user would be avail-
able. This is not sufficient for our purpose of logging the
user actions in detail, e.g. including mouse movement.

Thus, the next step towards a complete solution is the ad-
dition of client-side code which records the user’s behaviour
in detail. The most straightforward way to achieve this
would be via special software running on the client machine.
However, installation of software is not an option because we
also want to support setups where the user does not need to
change his configuration at all.

Luckily, current browsers offer flexible ways to run client-
side code, in the form of the built-in JavaScript support. If
we are able to run JavaScript inside the browser, detailed
data about any mouse and keyboard input is available, in-
cluding position of the mouse pointer, keypresses, browser
window size and much more.

In a human computer interaction class at University of
Munich in spring 2005, we had students manually implement
detailed tracking for pages that contained larger forms. This
assignment showed that it is feasible to implement this kind
of tracking without altering the user’s experience.

The browser’s security model prevents that any JavaScript
code has access to all pages displayed by the browser; only
the JavaScript code of the currently displayed page is exe-
cuted. For this reason, we use the following approach to have
JavaScript code of our choice executed for each and every
page that the browser requests: Before our HTTP proxy
passes on HTML data from the server to the client, the
HTML is modified. The modification causes the JavaScript
part of our implementation to be loaded in the context of
the page. As long as the page is displayed, the JavaScript
code collects data and sends it to the proxy for logging.

In practice, a number of problems needs to be addressed to
get the tracking to work in a satisfactory way. See section 4.2
for a discussion of the implementation, including issues such
as how to transmit the log data back to the proxy, or how
to avoid that the proxy’s JavaScript interferes with other
JavaScript used on the page.

3. MAKING USE OF THE COLLECTED
USAGE INFORMATION

When information about user actions is recorded, it is
always very concrete (e.g. “the left mouse button was clicked
on link x”). This means that more abstract information
must be inferred from the concrete information. In general,
the following types of data can be collected with our user
tracking solution:

e “Small and concrete”: Information which is usually
collected directly by tools, or trivial to extract from the
data collected. For example, this includes information
on what input field was filled in, the time required by
a user to type in his own name, etc.

e “Small and abstract”: Information about a user action
which can only be deduced indirectly from a log. For
instance: “The user probably did not read the form
properly, because it was completed far too quickly”,
or: “The user seems to have had trouble deciding on
an action, as he repeatedly hovered the mouse over the
alternatives.”

e “Large and concrete”: Information about the user
which is not just valid for a single user test in which he
participates. For example: “The user is very precise
when clicking on targets, but very slow when typing.”

e “Large and abstract”: General information about the
user, such as the level of his computer skills.

Our approach of using a HTTP proxy is flexible enough
to be used in a variety of different scenarios. The following
is only a selection of possible areas of application:

e User profiling
e Development or debugging of web applications

e Usage analysis of websites, e.g. determining detailed
usage patterns for purposes of marketing, business pro-
cess streamlining or similar

e Usability tests of websites — some imaginable scenarios
are described in section 3.1

e Self-adapting websites, i.e. websites which adapt some
of their content (menu structure, main text on front
page) to the varying demands of users

Many other applications can be envisioned. For example, an
advanced form of customer support for websites is possible:
If a customer has a problem using a web application, they
can contact a support hotline, either by telephone or over
the Internet, using an instant messaging functionality built
into the application’s website. Customer support is able to
perform live monitoring of all actions of the user to under-
stand the problem — even a live replay of the customer’s
mouse movements would be feasible.

In the following sections, we will look at two areas of ap-
plication in greater detail: Usability evaluation of websites
and implicit interaction with websites.

3.1 Usability Evaluation of Websites

So far, usability evaluation for websites has been the main
purpose of systems which are similar to our approach. Sec-
tion 6 gives an overview of related work, and compares the
different available tools. In this section, we show that our
solution is well suited for this task. In fact, it is flexible
enough to support many different usability testing scenarios,
whereas other tools usually concentrate on only one scenario,
such as testing a specific, prepared website in a usability lab
on an appropriately configured computer.

3.1.1 Motivation: Lowering the Cost of Testing

An expert who conducts a usability test is typically con-
fronted with the following dilemma: On one hand, as much
data as possible needs to be logged in order to produce reli-
able statistics. This implies inviting a large number of test
users and using advanced technology (e.g. video recordings
or eye tracking) during the test. On the other hand, the
amount of money, time and manpower available for tests is
limited. This is especially true for commercial suppliers of
usability testing expertise.

Due to this dilemma, the goal when designing our usabil-
ity proxy was to reduce the cost of activities which are not
directly related to actually performing the test. With this
in mind, we had a look at the typical tasks that normally
arise when performing a “classical” usability test:

e Before the test, a computer must be set up as a test

machine. For detailed tracking, additional software
and equipment like cameras, eye tracking etc. must be
installed.
Furthermore, the users must come to the test setup
and meet the expert performing the test. For websites
with an international audience, this makes usability
testing very expensive: Either the test users or the
expert and his equipment needs to travel to locations
on different continents.

e During the test, usually only one user can perform
the test at a time, either due to lack of equipment or
because it is difficult for the expert to supervise more
than one user simultaneously.

e After the test, the data obtained from cameras, eye
tracking, mouse tracking, manual notes etc. must be
aggregated, interpreted and summarised. In practice,
our observation is that due to the sheer amount of data
that was obtained, some of it is often ignored during
this stage. For example, video recordings of the test
are often only consulted for a few special cases where
a test user’s behaviour was strange or very different
from the usual behaviour.

In order to reduce the cost of website usability evaluation,
we decided that our user action tracking approach should
have the following properties:

No test lab necessary In the discussion above, it
quickly becomes clear that much of the cost is caused by
the fact that the test user, usability expert and the equip-
ment need to come to the same place for the test. This is
not always necessary, because the Internet can be used for
remote usability tests. In those cases where remote tests

are not sufficient, it is often possible only to invite a certain
portion of users to the lab.

No special hardware or software requirements
While additional video footage or eye tracking data helps
to identify some problems more easily, its usefulness must
always be weighed against its costs. We believe it is accept-
able to do without special hardware support in many cases —
see section 6.2 for a more detailed discussion. Furthermore,
user tests can be parallelised much better (i.e. performed by
several test users at the same time) if it is not necessary to
use special equipment.

If no special software needs to be installed, the amount of
technical problems can be reduced: The expert may not be
present in person to install special software, whereas the test
user cannot be expected to have sufficient computer skills.

3.1.2 Scenarios to Use Our Tracking Approach for
Usability Evaluation

Our HTTP proxy can be used in different ways to perform
usability tests:

“Classical” usability evaluation Some of the existing
tools are only designed for this type of user test: A test user
is told to perform certain tasks on a set of web pages. Often,
the content of the pages is static, and the usability expert
has full control over the server from which they originate.

Evaluation of interactive sites Due to the proxy ap-
proach, it is possible to evaluate websites which are not un-
der the control of the usability expert, and to have test users
interact with other, unknown users on these sites. For ex-
ample, this includes the monitoring of online auctions or real
purchases in online shops. (However, it should be noted that
our implementation does not support encrypted HTTP con-
nections at the moment, which will prevent its being used
with some of these sites.)

Evaluation of highly dynamic web pages Recently,
the number of sophisticated JavaScript-powered web ap-
plications has increased constantly. This type of applica-
tion, where much interaction happens at the client side only,
has also been referred to under the acronym AJAX (Asyn-
chronous JavaScript and XML). Since our proxy does not
interfere with any JavaScript already in use on web pages,
tracking user interaction works very well. This is especially
important because server log file analysis will fail completely
with this scenario.

Parallel user tests The performance of our solution is
sufficient to allow its use by many test users in parallel. This
allows the collection of much more data than with setups
where only one user can take part in the test at a time.

Remote user tests Related to the previous point, the
test users can take part in the experiment from their usual
desktop machine at home or work. For websites with an
international audience, the test users can be located all over
the world.

Inviting test users over the Internet Instead of giv-
ing the website URL to a number of users and telling them

to perform tasks, it may sometimes be desirable to have a
website’s real users participate in a test. For this scenario,
our proxy needs to be run on the website server. With ap-
propriate server configuration (e.g. using the Apache server’s
mod_proxy module), the proxy can be used to track a user’s
actions on the website once this user has agreed to the user
test, e.g. by clicking on a button. This way, the user does
not even need to reconfigure his browser. Only some users
(rather than all site visitors) can be tracked, and no change
is necessary to the HTML code on the server.

3.2 Implicit Interaction

How people interact with an application provides addi-
tional information. Typing speed or pointing precision may
be good indicators on the proficiency level of a user. The
time a user spends on a specific question in a questionnaire
may indicate that this question makes her think a lot. Such
information is not provided on purpose by the user. How-
ever, operating an application, clicking on a button or filling
in a form will inevitably provide such parameters. Up to
now, they are largely ignored in classical computer systems
with graphical user interfaces.

In the area of context-awareness [7] [9] and physical user
interfaces, the notion of implicit human computer interac-
tion is well established [8]. It is defined as the behaviour
and interaction of a user with the environment and artifacts
to reach a goal. In this work, the focus is on interaction
beyond the computer with the real world. The notion of
implicit interaction can be extended back to the traditional
computer system. People often use applications as tools to
achieve a goal, without focussing on the interaction with the
computer. For example, if someone orders cinema tickets on
a web page (and provided the page is well engineered), she
will not think consciously where to click or which form field
to fill in first. These minimal interactions will happen un-
consciously and automatically.

In the context of web applications, we extend the notion
of implicit interaction to the following: Implicit interaction
is the observable interaction behaviour of the user with an
application that is not done consciously while focusing on
reaching a goal.

It is obvious that no clear distinction between implicit and
explicit interaction is possible. Figuring out what is done
consciously is not straightforward. However, our experience
shows that users do much of the interaction of a website
or in a form without thinking much about the small steps
in the interaction process, and hence having the notion of
implicit interaction helps to assess usage. This information
can be used in the small (e.g. finding additional information
needs with regard to a form field) as well as in the large
(estimating the type of user).

In the following example, the concept of implicit interac-
tion is illustrated: A user wants to buy a flight ticket at an
online travel agency. Typically, the user fills in a form with
the origin and destination and provides the dates of travel.
That is essentially all the information that is sent back to
the server. For booking a flight, this is sufficient. However,
additional information on how the user filled in the form is
lost. This information is not essential to book the flight,
but could be used to improve the service or to customise it.

If implicit interaction tracking is present, it can detect that
the user changed dates more than once before submitting
the form. This may indicate that he or she is not yet sure
about the date, so it can be an option for the website not
only to provide flight information for the selected date, but
also for earlier and later days.

Implicit input from the user does not provide clear infor-
mation, it acts more as an additional source of information.
The reason why a user types in a certain field much slower
than the others may be due to the fact that he or she needs
to think longer on this question, but it could also mean that
the user needed to answer the phone while doing the ques-
tion. The developer has to be aware that the additional
information needs to be used carefully. Similarly, implicit
interaction can be used to monitor usability over a longer
period of time. This allows us to continuously look at where
people stop using an application (e.g. which form field makes
them go away from a website) or to identify part of an ap-
plication where users are slowed down and where help may
be needed.

Collecting and using implicit input raises privacy con-
cerns, ethical questions, and to some extent legal issues.
When analysing the information about how precise a user
clicks, how often she needs to correct an input field or how
long it takes her to write her name, do we have to treat
this data as personal information? We think that this is the
case and therefore we designed our system in such a way
that users usually have to explicitly opt in to use the proxy
server by reconfiguring their browser. In a setup where the
proxy runs at the server’s end, we strongly recommend that
a user be asked for his approval before tracking his actions.
The user should also be informed in detail about the type of
data that will be collected. In our opinion, not doing do so
would not only be unethical, but even illegitimate in some
jurisdictions.

4. USAPROXY: AN HTTP PROXY FOR
WEBSITE USAGE TRACKING

In this section, we describe the UsaProxy application that
provides website usage tracking functionality using a HT'TP
proxy approach. First, we will look at the general require-
ments from section 2 at a more technical level. Next, we
show how the implementation of UsaProxy meets these re-
quirements. This is followed by a discussion of methods for
the visualisation of the aggregated tracking data.

4.1 Technical Requirements

Our primary objective was to enable automated tracking
of user activity on web pages that is not perceptible by the
user nor intrusive. This requires an application which oper-
ates transparently in a way which does not alter the user’s
browsing habits and experience. It must be possible for
test users to take part in website evaluation remotely from
their home/office environments, from any location and using
their own equipment and network access. For this purpose,
the core proxy application as well as the tracking client-
side part must be platform-independent with regard to the
server technology, and compatible with major browsers and
operating systems at the client side. Furthermore, the sys-
tem must not require any installation on the client machine

Request Request
Image Image
Request Request
—_— —_—
-+ -~
annotated text/html

HTML Response

ID for file DB / \ HTTP headers
> @y &content

log file
file DB

Figure 2: Top: Images and other data are passed
on unmodified. Bottom: For HTML content, spe-
cial JavaScript is added for the client. The server
response is recorded and identified via a logged ID.

or changes to the technology used to create the pages. All
these requirements are met by the HI'TP proxy approach
as described in section 2 and below.

For the purposes of a usability engineer, the monitoring
and logging of user actions must proceed accurately, in real
time and in a reproducible way. It is important to provide
a range of features and possibilities that is comparable to
those of a standard usability test, resulting in an accurate
listing of what the user actually did while performing the
predefined tasks. In order to be able to reconstruct website
usage in a qualitatively adequate way, we decided to track
the following user actions:

e Navigation behaviour metrics across multiple websites,
such as the most frequently used path through a web-
site, key entry and exit pages, and page views

e Time-based metrics such as the average time spent on
a page, amount of time the mouse pointer hovers over
elements (to detect whether the user hesitated over
other interesting links/text areas before he clicked),
and time of usage of elements (time taken for form
fields, click frequency, general typing speed)

e Actions of a user within a web page, related to mouse
input. This includes the absolute (more specifically,
window-relative) mouse position and identifying the
elements under the mouse pointer. Both clicks and
hovering over elements need to be logged. If the user
is familiar with the task, the recorded data must show
the intentional and straight mouse movements.

e Other user actions, such as scrolling, window resizing
and any keys pressed.

In order for the proxy to work with JavaScript-powered
web applications, special care must be taken to prevent the
proxy from interfering with any JavaScript already used by
a website.

4.2 Implementation

UsaProxy adds JavaScript to every requested web page
on the fly when delivering the page. The monitored data is
periodically sent back to the proxy and stored in a log file.

4.2.1 Processing HTTP Requests and Responses

The application works as follows: Every client request
is passed on to the respective web server. The server re-
sponse is first checked for the Content-Type text/html. Fig-
ure 2 shows the two possible alternatives: In case any other
content type such as image/gif is identified, the response is
simply forwarded to the client. If HTML is detected, the
following is added in the HTML’s head element to include
the monitoring JavaScript:

<script src="http://lo.lo/proxyscript.js’ type="text/javascript’'>

Additionally, the Content-Length header’s value is in-
creased by the number of bytes that were added. The addi-
tion of the above line is the only change made to the HTML.

Some servers do not send plain text/html content, but
compress their response and use a Content-Encoding: gzip
header. Due to the fact that adding the monitoring HTML
in compressed streams would be very difficult, data compres-
sion is simply suppressed by overriding the client’s Accept-
Encoding header and using a value of “identity” instead. If a
web server receives a request marked with that value, data
will always be sent uncompressed.

4.2.2 JavaScript for Client-side Usage Tracking

The UsaProxy JavaScript is implemented in a way that
does not interfere with any JavaScript already being used by
a website. Generally, event handlers such as onclick are used
to capture and handle user actions. Unfortunately, with the
traditional registration model an event handler may only be
registered exactly once for a single element. This becomes a
problem when an event handler must be attached, but an-
other handler is already registered for the same event. For
instance, if a new onclick handler is defined, it will over-
write an old one. In the same way, the UsaProxy event han-
dler might be overwritten by later JavaScript code which is
loaded by the HTML page.

To address this problem, two advanced event registration
models were added to browsers: The W3C model works with
Netscape 6 and Konqueror /Safari, the Microsoft model with
Internet Explorer 54. Both models work in Opera 7. With
the new models, multiple event handling functions can be
added to elements without problems. With the W3C model,
handlers are attached using the addEventListener() method
whereas Microsoft’s model uses the attachEvent() method.
By using these models, it is possible to invoke the UsaProxy-
specific monitoring functions without influencing the page’s
event handlers.

Events are objects with properties. Examples of proper-
ties which are of interest for user activity tracking are the
target element of a click, hover events or the current mouse
position. Since the UsaProxy script is not aware of what
elements are used in the document and what names or IDs
have been assigned, the event handlers are defined for the
root element of the page which is the document element.
The Document Object Model (DOM) of every browser gives

Figure 3: Log data is sent to the proxy by the Java-
Script running on the client.

access to all lower-level elements of HTML documents and
their properties such as name, ID, href, src and so on. Events
triggered on a certain DOM level are usually forwarded to
the root element. Any click on a button or link will au-
tomatically “bubble” to the document element. This way,
every lower-level event can be recognised and the respective
event properties are available for capturing at the root level
without having to touch the existing code. This results in
the following data that may be monitored by the UsaProxy
script together with a timestamp and the user’s IP:

e The page load and resize events together with the
browser window’s width and height

e Page focus, blur and unload events

e Mouse click and hover events together with the target
element identified by its ID, name, href or src property
and the mouse position coordinates measured from the
top left corner of the document

e Mouse movements together with the mouse position
coordinates

e Scroll events together with the vertical position of the
scrollbar

e Key press events, including the key that was pressed

Scrolling and mouse movements cannot always be
recorded when the respective event is triggered because ev-
ery slight touch of the scroll bar or every mouse movement
would be recognised. Capturing every change and sending
it to the proxy for logging would not only lead to signifi-
cant network overhead and a bloated log file, but also to
a tremendous overhead on the client side. For this reason,
a periodical scroll and mouse movement capture is used by
the proxy. A JavaScript function is called at regular inter-
vals. It only logs a new value for the position of the scrollbar
(respectively mouse) if the position has changed.

4.2.3 Logging the Tracked Data

Once the JavaScript running on the client side has col-
lected the captured user data, it needs to be transmitted
to the machine which acts as the HTTP proxy. This is
done by instantiating a JavaScript Image object and setting
its source to the address http://lo.lo/img.jpg. Additionally,
the data to be logged is appended as a parameter. When
proxying HTTP requests, UsaProxy checks for the special
site http://lo.lo, captures the log request and stores it in the
log file as outlined in figure 3.

However, not only the client-side information is tracked.
In order to correlate usage data with the web server’s actual
reaction to client requests, the server responses (both HTTP
headers and text/html content) are also captured and stored
on the proxy. Additionally, as shown in figure 2 a log entry

is composed for identifying the file the captured response
was stored in. This way, the exact HTML code output by
dynamic websites is available for later inspection. Further-
more, server instructions such as redirects to another loca-
tion can be identified and merged with the user inputs that
evoked the server reaction.

4.3 Data Visualisation

Possible visualisations of the aggregated UsaProxy usage
data range from ordinary listings of web metrics and website
statistics to complex screenshot annotations. Some of these
are also mentioned in section 6. The design of the proxy
allows for the following scenarios:

e Accurate traffic reports that include listings of all vis-
itors, their page visits (hits and views), visit entry
points, the most common navigational paths through
a website, window width, most common browsers and
platforms with additional usability-related data such
as the average time spent on the page before a link was
clicked, scrolling activities, window resizing and aver-
age window size, popular mouse positions, the most
frequently hovered-over or clicked links/buttons, and
SO on.

e One can visualise the visited web pages and paths
through a site using special diagrams, similar to the
visualisation module of the WebQuilt application [4].
Such a diagram can use thumbnail pictures of the
pages with the possibility to enlarge them and con-
nect them with arrows. For instance, emphasised ar-
rows might indicate more heavily traversed paths or
the optimal, designer-defined path. This visualisation
might be combined with a number of symbols repre-
senting e.g. the time that was spent on the respective
page, or buttons that were pushed.

e Mouse movements can be visualised by lines ranging
from simple, edged constructions to fluid, dynamic
paintings. The representation can vary depending on
speed or direction of movement, e.g. by assigning the
line width according to the velocity.

Overlay of the usage data and the web metrics on the
currently evaluated web page is imaginable either us-
ing a screenshot or directly within the browser. For
example, the popularity of links and buttons might be
displayed in a dedicated part of the screen together
with other statistical information. Mouse movements
could also be overlayed on the web page — figure 4
shows a simple example.

As noted previously, a replay of the actions of a certain
user on a web page appears feasible, either a live replay
(e.g. for customer support) or a replay which happens
later, for example while interpreting the results of a
user test.

5. CASE STUDY: A USER TEST

To analyse the usefulness of the HTTP proxy approach,
we conducted a small user test with our implementation.
For this, 12 test participants used a computer whose web
browser had been reconfigured to use the usability proxy
instead of connecting to websites directly. The users were

2 Kiko Calendar Beta - Microsoft Internet Explorer
Oatel Bewbeten Anscht favorten Extras ?

Quk - @ - W @ & dresse @)
#£1600ge i) J8rostng £)LEO) SELAHTML

Figure 4: Mouse trails recorded by the HTTP proxy,
combined with a screenshot of the website.

told to perform tasks on two different websites. Due to the
test subjects’ background (10 students of media informat-
ics, 2 members of the media informatics staff), they can be
regarded as experienced web users. The proxy itself was
running on a nearby computer to modify the web pages and
to log user actions.

The test users were presented with two tasks which are
difficult to track with some of the other available user action
tracking approaches (see section 6):

e On http://www.wikipedia.de, an online encyclope-

dia, the task was: Find the FAQ entry on how to in-
sert an image on a Wikipedia page.
In order to accomplish this task, a significant amount
of scrolling is necessary. Additionally, navigating to
the required information is possible in a number of
different ways, such as filling in a search form or using
the browser’s built-in text search on a large page.

e For the website http://www.kiko.com, which offers an

online calendar, the users were told: Set up the user
group “Testers” and an appointment titled “usability
test” which should take place on Tuesday from 11 to
12. The Kiko application will automatically create a
demo user in that group, who should be the only par-
ticipant of the appointment.
The Kiko service is a JavaScript application. For the
main calendar, the Kiko server does not send a new
HTML page whenever there is a state change (e.g. a
new appointment has been created). Instead, Java-
Script and CSS are used to change the page at the
client side.

Example proxy log Figure 5 shows a short excerpt from
the log that the proxy produced during the test. Only
a small selection of lines from the log are shown to illus-
trate the different log events. The events in the figure in-
clude mousemove (pointer position changed), mouseover (the
pointer was moved over a div HTML element or similar), fo-
cus (the cursor moved into an input field) and others. The

http://www.wikipedia.de
http://www.kiko.com

141.84.8.77 2005-10-25,11:5:57 http://www.kiko.com/ serverdata 12

141.84.8.77 2005-10-25,11:5:58 http://www.kiko.com/ load width=1280;height=867
141.84.8.77 2005-10-25,11:6:2 http://www.kiko.com/ mousemove x=672;y=7
141.84.8.77 2005-10-25,11:6:2 http: //www.kiko.com/ mouseover x=731;y=457 target=link:http://www.kiko.com /contact.htm-linktext:Contact
141.84.8.77 2005-10-25,11:6:6 http://www.kiko.com/ click x=815;y=231 target=id:SPAN16

141.84.8.77 2005-10-25,11:6:37 http://www.kiko.com/app.htm?use_auth=678397351 mousemove x==849;y=352

141.84.8.77 2005-10-25,11:6:37 http://www.kiko.com/app.htm?use_auth=678397351 mouseover x=472;y=296 target=id:DIV144
141.84.8.77 2005-10-25,11:6:37 http://www.kiko.com/app.htm?use_auth=678397351 mouseover x=161;y=229 target=id:left_bar
141.84.8.77 2005-10-25,11:6:38 http://www.kiko.com/app.htm?use_auth=678397351 click x=147;y=183 target=unknown:scrollbar
141.84.8.77 2005-10-25,11:6:40 http://www.kiko.com/app.htm?use_auth=678397351 mousemove x=148;y=138

141.84.8.77 2005-10-25,11:6:50 http://www.kiko.com/app.htm?use_auth=678397351 click x=26;y=507 target=id:IMG14
141.84.8.77 2005-10-25,11:6:50 http://www.kiko.com/app.htm?use_auth=678397351 focus

141.84.8.77 2005-10-25,11:6:56 http://www.kiko.com/app.htm?use_auth=678397351 keypress key=T

141.84.8.77 2005-10-25,11:6:56 http://www.kiko.com/app.htm?use_auth=678397351 keypress key=e

141.84.8.77 2005-10-25,11:6:56 http://www.kiko.com/app.htm?use_auth=678397351 keypress key=s

141.84.8.77 2005-10-25,11:47:45 http://de.wikipedia.org/wiki/Hauptseite scrolledTo y=399

Figure 5: Small sample of the log output produced by our HTTP usability proxy. The output includes mouse
movements, keypresses and scrolling. Mouse coordinates are mapped to buttons and links on the page.

serverdata line is followed by an ID which can be used to
retrieve the HT'TP headers and content sent by the server,
which is stored by the proxy for later inspection.

Test results Due to the detailed logging, it is easy to
extract data about the test from the log. For example, a
visit to specific pages marks the start and end of each task.
It is also possible to determine if the user visited a certain
area of a page, either by moving the mouse pointer over it
or by scrolling to a certain position.

This way, it was no problem to determine the average time
taken to complete the Wikipedia task (1:47 minutes; 1 out
of the 12 participants failed to complete the task). An anal-
ysis of the different navigation paths shows that only 4 users
took the optimal path. For the 6 users who used Wikipedia’s
search facility, the exact search strings are recorded in the
logs. The proxy also continued to track one user who tem-
porarily left wikipedia.org and used Google search to find
the desired page.

Additionally, the proxy proved very useful in determin-
ing how exactly users completed the task. For example,
the logs show that 3 users pressed Ctrl+F and typed in a
search query using their browser’s built-in search facility.
This appears in the logs as a keypress of “F”, followed by
just a single scroll event, whereas users who scrolled manu-
ally through the page created several scroll events.

When performing user action logging for Kiko’s calendar
application, it became clear that the logs are sufficient to de-
termine the users’ actions despite the fact that the calendar
is a highly dynamic JavaScript application: For the logged
events like mouseover and click, the part of the JavaScript-
generated GUI can be determined easily via the id attribute
of HTML elements, even for things like Kiko’s context menu
which only opens when the right mouse button is clicked
over the calendar. For instance, one user created an ap-
pointment on Monday instead of Tuesday, which is obvious
due to a click entry with a target of id:selectionlayer7_1 (in-
stead of id:selectionlayer7_2). Figure 4 shows a visualisation
of all the mousemove data obtained during the user test.

Furthermore, even though Kiko uses JavaScript exten-
sively, the JavaScript code of the proxy did not interfere
in any way with the code of the JavaScript application.

6. RELATED WORK
6.1 Approaches for User Tracking

A number of previous publications discuss solutions to
problems which are relevant to our work. This includes
the task of tracking user actions on web pages using client-
side scripting, and the development of solutions which map
tracking data to the GUI elements on a web page.

Using an HTTP proxy for tracking In [4], a proxy
concept is used to log the pages visited by users on the
web. In contrast to our solution, no client-side tracking
takes place, so only information about visited URLs is avail-
able to the proxy. The focus of the work is on visualisation
techniques for the recorded log data.

Mouse tracking using client-side scripting In [5],
Miiller and Lockerd introduce their idea to use embedded
scripting to track mouse movement (position and associated
timestamps) and to send the logged data to a server for later
analysis. Due to its being an extended abstract, the paper is
low on details, but it appears that the approach is restricted
to the logging of mouse coordinates (i.e. no scrolling, key-
presses etc) and that individual objects on the web pages
(such as buttons) are not identified by the client-side code.
HTML pages appear to have been prepared manually for
the user study by inserting scripting commands.

Our HTTP proxy implementation uses this approach to
record user actions. However, our solution supports more
detailed tracking (e.g. of window scroll events) and has been
carefully written not to interfere with any JavaScript already
present on the web page.

For their WebVCR system [1], Anupam et al. also use
JavaScript (together with a Java applet and LiveConnect)
to track user actions for the purpose of implementing “smart
bookmarks” to web pages which are not reachable via a
normal URL, e.g. because submission of a form is neces-
sary. While this tracking does not include mouse move-
ments, it would be possible to add support for logging of
mouse-related information.

Unfortunately, the client-based logging approach of Web-
VCR suffers from the following problem: Since its imple-
mentation in the year 2000, the JavaScript security model
of all major browsers has been modified to be much more

http://de.wikipedia.org

restrictive, and the system does no longer work with cur-
rent browsers using their default security settings. This is
due to the fact that the WebVCR, applet needs to be able
to make “cross-domain” modifications to pages fetched from
arbitrary servers.

Our own logging approach avoids the problems with
browsers’ security models by modifying pages on their way
through the HTTP proxy.

Client-side tracking software The work by Goecks and
Shavlik [3] allows tracking of user actions for Microsoft’s In-
ternet Explorer (MSIE) by means of a program which needs
to be installed on the user’s computer. The level of detail
of the logs is quite coarse due to limitations of the imple-
mentation: For each page that is visited, only the number
of clicks and the amount of scrolling and mouse activity are
recorded. However, this is sufficient for the paper’s goal of
measuring the user’s level of interest in the page.

Client-side tracking software in addition to eye
tracking In [6], two different tools for user tracking
on web pages are introduced. The WebLogger application
tracks users’ actions on web pages, such as navigating be-
tween pages and scrolling. Additionally, it records data from
an eye tracking device. It is not clear whether tracking
of mouse movement and keypresses is supported, but this
seems likely. The tracking is achieved with a program which
is installed on the machine. As the browser to use, only In-
ternet Explorer is supported. WebEyeMapper is later used
to analyse the log data, which among other things involves
mapping window coordinates to links, buttons etc. on web
pages. It also allows an exact playback of the test user’s
browsing session.

The work from [6] is similar to our own approach. The
two tools allow for detailed logging including eye tracking
data. However, they are more restricted with regard to the
platform on which tests can be conducted (Windows with
MSIE), and with regard to the scenarios of their use — for
example, it is not possible to invite arbitrary users from
the Internet to take part in a user study. Furthermore, an
additional post-processing step is necessary to obtain use-
ful data, such as which button was clicked rather than that
there was a click at certain coordinates. This makes it diffi-
cult to use the tools in situations where real-time access to
the data is necessary.

Server-side tracking For WebVCR, a server-based ap-
proach to logging is described as an alternative to the client-
based solution that was mentioned above. It works by
rewriting all URLs inside web pages to point to the server
which hosts the tracking server. No implementation is pre-
sented in [1]. It would probably be difficult to make the
approach work with web pages which create URLs dynam-
ically using JavaScript or which use AJAX technology such
as the XMLHttpRequest object. Furthermore, the system
would stop tracking a user once the user entered an address
manually, such as the person who used Google search in the
case study from section 5.

6.2 Mouse Movement and Eye Movement

Our approach to user activity tracking does not include
eye tracking. This could be regarded as a drawback because
eye tracking can provide detailed information about how

users scan and read web pages. On the other hand, eye
tracking technology is expensive and requires the test user
to leave their usual web browsing environment in order to
use a computer with eye tracking capabilities. In the light
of these arguments, the possibilities of deducing the user’s
gaze direction in the absence of eye tracking have been the
topic of previous work.

Correlation between eye and mouse movements
How closely related are the position of the mouse pointer
and the position of the user’s gaze on the screen? Accord-
ing to [2], predictions about the probable direction of the
user’s gaze can be made in a number of circumstances. For
instance, in the experiment that was conducted, if a region
on a web page was visited by the mouse pointer, there was
a 84% chance that it was also visited by the user’s gaze.
Similarly, in the case of sudden mouse movements within
or between regions of the page (saccade), the user’s gaze
was inside the involved region(s) in over 70% of all cases.
The figure of 70% only applies if the destination region of
the mouse movement contains content, i.e. is not a blank or
ornamental part of the page.

Related to this, the authors of [5] observed that users
would sometimes move the mouse pointer over an empty
part of the web page. The cited reason for this is that a user
did not want to click on a link accidentally while reading the
page. During the user study, it also became clear that the
mouse pointer is often used as a reading aid when scanning
through menus on the web page.

Making users move the pointer using font/colour
changes An interesting approach to the problem of corre-
lating pointer and gaze position is taken in [11]: By default,
the text on the page is illegible, and the user needs to move
the mouse pointer over an area in order to read its contents.
To prevent it from being read, the text can either be cov-
ered with a black bar, the text colour can be changed to be
almost the same as the background colour, or the font size
can be set to a very small value. The formatting changes
are implemented using browser-independent JavaScript.

The paper only discusses the implementation of this “poor
man’s eye tracking” approach in an e-learning system. Un-
fortunately, it does not include a study to examine how
much the changes to the displayed page impair the user’s
browsing experience, and how much this could influence his
behaviour. For example, the missing text will prevent the
user from making a quick scan of a page upon first seeing
it. Furthermore, a delay of 0.7 seconds is suggested — only
after this time, the text below the mouse pointer becomes
legible. This might make the user impatient, or might even
annoy him.

Making users move the pointer using blurring The
Enhanced Restricted Focus Viewer [10] uses a similar con-
cept as the e-learning system mentioned above. However,
text is not made illegible by means of colour/font changes,
but by blurring the entire page except for a quadratic area
around the pointer. Again, it is not clear whether this will
impair the user too much. The introduced tool is designed
to be used with arbitrary web pages. However, these pages
must be prepared manually for a user study, as the program
only works at the level of bitmaps and needs to be told about
clickable “link” areas. Because the pages are shown to the

user as bitmaps, websites with highly dynamic, JavaScript-
generated content cannot be examined. Also, the mapping
of pointer coordinates to page areas is only possible if the
areas’ coordinates are made known to the program manu-
ally.

7. CONCLUSION

In this paper, detailed tracking of user interaction on web
pages was discussed from several perspectives. Going be-
yond the usual application of tracking technologies for user
tests, we have looked at a large number of possible fields of
use, ranging from inviting Internet users for usability tests,
self-adapting websites, enhanced customer support through
real-time tracking and user profile creation to advanced vi-
sualisation techniques for usage data.

‘We have introduced a sophisticated, yet flexible and trans-
parent solution for user activity tracking. Compared to ex-
isting approaches, it allows user tracking for web applica-
tions which make heavy use of JavaScript, does not require
manual preparation of web pages for tracking, and does not
require control over the client or server machine. It will also
help to lower the cost of usability evaluation. Furthermore,
its extensible architecture allows additional functionality to
be added — for example, it would be possible to add Java-
Script which forces the user to move the mouse where they
are looking, similar to [11] (see also section 6.2).

This work raises privacy concerns: Using our technology,
the actions of users on web pages can be observed with an
accuracy which is unprecedented for tracking solutions with-
out client-side installation of software. If our approach is
abused, this can happen without the users’ knowledge. It
is the responsibility of anyone performing user tracking to
inform the subjects of the tracking about its use. At a min-
imum, we recommend that a user be asked for his consent
before any logging takes place. Furthermore, if arbitrary vis-
itors of a website agree to their actions being logged, their
consent should only be considered valid for a few hours, or
until the end of their browser session.

Acknowledgement This work was funded by the BMBF
(intermedia project) and by the DFG (Embedded Interac-
tion Research Group).

8. REFERENCES

[1] V. Anupam, J. Freire, B. Kumar, D. Lieuwen :
Automating Web Navigation with the WebVCR. In
Proceedings of the 9th International World Wide Web
Conference WWW9, Amsterdam, Netherlands, May
2000

[2] Mon-Chu Chen, John R. Anderson, Myeong-Ho Sohn:
What can a mouse cursor tell us more? Correlation of
eye/mouse movements on web browsing. In
Proceedings of the Conference on Human Factors in
Computing Systems CHI 2001, extended abstracts on
Human factors in computing systems, Seattle,
Washington, USA, April 2001

[3] J. Goecks, J. Shavlik: Learning Users’ Interests by
Unobtrusively Observing Their Normal Behavior. In
Proceedings of the 5th International Conference on
Intelligent user interfaces, pages 129-132, New
Orleans, Louisiana, USA, 2000

[4] J. 1. Hong, J. Heer, S. Waterson, J. A. Landay:
WebQuilt: A Proxy-based Approach to Remote Web
Usability Testing. In ACM Transactions on
Information Systems (TOIS), Volume 19, Issue 3
(July 2001), ISSN:1046-8188, pages 263-285

[5] F. Mueller, A. Lockerd: Cheese: Tracking Mouse
Movement Activity on Websites, a Tool for User
Modeling. In Proceedings of the Conference on Human
Factors in Computing Systems CHI 2001, extended
abstracts on Human factors in computing systems,
Seattle, Washington, USA, April 2001

[6] R. W. Reeder, P. Pirolli, S. K. Card: WebEyeMapper
and WebLogger: Tools for Analyzing Eye Tracking
Data Collected in Web-use Studies. In Proceedings of
the Conference on Human Factors in Computing
Systems CHI 2001, extended abstracts on Human
factors in computing systems, Seattle, Washington,
USA, April 2001

[7] D. Salber, A. K. Dey, G. D. Abowd: The Context
Toolkit: Aiding the Development of Context-Enabled
Applications. In Proceedings of the 1999 Conference
on Human Factors in Computing Systems (CHI ’99),
Pittsburgh, PA, May 15-20, 1999, pages 434-441.

[8] A. Schmidt: Implicit Human Computer Interaction
Through Context. Personal Technologies Volume
4(2&3), June 2000, pages 191-199

[9] A. Schmidt, M. Beigl, H. W. Gellersen: There is more
to context than location. Computers & Graphics
Journal, Elsevier, Volume 23, No.6, December 1999,
pages 893-902.

[10] P. Tarasewich, S. Fillion: Discount Eye Tracking: The
Enhanced Restricted Focus Viewer. In Proceedings of
the Americas Conference on Information Systems
AMCIS 2004, New York, NY, USA, August 2004

[11] C. Ullrich, E. Melis: The Poor Man’s Eyetracker Tool
of ActiveMath. In Proceedings of the World
Conference on E-Learning in Corporate Government
Healthcare and Higher Education eLearn-2002, pages
2313-2316, Montreal, Canada, 2002

http://www9.org/w9cdrom/208/208.html
http://portal.acm.org/ft_gateway.cfm?id=634234&type=pdf
http://portal.acm.org/ft_gateway.cfm?id=634234&type=pdf
http://web.media.mit.edu/~lieber/IUI/Goecks/Goecks.pdf
http://web.media.mit.edu/~lieber/IUI/Goecks/Goecks.pdf
http://www2.parc.com/istl/projects/uir/pubs/items/UIR-2001-04-Heer-TOIS-WebQuilt.pdf
http://www2.parc.com/istl/projects/uir/pubs/items/UIR-2001-04-Heer-TOIS-WebQuilt.pdf
http://floydmueller.com/achievements/cheese.pdf
http://floydmueller.com/achievements/cheese.pdf
http://floydmueller.com/achievements/cheese.pdf
http://www.parc.xerox.com/istl/groups/uir/pubs/items/UIR-2001-02-Reeder-CHI2001-WebLoggerEyeMapperDemo.pdf
http://www.parc.xerox.com/istl/groups/uir/pubs/items/UIR-2001-02-Reeder-CHI2001-WebLoggerEyeMapperDemo.pdf
http://www.parc.xerox.com/istl/groups/uir/pubs/items/UIR-2001-02-Reeder-CHI2001-WebLoggerEyeMapperDemo.pdf
http://www.cc.gatech.edu/fce/contexttoolkit/pubs/chi99.pdf
http://www.cc.gatech.edu/fce/contexttoolkit/pubs/chi99.pdf
http://www.cc.gatech.edu/fce/contexttoolkit/pubs/chi99.pdf
http://www.comp.lancs.ac.uk/~albrecht/pubs/pdf/schmidt_pete_3-2000-implicit-interaction.pdf
http://www.comp.lancs.ac.uk/~albrecht/pubs/pdf/schmidt_pete_3-2000-implicit-interaction.pdf
http://www.comp.lancs.ac.uk/~albrecht/pubs/pdf/schmidt_cug_elsevier_12-1999-context-is-more-than-location.pdf
http://www.comp.lancs.ac.uk/~albrecht/pubs/pdf/schmidt_cug_elsevier_12-1999-context-is-more-than-location.pdf
http://www.ccs.neu.edu/home/tarase/DiscEyeTaraseFillion.pdf
http://www.ccs.neu.edu/home/tarase/DiscEyeTaraseFillion.pdf
http://www.activemath.org/~ilo/articles/PoorMansEyeTracker_Elearn02.pdf
http://www.activemath.org/~ilo/articles/PoorMansEyeTracker_Elearn02.pdf

	Introduction
	Overview: An Approach to Tracking User Actions on Web Pages
	Making Use of the Collected Usage Information
	Usability Evaluation of Websites
	Motivation: Lowering the Cost of Testing
	Scenarios to Use Our Tracking Approach for Usability Evaluation

	Implicit Interaction

	UsaProxy: An HTTP Proxy for Website Usage Tracking
	Technical Requirements
	Implementation
	Processing HTTP Requests and Responses
	JavaScript for Client-side Usage Tracking
	Logging the Tracked Data

	Data Visualisation

	Case Study: A User Test
	Related Work
	Approaches for User Tracking
	Mouse Movement and Eye Movement

	Conclusion
	REFERENCES -9pt

