Supporting Service Interaction in the Real World

Gregor Broll, Sven Siorpaes, Enrico Rukzio, Albrecht Schmidt
(Media Informatics Group, University of Munich, Germany)

Massimo Paolucci, John Hamard, Matthias Wagner
(NTT DoCoMo Euro-Labs, Munich, Germany)

PERMID 2006: Pervasive Mobile Interaction Devices
Workshop at the Pervasive 2006
Sunday, May 7th 2006, Dublin, Ireland
Outline

• Physical Mobile Interaction
• System Architecture
• Interface Generation for Physical Mobile Interaction
• Early prototyping and user study
• Current status of the project
• Outlook
Mobile Interaction with Physical Objects

- Increasing interest in physical mobile interaction
- Facilitates mobile interaction with digital services through the interaction with physical objects
- Powerful mobile devices for information access, collection, processing and interaction
- (Augmented) physical objects become recognizable
- Technologies: visual marker and pattern recognition, wireless RFID / NFC tags, laser pointer, Bluetooth, GPS, ...
- Objects get digital identities (⇌ Internet of things) and can be associated with services
Problems and Motivation

- Current implementations of physical mobile interactions mostly simple and proprietary prototypes
- Little tool- and framework-support

- Focus of the Perci project [1] (LMU Munich and DoCoMo Eurolabs)
- Support more complex physical mobile interactions
- Shift focus of interaction from mobile devices onto physical objects
- Transfer the familiarity of interacting with physical objects and exploit it for more intuitive interaction with associated services
- Framework to combine expressiveness and flexibility of Semantic Web Services with physical mobile interactions
- Exploit extended Web Service descriptions for the automatic generation of physical mobile interaction interfaces
Interface Generation

- Single Web Service description and UI extension used for interface generation
- Transformation from OWL-S into abstract interface description
- Basis for more concrete client- or server-side transformation
- Multi-channel publishing: Different transformation-rules for different target technologies and platforms
- Currently supported: XHTML and J2ME
- Currently supported interaction techniques: pointing (visual codes), touching (Near Field Communication), direct input

Cinema Ticketing Service

Choose a timeslot
14:00

Select movie title
Geisha

Select number of tickets
1

Submit Reset
Low Fidelity Prototyping

PERCI Movie Tickets

Choose a Movie

Choose a Time:
13:00
15:00
17:00
20:00
23:00

Choose a Person:
1
2
3
4
5

PERCI Transportation Tickets

Touch Stations to assemble your Route

Persons
1
1...6
Child
Bicycle

Duration
1 Hour
1 Day
3 Hours
1 Week
4 Hours
1 Month

Tickets
Strassen Karte
Single Tages Karte
Pauschale Tages Karte
Grine Karte
Isar Card
Isar Karte
Ausflugs Tarif 1
Ausflugs Tarif 2
Kombi Ticket
Airport
Early User Study

- Simple user study with 10 participants (mostly students)
- Complete 2 scenarios with the posters and the paper prototypes (buying a movie ticket and a transportation ticket)
- Questions about the system before and after the scenarios
Early User Study - Results

• 70% of the users think that the proposed system is useful
• Initial effort to understand the system but then easy and intuitive to use, if users are already familiar with a mobile phone
• Useful where poster replaces another automat, but in some cases users could prefer a human contact for feedback (e.g. ticket counter)

+ Fast, low-cost, can be used anywhere, easy to replace
+ Less complicated menus, easy physical interaction, less faults
+ Added value: payment could be included into mobile phone

- NFC widely unknown, needs to be established
- Not enough feedback, only from mobile; actions not reversible
- Posters need to be put up and actualized
Implementation

• **Web Services:**
 – OWL-S service descriptions and additional UI extensions
 – Using Apache Axis and Mindswap API

• **Interaction Proxy:**
 – Servlet that controls and arranges communication between the WSs and the mobile clients
 – Currently only http, SOAP-fronted planned
 – Uses Cocoon and XSLT for transformations

• **Mobile Client:**
 – Implemented with J2ME, kXML, PMIF (Physical Mobile Interaction Framework) [5]
 – Automatic interface generation from abstract UI description
 – Supports NFC, visual markers and direct input
Conclusion and Future Work

• Developing a framework that combines Web Services and physical mobile interaction
• Exploiting extended WS-descriptions for the automatic generation of adaptable interfaces
• Improving and facilitating more complex physical mobile interactions using different interaction techniques and technologies

➢ Finish prototype-implementation
➢ Add support for new interaction-techniques
➢ Conduct new, more representative user-study with prototype application
➢ Extend framework
➢ Support service authoring
Questions?

Thank you!
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>