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Fig. 1: The visual search displays for AR and AV conditions with physical and virtual targets. In (a), participants have to search for
a blue cube. The target object is physical. In (b), participants must search for a purple sphere. The target object is virtual. We did
not place objects on the highest and lowest compartments to avoid object occlusion and limited visibility.

Abstract— Mixed Reality allows us to integrate virtual and physical content into users’ environments seamlessly. Yet, how this fusion
affects perceptual and cognitive resources and our ability to find virtual or physical objects remains uncertain. Displaying virtual and
physical information simultaneously might lead to divided attention and increased visual complexity, impacting users’ visual processing,
performance, and workload. In a visual search task, we asked participants to locate virtual and physical objects in Augmented Reality
and Augmented Virtuality to understand the effects on performance. We evaluated search efficiency and attention allocation for virtual
and physical objects using event-related potentials, fixation and saccade metrics, and behavioral measures. We found that users were
more efficient in identifying objects in Augmented Virtuality, while virtual objects gained saliency in Augmented Virtuality. This suggests
that visual fidelity might increase the perceptual load of the scene. Reduced amplitude in distractor positivity ERP, and fixation patterns
supported improved distractor suppression and search efficiency in Augmented Virtuality. We discuss design implications for mixed
reality adaptive systems based on physiological inputs for interaction.
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1 INTRODUCTION

Mixed Reality (MR) systems are becoming a part of our daily lives,
enriching work and leisure with a blend of virtual and physical in-
formation. This will allow us to perform a variety of tasks, such as
sketching [50], typing [63], and manipulation [86], where virtual and
physical elements blend and either be relevant or distracting. However,
the extent to which users can efficiently explore MR environments with-
out compromising attention and cognitive resources remains an open
question. Studies showed that navigating MR environments imposes a
significant cognitive load, impacting users’ ability to effectively focus
amidst a multitude of stimuli [46,49]. This issue becomes particularly
pronounced in cluttered visual environments, where users must discern
items of high relevance among many distracting stimuli [25, 81]. Thus,
while technology has progressed and blending is now possible, it is not
yet clear if blending realities will help to support users in their tasks, or
if blending is more distracting than helpful.
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Previous work in visual search showed processing virtual and phys-
ical cues simultaneously is demanding, suggesting the need to ac-
count for these perceptual differences in MR design to enhance usabil-
ity [47,89]. Thus, in MR, visual search presents varying degrees of
difficulty based on their representation. Although users can currently
differentiate between physical and virtual objects due to differences
in fidelity, anticipated advancements in MR technology aim to merge
real and virtual elements even more [1]. This convergence will likely
increase the complexity of visual search tasks by making the distinc-
tion between real and virtual content less apparent, thereby placing a
greater demand on users’ visual processing capabilities [43]. Further,
there is evidence that AR might introduce detrimental effects like split
attention and visual complexity, as shown in contexts such as medi-
cal surgery [16]. Moreover, exploring Augmented Virtuality’s (AV)
implications in visual search is still in its infancy [83].

Despite the body of work investigating visual search within MR,
understanding how users process virtual and physical target information
in Augmented Reality (AR) and AV remains elusive. Thus, we explore
such a research gap by systematically examining visual search tasks
across the Reality-Virtuality continuum. We focus on actualities, i.e.,
the currently experienced reality of a user on the Reality-Virtuality Con-
tinuum [1], involving a shared blend of virtual and physical information,
whether distracting or target objects. We conducted a within-subjects
user study with two different ACTUALITIES: AR and AV, where par-
ticipants engaged in searching for two different types of TARGET that
are either Virtual or Physical. Our objectives are threefold: first, to
determine the impact of different actualities (AR vs. AV) and the na-
ture of the targets (physical vs. virtual) on participants’ performance
and perceived workload. Second, we investigate how distractors are
suppressed during visual search tasks, as indicated by the event-related



potential (ERP) distractor positivity component (PD) [27]. The PD
is an ERP component that reflects neural processes involved in the
active inhibition of distracting stimuli, facilitating more efficient target
detection and attention allocation Finally, we seek to evaluate visual
search efficiency across the MR continuum and different target types by
analyzing eye-tracking metrics such as fixations, saccades, and index of
pupillary activity, which serve as indicators of visual search efficiency
and cognitive load. These insights support a joint research direction
between physiological computing [22] and adaptive MR systems [56].
By sensing users’ attentional and workload states, such systems can
dynamically adjust the degree of virtuality of the surrounding environ-
ment and objects to support target information processing, regardless
of MR actuality.

‘We found that the ERP correlate of distractor suppression showed
a more efficient target processing in AV. In line with this, our ET
results showed that the visual search was more scattered and cognitively
demanding in AR than in AV, as shown by fixation features and index of
pupillary activity (IPA). In addition, users reported increased perceived
workload in AR compared to AV. Similar conclusions can also be
generalized to Virtual Targets, which were faster to be identified with
shorter fixations and led to fewer misses than their Physical counterparts.
Our findings imply that the interplay between virtuality and target
physicality must be considered when designing interactions in MR.
Furthermore, we identified distinct physiological patterns tied to the
search for task-relevant information in MR environments. These point
to physiological computing applications in adaptive MR systems, which
can detect user workload and support visual search capabilities.

2 RELATED WORK
2.1 Visual Search Between Reality and Virtuality

While the term MR is frequently used in research, its meaning remains
ambiguous [84]. To avoid confusion, we strictly follow the definition
outlined by Milgram and Kishino [64], who define MR as everything
that falls between reality and virtuality. Following this definition, every
MR experience contains physical and virtual components. Therefore,
in MR, the target object of a visual search can be either physical or
virtual. Nonetheless, depending on the current manifestation of MR,
the amount of physical and virtual content differs. For our holistic
investigation of MR, we selected the common manifestations of AR
and AV as they are well-known and have opposite physical and virtual
content blends.

When exploring visual search performance within MR environments,
it is important to consider that perceptual processing might differ signif-
icantly between physical and virtual content. Therefore, previous work
has proposed virtual environments to replicate experiments conducted
in a physical setting [34]. Researchers have conducted comparative
studies between physical and virtual settings, showing some evidence
that visual search speed, accuracy, workload, and cognitive absorption
factors are comparable in VR and physical environments [88]. In VR,
participants rely heavily on familiar size for object recognition, irre-
spective of binocular cues availability [78]. This altered reliance on
familiar size cues suggests that strategies for visual search in MR need
to account for these perceptual differences. Similarly, the interface of
human vision and perception with digital content blended in physical re-
ality highlights the necessity of including human perceptual capabilities
in MR design for enhanced visual search and object manipulation [47].
Furthermore, spatial reasoning and scale perception studies reveal that
physical models offer more accuracy and quickness in conveying object
size than VR systems [17,95]. This shows how scale perception is
relevant when designing virtuality in MR environments [85]. Realistic
applications of MR technology emphasize the role of virtual objects as
concrete models that facilitate the perception and representation of real
objects, highlighting the need for MR technologies to bridge perceptual
differences between virtual and real objects for effective visual search
strategies [15].

However, visual search processes that span physical and virtual con-
tent remain uncertain and have not been explored in previous work.
So far, researchers have often limited the search for virtual objects to
virtual environments and for physical objects to physical environments

(e.g., [88]) . Alternatively, they have focused on one specific mani-
festation, for example, AR, to investigate the search for both virtual
and physical objects [48], providing evidence that physical objects are
harder to recall in a physical environment. Consequently, our work
focuses on the simultaneous presence of virtual and physical content in
different manifestations (AR, AV) of MR.

2.2 Event-Related Potentials in Visual Search

Exploring attentional resource allocation in real-world and MR en-
vironments is crucial for visual neuroscience and human-computer
interaction (HCI) [20]. Here, EEG’s high temporal resolution allows
precise investigation of such processes, particularly useful in dynamic
MR contexts for assessing interactions and user experience [67].

When investigating visual search, two processes are central: visual
attention and distraction [58]. Here, Event-Related Potentials (ERPs)
are a common technique to investigate visual search tasks. ERPs are
specific patterns of brain activity, measured as voltage changes on the
scalp, that are triggered in response to particular events or stimuli. A
late positive voltage deflection occurs after visual search display onset
over the visual cortex, termed PD [38]. PD acts as a mediator for
inhibiting distracting stimuli, acting in cognitive control mechanisms
that manage potentially distracting information to facilitate improved
visual search performance [27]. Several studies have shown how the
PD component is involved in feature-search mode, i.e., identifying a
specific shape rather than for a singleton [52], resulting in increased
PD amplitudes, reflecting enhanced cognitive efforts to process or
inhibit distractors [38]. However, investigation of PD and distractor
suppression during visual search in MR environments remains mostly
unexplored. A starting point is given by Marini et al. [61], who explored
the distinct visuo-motor brain dynamics elicited by real-world objects
compared to planar images. Their results showed that physical objects
trigger stronger and more prolonged activation in neural populations
involved in visuomotor action planning. This suggests that objects’
physicality and affordance significantly influence the allocation of
attentional resources and the inhibition of distracting stimuli. Their
findings indicate that in MR environments, where the blending of
real and virtual elements can vary the degree of object physicality
and affordances, PD responses could differ significantly from those
observed in purely physical or image-based settings.

2.3 Eye Tracking Correlates of Visual Search

Eye tracking is a non-invasive method to evaluate visual search be-
havior and its cognitive and perceptual processes [60]. During visual
search, eye movements are guided by cognitive processes that support
target identification [20]. Recent advancements highlight eye-tracking
integration when searching for target information in MR, allowing us-
ability evaluation and active and passive input controls [71]. Gardony et
al. [26] argue that eye-tracking can inform MR design by offering inter-
face interactions and adaptive graphical rendering capabilities. These
developments are underpinned by eye-tracking metrics like fixation
duration, count, saccade, and pupil patterns, which are informative
about visual attention and cognitive load in MR.

Common metrics for attention allocation and information processing
are fixation duration, fixation count, and pupil diameter [19]. Longer
fixation durations suggest that users invest more cognitive resources
to process information in MR [72]. In MR settings, particularly in
visual search tasks, fiction metrics reveal correlations between users’
eye fixations and various factors such as task-related objects and users’
head rotation velocities [39].

Saccades connect fixation points and can inform how visual search
patterns are executed in MR [74]. Saccades, play a crucial role in
shifting visual attention towards targets, indicating the efficiency of
visual searches. Typically, efficient searches are marked by fewer,
well-directed saccades, especially in tasks with lower perceptual de-
mands [29]. Environmental variables, such as distinctively colored
distractors, can impact saccadic behavior, altering the trajectory and
saccadic effectiveness [72].

Pupil diameter emerged as a significant indicator of visual search ef-
ficiency, closely tied to cognitive load and task difficulty in MR [7], and



recently extended as a near-real-time metric for measuring cognitive
load [56]. Recent advancements in MR interfaces leverage dynamic
context-aware optimization techniques, significantly reducing manual
adjustments and enhancing the user experience by adapting interfaces in
real-time based on the user’s cognitive load, task, and environment [56]
or by inferring users’ interaction goals [14]. However, interpreting
pupil diameter as a cognitive load measure in MR is not straightfor-
ward. External factors such as scene colors, brightness, and movement
significantly influence pupil size [69].

3 MiXED REALITY VISUAL SEARCH ENVIRONMENT

First, we designed an MR environment that allows users to perform a
visual search task across two actualities of the MR continuum, AR and
AV, where physical objects and virtual objects are presented as search
targets. We employed a real-world setup to represent the physical
world, objects, and their virtual counterparts to achieve this. This
approach embraced an ecological methodology, drawing inspiration
from David et al. [14], where participants selected objects placed on
shelves, mirroring their real-world analogs. We implemented the visual
search task using two different models of the same scene with different
levels of virtuality, see Fig. 2a and Fig. 2b.

3.1 Implementation of the Real World
3.1.1 Physical Environment

For the physical environment, we chose a room at our institution with a
minimalist aesthetic with white walls, a green floor, and a grey shelf as
the focal point for the visual search task, see Fig. 2a. The dimensions
of the room are 8.7 meters in length, 4.6 meters in width, and 2.8
meters in height. This setting was selected to minimize visual noise and
eliminate extraneous details that could detract from the task, ensuring
that participants’ attention was drawn primarily to the target objects.

3.1.2 Physical Objects

The stimuli object placed on the shelves set consisted of four physical
objects resembling real-life counterparts: a sphere, e.g., a soccer ball;
a cylinder, e.g., a soda can; a cube, e.g., a rolling dice; and a pyramid,
e.g., building blocks. We fabricated physical objects using extruded
polystyrene with a heating wire and foam cutter with angle adjustment.
Physical objects are not directly derived from virtual objects but are
physical replicas of our virtual objects. We placed them on the shelf in
our study room and photographed them from 3 m distance, i.e. partici-
pants’ chair position. As our virtual environment precisely mimics the
study room, we can blend these photographs directly with the virtual
environment. We chose photographs over a live video feed to better
control the experiment by avoiding time-consuming reconfigurations
between the trials and eliminating the potential for human error intro-
duced through the condition assembly on the spot. All objects fit into a
cube of 12 cm per dimension (2.75° visual angle) based on [59], i.e.,
half the shelf compartment height (24 cm) with a volume of 1,728 cm3,
ensuring that all three objects are 10 cm equidistant. Each shelf is 96
cm wide, allowing four (virtual/physical) objects to be equally spaced
(12 cm distance from each other) per shelf compartment. To design the
Physical Object - Visual Search trials, we took 200 pictures with 13
physical object search displays with an InstaVR 360 Pro2 (7680 x 4320
pixels, 120 fps) placed in randomized locations to design the trials for
the physical objects. The objects did not overlap with the location of
the virtual objects on the shelf.

3.2
3.2.1

For the virtual world scene, as depicted in Fig. 2b, we employed a sys-
tematic modeling approach to recreating a laboratory setting that mir-
rors its physical counterpart accurately, following previous work [53].
Starting with a low-fidelity model, we constructed the basic geometry
to outline all principal features of the room, such as the shelf, walls,
and floor, ensuring clear identification without the inclusion of details
like door knobs or complex textures. Progressing to a medium-fidelity
model, we refined the geometry, adding elements such as detailed

Implementation of the Virtual World
Virtual Environment

window frames, accompanied by low-resolution textures to enhance
visual depth. Overall, we aimed for a high-fidelity representation, with
increased polygon count for all objects and the addition of all visible
minor features. We employed high-resolution textures to achieve a
realistic appearance, and we introduced baked lighting to incorporate
static shadows. Throughout this process, we meticulously controlled
for luminance to ensure consistent lighting and visual perception across
different fidelity levels.

3.2.2 Virtual Objects

The set of virtual objects was the same as for the physical objects, see
Sect. 3.1.2. For the virtual object color coding, we color-picked the
original color from the physical objects, resulting in the following RGB
values: red #BF1818, blue #377EBS8, purple #€92053, and yellow

. Virtual objects have virtual, opaque color features. We
designed that the virtual objects to match the dimensions of the physical
objects; thus, we maintained spatial consistency in our visual search
environment,. Adhering to the specifications for the physical objects,
we rendered each virtual object within a virtual cube of 12 cm per
dimension, corresponding to a 2.75° visual angle and occupying a
volume of 1,728 cm?.

3.3 Blending the Worlds
3.3.1 Rendering AR

For the AR condition, which integrates a physical background with
physical and virtual objects simultaneously, we utilized a high-
resolution image of the physical environment (captured with an In-
sta360 Pro 2 at 8K resolution) to present the physical items at prede-
termined shelf spots. Concurrently, we superimposed virtual objects
onto specific, generated locations on the shelves, ensuring they did
not overlap with their physical counterparts. This was accomplished
by capturing images of the physical objects positioned on the shelves,
maintaining a consistent distance and luminance, to serve as the back-
drop for the subsequent overlay of virtual objects. Following this
procedure, we ensured that the placement of physical objects in the real
world was consistent, while simultaneously displaying virtual content
in a controlled manner. This approach allowed for a controlled inte-
gration of physical and virtual elements within the AR environment.
For displaying the virtual objects, we opted for simulating a video-see-
through AR display within a sphere for its capacity to superimpose
digital information directly onto the user’s view of the real world [80].
The need for precision and consistency in the presentation of virtual
objects drove this choice. Unlike typical AR implementations where
objects might possess a degree of transparency, our approach ensured
that the virtual objects are solid and visually consistent, thus, avoiding
confounders on object saliency due to transparency [41].

3.3.2 Rendering AV

In the AV condition, we rendered the virtual world with virtual and
physical objects on the shelves. Here, we presented the virtual objects
onto specific, pre-generated locations on the shelves. To display the
real objects, we created a Unity shader that renders circular sections
from the sphere of the AR condition. This shader not only preserves the
texture and depth cues of the physical objects but also maintains their
natural lighting and depth, which is crucial for realistic integration. The
shader functionality includes rendering circular sections from the sphere
of the AR condition, with each section featuring an inner circle at full
opacity and an outer circle where opacity decreases with distance from
the center, creating a smooth fade-out effect. This technique ensures
that the circular cutouts around the physical objects are slightly larger
than the objects themselves, allowing for complete coverage regardless
of their shape. We applied alpha blending along the borders of these
cutouts, as suggested by previous research in AV [63,91], to achieve
seamless integration of physical objects into the virtual environment.
The calculations for the circles and their radii are based on the world
positions of the pixels, avoiding the use of texture positions that would
result in distorted ellipses due to the sphere’s curvature. In the rendering
sequence within Unity, the virtual cabinet is rendered first (queue: 2000,
z-buffer: on), followed by the virtual objects (queue: 2500, z-buffer:



(a) Physical Search Environment

(b) Virtual Search Environment

Fig. 2: MR Visual Search Environments. We situated the visual search task in two environments: a physical one to display AR content and a
virtual one to display the physical and virtual objects (AV condition). For the AR scenario, we chose a low-complexity room at our institution to
avoid environmental distractions from the task. We modeled the AV environment as closely as possible to its’ AR counterpart and controlled for

luminance.

on), and finally, the sphere with the custom shader (queue: 3000, z-
buffer: off). This order ensures that the physical objects embedded
within the virtual shelves are clearly visible and not occluded by other
elements.

4 USER STUuDY

Our study investigates users’ performance identifying physical and
virtual target information in AR and AV, see Fig. 1. We engaged
participants in an adapted visual search task by Chiossi et al. [10] and
situated the task in AR and AV while presenting physical and virtual
target objects. We used a 2 x 2 within-participants experimental design
with the independent variables ACTUALITY (two levels: AR, and AV)
and TARGET (two levels: Physical / Virtual). ACTUALITY describes
the envisioned the user is immersed in, and TARGET describes the
type of objects, while distractors are always presented of both types.
Drawing from previous work from visual search, we formulate the
following research questions:

RQ1: Do different actualities impact performance and perceived work-
load differently?

RQ2: Do the MR actuality and target type impact and eye tracking

correlates of visual search efficiency (fixations and saccades), and

workload (IPA)?

RQ3: How does distractor suppression in a visual search task vary when

searching for target and physical objects across the MR actualities,

as indexed by Event-Related Distractor Positivity?

4.1 Procedure

Upon arrival, we briefed participants about the study and gave informed
consent. Then, we prepped the water-based EEG data acquisition. Next,
we asked them to wear the HTC Vive Pro Eye headset and sit on a chair.
We seated participants in front of the shelf, not in motion, minimizing
the impact of body movements on visual perception. The distance
between the shelf and the seating position was the same as between
the 360 camera and the shelf (i.e., 3 m). Keeping the spatial distances
the same and having participants stationary helps to minimize potential
depth perception and distortion issues. They then performed a five-
point eye-tracking calibration. The main part started with participants
completing a training phase and experiencing all the experimental
conditions. This training phase comprised 20 visual search trials, i.e.,
5 with physical targets in AR, 5 with virtual targets in AR, 5 with
physical targets in AV, and 5 with virtual targets in AV. Participants
needed to achieve at least 80% to proceed; failing that, they repeated
the training to meet this criterion. Next, we guided participants through
the four conditions containing 100 trials. To avoid learning effects, we

counterbalanced the order of conditions in a balanced Latin Williams
square design with four levels [90]. After each block, participants
responded to the raw NASA TLX questionnaire [35]. We administered
the questionnaires using the VR Questionnaires Toolkit [23]. The study
averaged an hour in duration, which we compensated with 12 €.

4.2 Task

Participants carried out the visual search task in two MR environments:
AR and AV. While engaged in one of the two conditions, they were
presented with 25 physical and virtual objects placed on a shelf. To
select the target item from 24 distractors, they used the trigger button on
the VIVE controller. The target object’s name was displayed laterally
(left or right) in the participant’s view to be capable of identifying
it. This target display’s location (either left or right) was randomly
varied across different trials to prevent habituation effects. We chose to
display the name and not the picture of the target object to ensure that
participants were not biased toward recognizing either the virtual or
physical version of the target. Presenting the name rather than the image
ensures that both versions of the target are treated equally in the search
process, as participants rely on their understanding and interpretation
of the name rather than pre-existing visual features from an image. To
enforce this, we did not previously inform participants of the physical
or virtual nature of the target, which directly required them to identify
the object that best matched the description. Participants needed to
scan the MR environment visually, aiming at their chosen object using
the controller’s ray cast to make a selection. Once the target object was
aligned with the ray cast, they pressed the VIVE controller’s trigger
button to confirm their choice. Participants held the controller with
their dominant hand, and we encouraged them to respond quickly and
accurately.

4.2.1

We designed our trial based on Forschack et al. [24], with a real-world
visual search task approach in mind [93]. The structure of the task,
was as follows: (1) we asked participants to fixate a red fixation cross
(+) with a pseudorandom duration (1250, 1500, or 1750 ms) at the
center of the target display, see Fig. 4. (2) Participants visually searched
for the target object; the objects disappeared after selection. (3) After
5000ms, an inter-stimulus interval (ISI) of 1000ms was presented with
no cross or objects presented to reset the neural and attentional reserve
and avoid fatigue effects [94]. Participants had 5000 ms after visual
search display onset to select the target among distractors. For a trial
visualization, refer to Fig. 4.

4.2.2 Stimuli

The stimulus set included four objects, both in virtual and physical
forms, designed to mirror everyday items: a sphere (resembling a soccer

Trial Structure
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Fig. 3: Objects display in AR and AV conditions. We displayed virtual and physical objects across conditions over two different compartments on
the shelves in rows. Each shelf is 96 cm wide, allowing for 4 (virtual/physical) objects equally spaced (12 cm distance from each other) per shelf
compartment. We randomly generated 400 unique object placement arrangements in which all 25 virtual and physical objects have a specific
location on the shelf. We seated participants 3 m away from the shelves. In this figure, we display the distribution of the virtual-physical objects
in a trial and report the schematic of object distances. Distances are reported in cm.

ball), a cylinder (similar to a soda can), a cube (akin to rolling dice),
and a pyramid (comparable to building blocks). These stimuli were
presented in one of four colors: red #BF1818, blue #0000FF, purple
#984EA3, and yellow . Those objects were placed over a shelf
of four rows in two compartments. Each compartment has sixteen
possible locations. Thus, objects are spawned for 32 positions. In those
32 positions, we spawn 25 objects. Overall, 1 is the target, 12 are virtual
distractors, and 12 are physical distractors. Of the 24 distractors, a third
shares the shape of the target (8), a third shares the color of the target
(8), and a third has a different shape and color from the target (8). In
this way, we control for feature confounders contributing to the overall
perceptual load of the objects that could impact visual search [77]. All
objects fit into a cube of 12 cm per dimension (2.75°visual angle) based
on [59], i.e., half the shelf compartment height (24 cm) with a volume
of 1,728 cm 3, ensuring that all three objects are 10 cm equidistant, see
Fig. 3b for the AV condition and Fig. 3a for the AR condition.

4.3 Measurements

We collected a set of multi-modal variables: search accuracy, reaction
times, missed search trials, PD peak amplitude, eye tracking features
(IPA, last fixation duration, fixation count, saccade frequency), and
perceived workload (raw NASA TLX [35]). Search accuracy is the
percentage of trials where participants identify the target within 5 sec-
onds. Missed trials are those that expire without a selection. Reaction
times are measured from the onset of the visual search display until the
participant clicks to select the target. The last fixation duration is the
duration of the final fixation on the target object before the trial ends.

4.4 Apparatus

We implemented the visual search task using Unity (Version
2022.3.21f1 LTS) and presented the AR and AV conditions through an
HTC VIVE Eye Pro headset, with a display resolution of 2880 x 1600
pixels and a 110-degree field of view. We used the MR toolkit VRcep-
tion [33] for the implementation. The environment tracking employed
two HTC Vive 2.0 lighthouses. We used a LiveAmp (BrainProducts,
Germany) amplifier to record EEG signals at 500 Hz for EEG recording.
‘We acquired eye-tracking data at 120 Hz using the HTC Vive Pro Eye
headset. We employed the Lab Streaming Layer (LSL) framework to
integrate and stream physiological data within our Unity VR setup. We

recorded the data on a Windows 10 PC (Intel Core i7-11700K, 3.60
GHz, 16GB RAM).

We measured luminance across conditions to validate our scenes.
We measured the luminance inside the headset using a lux meter sensor
(LT300, Extech, USA). Using 50 measurements per condition, we found
an average luminance for the AR environment of 194.02 (SD=5.36)
and 192.05 (SD=15.58) lux in AV. Those values align with luminance
guidelines (below 200 nits) based on eye-tracking best practices to
avoid confounders for pupil size computation [6,62].

441

We acquired EEG data (sampling rate = 500 Hz) via LiveAmp amplifier
from 32 water-based electrodes from the R-Net elastic cap (Fpl, F3,
F7, F9, FC5, FC1, C3, T7, CP5, CP1, Pz, P3, P7, P9, O1, Oz, 02, P10,
P8, P4, CP2, CP6, T8, C4, FC2, FC6, F10, F8, F4, Fp2, Fz). We kept
impedance levels below <20 kQ. We set the reference at FCz during
the recording, while FPz was used as ground. We placed the electrodes
using the International 10-20 layout. For time synchronization with the
MR environment, we employed the Lab Streaming Layer Framework,
while for preprocessing and analysis, we used the MNE-Python Tool-
box [32]. We first automatically detected bad or outliers channels via
random sample consensus (RANSAC) method [4] of spherical splines
for estimating scalp potential based on algorithms proposed by Per-
rin [70]. We then applied a notch filter (50 Hz) and band-passed the
signal between (1-15 Hz) to remove high and low-frequency noise. We
then re-referenced to the common average reference (CAR). We applied
an Independent Component Analysis (ICA) for artifact detection and
correction with extended Infomax algorithm [54]. We automatized
the labeling and rejection process of ICA components via the MNE
plugin “ICLabel” [55]. We rejected epochs that showed blinks, eye
movement, muscle, or single-channel artifacts in any of the electrodes.
On average, we removed .33 (SD = .353) independent components
within each participant.

EEG Recording & Preprocessing

4.4.2 ERP Analysis

We segmented continuous signals between 200 ms before and 1000
ms after the search display onset, removing a 200 ms baseline before
stimulus onset. The Pd component was quantified as positive average
peak amplitudes in the 300 — 900 ms. This window is centered upon the
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Fig. 4: Trial Structure in the two Conditions. The visual search trial comprised three stages: Initially, a fixation cross was presented for a baseline
of 1000 ms, supplemented by a random jitter of 250 ms, 750 ms, or 1250 ms, leading to a total fixation cross duration of 1250 ms to 2250 ms per
trial. Following this, participants had 5000 ms to discern the target from among the distractors, and this was succeeded by a 1000 ms interstimulus
interval (ISI). Each participant completed 100 trials per experimental condition.

peak latency of each component in the grand average waveforms [76].

For ERP computation, we chose electrodes Oz, O1, and O2 based on
previous work [65]. We excluded trials where the last fixation was on a
distractor or error trials, i.e., wrong selection, to ensure data captured
cognitive processes linked to target recognition [5]. We calculated
the overall participant’s head movement trajectory as M = 10.5¢cm
(SD = 4.2cm) per trial. Moreover, 95% of all HMD positions fell
within 5 cm from the trial’s starting point.

4.4.3 Eye Tracking Recording & Preprocessing

We acquired three-dimensional head position and orientation data from
Unity and recorded eye-tracking metrics using the HTC Vive Pro Eye
headset’s integrated eye tracker (120 Hz). This data capture utilized
the SRanipal eye tracking SDK, which provided vectors indicating eye
direction relative to the head and the world. We removed blinks and
related artifacts. We defined blinks as missing data points from the eye
tracker, with durations ranging from 75ms to 500ms. We removed data
200ms before and after the blinks [2]. We linearly interpolated removed
data and smoothed with a 6th-order Butterworth filter whose cutoff
frequency was set at .15 Hz [92]. For analysis, these vectors—head
direction, eye-in-world direction, and eye-in-head direction—were
initially translated into two-dimensional Fick angles. This process was
based on the Fick-gimbal method described by Haslwanter [36]. The
transformation involved two rotational movements: one around the
vertical axis and another around the horizontal axis within the former,
enabling us to determine the vectors’ positions precisely. We then
utilized these 2D Fick angles representing the eye and head orientations
as the foundation for further investigation.

4.4.4 Fixation-Saccade Analysis

We analyzed fixation and saccade data using pymovements [51]. For
identifying fixations, we utilized pymovements’ application of the ID-T
algorithm [79], setting the fixation thresholds to a minimum duration
of 83ms and a maximum dispersion of 1.8 degrees, in line with prior
research [3,87]. This approach enabled us to derive key metrics related
to fixation, including total and average fixation duration, number of
fixations, and the interval from the visual search’s onset to its final
fixation. In analyzing saccades, we applied the microsaccade algorithm
offered by pymovements [21], which facilitated the measurement of
saccade amplitude—the angular distance between the start and end
points of a saccade—and saccade frequency, calculated by the total
number of saccades over the trial length.

4.45 Index of Pupillary Activity Analysis

We employed the implementation by Duchowski et [18] for computing
IPA. Thus, we utilized discrete wavelet transforms (DWT) to analyze
pupil diameter signals, starting with a two-level DWT to break down

the signal and explore its variability. We normalized the wavelet co-
efficients to ensure a uniform analysis and identified key peaks in the
signal to mark significant changes in pupil diameter. We then applied a
universal threshold to filter out noise.

4.5 Participants

This study engaged 20 volunteers (M = 24.85, SD = 4.67; comprising
11 females, 9 males, none diverse), recruited through institutional
email lists and convenience sampling methods. Overall, we did not
exclude any participants. The participants’ familiarity with AR, AV,
and VR technologies was assessed, following previous work [8]. All
participants had prior exposure to AR (M = 2.76, SD = 1.56), AV
(M =2.88, SD =1.97), and VR (M = 3.8, SD = 1.83) technologies,
rated on a familiarity scale ranging from 1 (not familiar at all) to
7 (extremely familiar). Exclusion criteria for participants included
a medical history of psychological or neurological disorders, color
blindness, and visual impairments.

5 RESULTS

In this section, we first present the results of our multimodal evaluation.
We employ a Generalized Linear Mixed Model (GLMM) to investigate
differences in the behavioral measures, ERPs, and eye-tracking features.
We performed model selection based on the Bayesian information
criterion (BIC). Details of this process can be found in Supplementary
Materials, see Sect. 8. We determined perceived workload scores using
the Shapiro-Wilk test, t-tests, or paired samples of the Wilcoxon test.

5.1 Behavioral Data
5.1.1 Accuracy

First, we analyzed the overall accuracy, see Fig. 5Sa. Within this model,
the effect of ACTUALITY at the AV level was negative but not significant
(B=-.12,95% C1[-2.46,2.22],1(78) = —.10, p = .921; Standardized
B =—.03,95% CI[-0.58, 0.53]). Similarly, TARGET at the Virfual level
was positive but without statistical significance (8 = .85, 95% CI [-1.49,
3.19], ¢(78) = 0.72, p = .472; Standardized = .20, 95% CI [-0.35,
0.76]). Additionally, the interaction effect between ACTUALITY AV
and TARGET Virtual was negative, yet not significant (§ = —1.84, 95%
CI [-5.14, 1.47], t(78) = —1.11, p = .272; Standardized § = —.44,
95% CI [-1.22, .35]). Participants maintained a consistent level of
performance regardless of the ACTUALITY or TARGET.

5.1.2 Missed Targets

We analyzed the targets participants missed to select within the 5
seconds of the task, see Fig. Sb. Within this analytical framework, the
effect of ACTUALITY at the AV level was found to be negative, but not
significant (8 = —1.24, 95% CI [-3.05, .58], +(78) = —1.36, p = .178;
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Fig. 5: Accuracy and Missed Targets for the Visual Search Task. Partic-
ipants performed with comparable accuracy levels across conditions.
However, when inspecting the Missed Targets, i.e., when spending the
entire trial duration searching for the target with no selection, we found
that VIRTUAL TARGETS showed the lowest amount of Misses.
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Fig. 6: Reaction times and IPA results. For reaction times, we only
computed correct trials. Here, participants showed faster reaction times
when searching for objects in AV searching for VIRTUAL OBJECTS.
When inspecting IPA, participants showed decreased IPA, indicative of
workload in the AV condition.

Standardized § = —0.32, 95% CI [-.80, .15]). Conversely, the effect
of TARGET at the Virtual level on misses was both significant and
negative (f = —4.43, 95% CI [-6.24, -2.61], t(78) = —4.86, p < .001;
Standardized B = —1.16, 95% CI [-1.63, -.68]), indicating a reduction
in misses for tasks involving virtual targets. The interaction between
ACTUALITY AV and TARGET Virtual was positive but did not reach
statistical significance (f = 0.81, 95% CI [-1.76, 3.38], #(78) = 0.63,
p = .532; Standardized 8 = .21, 95% CI [-.46, .88]).

5.1.3 Reaction Times

We analyzed the reaction times, depicted in Fig. 6a. The model showed
a significant negative effect of ACTUALITY (8 = —106.11, 95% CI [-
149.34, -62.88], 1(8294) = —4.81, p < .001; Standardized = —0.13,
95% CI [-0.18, -0.08]. The effect of TARGET [Virtual] is statistically
significant and negative (f = —239.21, 95% CI [-284.40, -194.02],
1(8294) = —10.38, p < .001; Standardized f = —0.29, 95% CI [-
0.35, -0.24]), suggesting faster reaction times when finding virtual
targets. The interaction effect of Actuality [AV] x Target [Virtual] is
statistically non-significant and negative (8 = —7.78, 95% CI [-72.23,
56.67], 1(8294) = —0.24, p = 0.813; Standardized 8 = —9.45¢ — 03,
95% CI [-0.09, 0.07]).

Amplitude (pVv)

0.2 0.4 0.6 0.8 1.0
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Fig. 7: Grand Average ERP event-locked to visual search display
onset. Data reflect the results obtained from occipital ROI for each
ACTUALITY and TARGET condition. The plot suggests a pronounced
decrease in peak amplitude on PD, with marked variations between AV

and AR. We found no effects of TARGET.
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Fig. 8: PD Amplitude. (a) The effect of ACTUALITY reveals a signif-
icant reduction in Amplitude when comparing AR to AV, showing a
lower Amplitude in AV. An asterisk marks this difference to denote
statistical significance. (b) We found no effect of TARGET.

5.2 ERP - Distractor Positivity

Analysis revealed a main effect of ACTUALITY, for the AV condition,
significantly reducing Amplitude, evidenced by B = —3.64, 95% CI [-
6.33,-.95], 1(74) = —2.7, p = .009, with a moderate standardized beta
of -.32. Conversely, no significant effect of TARGET on Amplitude was
observed (B = —.96, 95% CI [-3.65, 1.73], t(74) = —.71, p = .478),
with a small effect size (standardized beta = -.08). Additionally, the
interaction between ACTUALITY and TARGET was positive but not
significant (8 = 2.05, 95% CI [-1.76, 5.85], t(74) = 1.07, p = .287),
with a standardized beta of .18. ERP grand average is visualized in
Fig. 7, and boxplot visualizations are provided in Fig. 8.

5.3 Eye Tracking Data

Index of Pupillary Activity (IPA) We found a significant decrease
in IPA with ACTUALITY AV (8 = —0.03, 95%CI[—0.05,—0.01],
t(7093) = —3.34, p < .001), suggesting a reduction in cognitive
load within AV environments, see Fig. 6b. Conversely, we found
no significant changes associated with TARGET Virtual (f = .01,
95%CI[—.009,.03], £(7093) = 1.09, p = .275), and the interaction be-
tween ACTUALITY AV and TARGET Virtual also did not significantly
affect IPA (B = .008, 95%CI[—.02,.04], t(7093) = .55, p = .582).

Last Fixation Duration The model reported that ACTUALITY
[AV] significantly reduces the duration of the last fixation (f = —.04,
95%CI[—.05,—.03], t(7093) = —6.08, p < .001; Standardized 8 =
—.19, 95%CI[—.25,—.13]), suggesting a shorter engagement period
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Fig. 9: Last Fixation Duration and Fixation Count results. We found
a negative significant main effect for AV in Last Fixation Duration
(left). For Fixation Duration, we found that participants perform faster
fixation in AV and when searching for VIRTUAL TARGETS.

in AV conditions than AR, see Fig. 9a. Conversely, the effect TAR-
GET [Virtual] showed a non-significant reduction in fixation dura-
tion (B = —.01, 95%CI[—.02,2.54¢ — 03], £(7093) = —1.59, p = .113;
Standardized § = —.05, 95%CI[—.11,.01]). Moreover, a significant
negative effect was observed in the interaction between ACTUALITY
[AV] and TARGET [Virtual] (f = .03, 95%CI[.01,.05], ¢(7093) = 3.40,
p < .001; Standardized 8 = .15, 95%CI[.07,.24]).

Fixation Count The model output showed that ACTUALITY
[AV] yielded a significant decrease in fixation count (f = —.35,
95%CI[—.57,—.13], 1(7093) = —3.09, p = .002). This reduction was
paralleled by a significant negative impact of TARGET [Virtual] on
fixation counts (f = —.92, 95%CI[—1.15,—.69], 1(7093) = —7.80,
p < .001). However, the interaction effect between ACTUALITY
[AV] and TARGET [Virtual] did not significantly alter fixation counts
(B =—-.22,95%CI[—.56,.11], 1(7093) = —1.33, p = .183).

Saccade Frequency Analysis revealed that ACTUALITY [AV]
significantly increased saccade frequency (f = .12, 95%CI[.08,.15],
1(7093) = 6.62, p < .001; Standardized B = .20, 95%CI|.14,.26])
Conversely, the introduction of a TARGET [Virtual] was associ-
ated with a significant reduction in saccade frequency (f = —.04,
95%CI[—.07,—.0034], ¢(7093) = —2.15, p = .032; Standardized § =
—.07, 95%CI[—.13,—.0059]). The interaction between ACTUALITY
[AV] and TARGET [Virtual], however, did not significantly influence
saccade frequency (f = —.05, 95%CI[—.10,.005], £(7093) = —1.75,
p = .08; Standardized § = —.08, 95%CI[—.17,.009)).

5.4 Perceived Workload

As data showed a not-normal distribution (W = .923, p = .009), a
Wilcoxon signed-rank test was conducted to compare the NASA-TLX
scores between AR and AV. When comparing NASA-TLX scores
in AR (M = 74.7, SD = 15.28) to the scores for AV ( M = 58.75,
SD = 17.85), we found a significant difference in the NASA-TLX
scores (V = 164, p = .029) with higher workload in the AR condition,
see Fig. 10b.

6 DiscussiON

We evaluated the impact of different MR actualities (AR and AV), and
targets (Physical and Virtual), on behavioral and physiological corre-
lates of visual search efficiency, distractor suppression, and workload.

6.1 Impact of Actualities on Visual Search Performance

With our first research question (RQ1), we investigate if the ACTU-
ALITY affected the user’s performance. The overall accuracy shows
a comparable outcome across conditions. On the other hand, we see
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Fig. 10: The Saccade Frequency and Perceived Workload from the
raw NASA TLX results. Saccade frequencies were higher in the AV
condition, reflecting a more active search process, but lower with VIR-
TUAL TARGETS indexing fast target processing. Results from Raw
NASA-TLX show how participants perceived the AR scenario as more
demanding than the AV scenario.

that the missed targets are significantly higher in the Physical condi-
tions. Combining this with our trial design in which the maximum time
to search the target is 5000ms, we argue that we see ceiling effects
on the overall accuracy. The higher errors in the Physical conditions
align with slower reaction time results. Here, we found a negative
main effect of both ACTUALITY and TARGET, showing that partici-
pants were faster in target identification in AV and with Virtual Targets.
Those results are consistently supported by our results on perceived
workload, where participants reported the AV environment to be less
demanding. Here, the AR environment’s physical fidelity [30] emerges
as a potential factor influencing user performance. The inherent visual
noise in AR settings potentially distracts and overloads users’ cognitive
processing capabilities [73], impacting their ability to swiftly and accu-
rately identify targets. In more ecological settings, where controlling
the density and arrangement of visual elements is less feasible than in
laboratory conditions, the implications of our findings become even
more critical. The design of MR environments must carefully consider
how visual fidelity, object complexity, and spatial arrangements affect
user performance and cognitive load.

6.2 Eye Tracking Correlates of Visual Search Efficiency

Eye tracking correlates of visual search efficiency were the basis for
our RQ2. Here, we investigate cognitive workload, indexed by IPA,
and search patterns by fixations and saccade frequency. We found
that cognitive load, as indicated by a decrease in IPA, was reduced
in AV suggesting that virtual surroundings facilitate a more efficient
cognitive processing experience compared to AR. Furthermore, search
patterns, as evidenced by fixation counts and saccade frequency, showed
that AV environments and virtual targets support target identification.
Specifically, we observed a significant reduction in fixation counts in
AV conditions and when interacting with virtual targets, indicating a
streamlined search process with fewer distractions. Conversely, sac-
cade frequency increased in AV settings, reflecting more active visual
exploration. However, it decreased for virtual targets, implying that
once these targets are detected, they require less extensive scanning to
process.

Interpreting our results within Guided Search Theory [93], which
suggests both top-down and bottom-up mechanisms drive visual search,
we can derive that AV may facilitate these mechanisms more effectively
than AR. As indicated by IPA, a decrease in cognitive load in AV sug-
gests less demanding attention resource management [45]. Additionally,
fewer fixations and adjusted saccade rates in AV and virtual objects
index an efficient attention allocation, likely due to more distinct targets
enhancing search efficiency [26]. The lowered saccade frequency for



virtual targets highlights their ability to draw and keep attention quickly,
a sign of effective bottom-up processing [42]. This efficiency could
result from the features of virtual elements, which are simple and less
noisy than those in AR, mirroring Guided Search Theory’s focus on
how stimulus traits direct attention. This suggests AV optimizes visual
attributes to engage users better and streamline search tasks.

The findings suggest a trade-off between physical fidelity and op-
timizing for visual search efficiency. More simple objects, which are
easier to identify due to reduced visual noise, align with the principles
of effective bottom-up processing by enhancing the saliency of targets.
However, simplifying object design can lead to spatial constraints, such
as making objects perceptually closer, potentially complicating the
visual search task as the perceptual load increases. This interpretation
highlights the need to carefully balance the design of MR environments
and objects, considering both physical fidelity and the spatial arrange-
ment of stimuli. Thus, this result has implications for the design of
MR tasks where visual search efficiency is crucial, such as in training
simulations [40], education [28], or navigation [75]. In scenarios where
quick identification and interaction with virtual elements are essential,
designing environments and tasks with lower fidelity and diminished
visual noise, such as in our AV, could enhance performance. For exam-
ple, in educational MR applications, presenting virtual objects that are
salient and easily distinguishable from the surrounding environment
could facilitate learning and information retention. Similarly, in navi-
gational aids, ensuring that virtual indicators or paths are designed to
stand out against the real-world backdrop could support wayfinding.

6.3 Distractor Suppression in MR Visual Search

In RQ3 we investigated if distractor suppression varies across AC-
TUALITIES and TARGETS. We focused on PD, an ERP component
that reflects a suppressive process towards distracting information af-
ter visuals search display onset [27]. Our results showed that in AV,
the effect of actuality on PD was significantly negative, suggesting
an efficient allocation of cognitive resources leading to diminished
distractor processing. This aligns with the functional significance of
PD in visual search: a decreased amplitude usually indicates efficient
distractor suppression, resulting in improved behavioral performance
through improved target focus [37]. Conversely, in AR, we found an
increased PD indexing increased distractor saliency [82].

Top-down and bottom-up attention mechanisms may explain the
observed variations in PD amplitudes. In AV settings, top-down control
likely facilitates distractor suppression through goal-directed attention
processes, enhancing target detection efficiency [66]. Conversely, in
AR settings, heightened distractor saliency might engage bottom-up
mechanisms, leading to increased PD amplitudes. These variations
also relate to sustained attention. Higher PD amplitudes in AR set-
tings indicate prolonged cognitive resource allocation for managing
distractors [44], reflecting sustained attention. In contrast, lower PD
amplitudes are associated with lower attentional demands, reflected by
better focus on targets as shown by the results on missed targets.

Integrating ERP and eye-tracking results, where lower IPA denoted
higher cognitive efficiency, supports the fact that participants in AV
environments experienced a streamlined visual search. Smaller PD
amplitudes suggest efficient distractor processing, are aligned with
fewer fixations, and have reduced IPA, indicating early suppression of
irrelevant stimuli by top-down control mechanisms. The relationship
between lower IPA and efficient distractor suppression suggests that
when cognitive load is reduced, as indicated by lower IPA, the brain
can more effectively allocate resources to suppress distractors. This
efficient suppression likely frees up attentional resources, facilitating
faster target identification and reaction times. This early suppression fa-
cilitates improved target attention allocation, resulting in faster reaction
times, consistent with previous work [37].

6.4 Towards Adaptive Mixed Reality

Our multimodal evaluation allows us to better understand visual search
efficiency in MR and consider our metrics as input for an adaptive MR
system that can be aware of users’ context [13]. Adaptive MR systems,
informed by eye-tracking features and PD, can be the foundation for

hybrid Brain-Computer Interfaces (BCIs) responsive to workload and
attention fluctuations [11, 12,57]. These systems can dynamically mod-
ulate the visual nature of stimuli or introduce virtual aids to augment
user performance in visual search tasks [8,56]. By inputting gaze
features and ERP components indicative of cognitive effort towards dis-
tractors, MR adaptive interfaces can infer interaction intent and future
actions in real-time, i.e., identify exploratory visual search behavior or
when their attention is diverted from target information.

Here, we envision interfaces that could dynamically vary the saliency
of distracting single elements by dimming, blurring, or otherwise
de-emphasizing non-essential visual elements [9]. Conversely, task-
relevant information can be highlighted through increased visual
saliency or contextual highlighting, thus facilitating target detection.
This approach aligns with Cheng et al. [8] exploration into leveraging
virtual-physical semantic connections to optimize MR layout designs,
where the virtual content’s placement and appearance are adapted based
on contextual relevance and user workload.

6.5 Limitations and Future Work

While we manipulated MR actualities and target objects, we acknowl-
edge the limitation of utilizing simplified objects and environments.
Our controlled setup, with stimuli resembling the shape of simple ob-
jects. However, our stimuli set and environments do not fully capture
the complexity of real-world scenarios. Recognizing this, we propose a
replication study to determine if the observed effects persist with real-
world objects and their virtual counterparts. Moreover, we controlled
the presented stimuli and environments to ensure reliable eye-tracking
results and consistent luminance. However, with an ecological scenario
in mind, we propose investigating varying luminance levels to evaluate
the effect on IPA for adaptive MR systems.

Lastly, head movements during the experiment could confound the
ERP analysis. Even small movements can introduce variability in
EEG signals [68], affecting the reliability of ERP components. These
movements can alter the spatial relationship between electrodes and
the scalp, impacting signal quality and accurate neural localization.
This variability could obscure subtle ERP effects or introduce noise
that masks true neural responses. Future studies should control or
account for head movements using motion correction algorithms [31]
or designing tasks that minimize head movement.

7 CONCLUSION

We investigated target detection across the reality-virtuality continuum
in a visual search task. We used behavioral, subjective, and physiologi-
cal (ERP and eye tracking) measures to evaluate workload, distractor
suppression, and visual search efficiency. Our findings show that AV
settings and virtual targets improve visual search performance, with
AV environments reducing cognitive workload, as indicated by lower
IPA, fewer fixations, and increased saccade frequency. Additionally,
AV environments negatively affected PD, indicating enhanced distrac-
tor suppression and reduced cognitive demands. Identifying these
physiological patterns supports the development of MR systems based
on physiological computing, laying the groundwork for adaptive MR
interfaces.

8 OPEN SCIENCE

Our experimental setup, collected datasets, and analysis scripts are
available on the Open Science Framework!.
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