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(a) Schematic overview of our setup (b) Front view (handle and sensors) (c) Back view (electronics)

Figure 1: We propose using behavioral patterns when opening a door for recognizing users. To capture such patterns, we
measure inertia, capacitance, force, and acoustic resonance (a) when opening a door. The electronics are integrated into the
handle (b) or hidden on the backside of the door (c).

Abstract
In this work, we explore the use of behavioral biometrics when
opening doors to enable user recognition on demand. We propose
a combination of inertial, capacitance, force, and acoustic sensors
embedded in a door for capturing user interaction with the handle.
This way, we collect data only when needed, i.e., when the handle
is used to open the door. No additional device (e.g., a smartphone)
or knowledge is required, enabling a seamless and unobtrusive
identification experience for users. We use tangible interaction
data captured from 20 participants in two sessions, at least 5 days
apart, for building a random forest classifier and an LSTM neural
network, and compare and discuss the impact of the sensors on their
performance. We found that random forest yields the best accuracy,
and performance is better within one session than between sessions.
Within one session, a few interactions are sufficient for recognition.
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1 Introduction
Doors naturally separate and define distinct physical spaces like
rooms, offices, or shared facilities. As such, they present ideal tran-
sition points where environments can adapt to the preferences and
needs of specific individuals. This includes the potential for person-
alization of settings like lighting or temperature control, adaptation
of access privileges like smart home controls, or handover of digital
context like logged-in accounts on different devices. However, these
opportunities depend on the system’s ability to recognize who is
entering a space.
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While cameras or continuous monitoring systems could offer
such recognition, they raise substantial privacy concerns, as they
require constant data collection and can incidentally pick up on
(sensitive) data not necessary for user identification. In contrast,
users interact with doors only when they intend to enter or switch
to a different space, making them ideal for on-demand recognition.
Therefore, leveraging the door handle as a recognition interface
allows for minimal and situational data capture, aligning well with
privacy-by-design principles.

In this paper, we focus on door-opening behavior to facilitate this
recognition, as it is unobtrusive, naturally integrated into everyday
interaction, and only captured when users physically interact with
the door. This makes it well-suited for recognizing individuals
without requiring explicit additional actions or external tokens.
While prior work has demonstrated the feasibility of using such
behavioral patterns for user authentication (e.g., [18, 19, 29, 64]),
most studies have prioritized maximizing recognition performance
and relied on data from a single session. As a result, little is known
about the stability and robustness of these interaction patterns over
time or under varying conditions. In this paper, we close this gap
and focus on a more fundamental understanding of what factors
influence the performance of such a system and how robust it is
against changes over time and in usage behavior.

To this end, we collected tangible interaction data from 20 partic-
ipants over two sessions. To enable easy replication, we use simple,
commercially available electronic components for our study pro-
totype. We use the collected data to compare the performance of
multiple sensors, to capture different aspects of the interaction (see
Figure 1), and to understand the persistence of door-opening behav-
ior. Furthermore, we explore the impact of using only parts of the
interaction or a few samples (i.e., measured data points) for training
recognition models and the robustness of our approach to changing
the hand used to open the door.
Contribution Statement. The contribution of this work is twofold:
we contribute 1) an easy-to-replicate hardware setup to capture
humans’ natural tangible interactions with a door handle and 2) a
comparative analysis of the factors impacting recognition perfor-
mance based on the door-opening behavior of 20 participants.

2 Background and Related Work
Our work is based on related literature on behavioral biometrics in
the context of doors.

2.1 User Recognition in Indoor Environments
Researchers have explored a range of user recognition methods for
smart indoor environments. Proposed methods include recognizing
the presence of users’ devices and biometric systems.

2.1.1 Device-Based Recognition. Both research prototypes and com-
mercial products frequently detect the presence of personal de-
vices for user recognition. They make use of Radio-Frequency ID
(RFID) [2, 11, 51], Bluetooth [5, 39] or WiFi [14, 60, 61] to detect
nearby smartphones [5, 61], smart cards [51], or wearable devices.

2.1.2 Physiology-Based Biometrics. In recent years, biometric fea-
tures have gained traction for user recognition across various con-
texts due to their usability advantages (i.e., they cannot be forgotten

or lost) [43]. Prior work has explored physiological biometrics such
as fingerprints [4, 10, 48, 56], iris [42], ear shape [49], face recog-
nition [3, 38, 58, 63], as well as anatomy [35] and impedance [53]
at doors for physical access control or personalization in smart
indoor environments. These physiology-based biometrics typically
require an explicit action (e.g., scanning a fingerprint), which adds
user effort and may cause annoyance. In contrast, behavioral bio-
metrics identify users based on unique behavioral patterns and can
implicitly recognize legitimate users with minimal effort.

2.1.3 Behavioral Biometrics. Behavioral biometrics have been in-
vestigated for a large range of features like keystrokes [6, 34, 68],
touch [1, 21], mouse [23, 50], gait [40, 41, 70] or eye-movement pat-
terns [28, 57, 69]. Researchers have also suggested embedding be-
havioral biometrics into physical context since they offer the unique
advantage of enabling a non-disruptive integration into users’ ex-
isting routines [13, 14, 18, 20, 22, 25–27, 37, 47, 61, 64, 64, 70].

2.2 Measuring User Behavior Indoors
Implicit user identification based on behavior is especially promis-
ing, as it requires neither explicit interaction nor specific devices,
enabling truly effortless authentication. Accordingly, related work
has proposed various methods to unobtrusively measure users’ be-
havior in indoor environments – particularly by trackingmovement
patterns or interactions with specific objects.

2.2.1 User’sMovement Patterns. Usermovement in sensor-equipped
environments can be leveraged for identification. For example, the
FreeSense system analyzes how human movement affects WiFi
signal patterns to distinguish between individuals in a home set-
ting [66]. Orr et al. [46] developed a smart floor that uses footstep
force profiles to identify people as they walk through a space.

Krašovec et al. [32] measured behavior during everyday tasks
at a desktop PC, including mouse and keyboard usage, system
resource activity, and in-room movement. Similarly, Krawiecka et
al.’s [33] BeeHIVE system uses existing sensors in everyday devices
(e.g., printers, coffee machines) to identify users without requiring
hardware modifications.

2.2.2 Behavioral Biometrics in Door Contexts. Building on prior
work [15, 16, 18, 19], we focus on door interactions for user identi-
fication, as doors mark key transition points in physical contexts.
They often separate public, shared, and private areas, or distinct
indoor environments with specific functions. These spaces typically
contain smart or computational devices tailored to their context,
which may benefit from recognizing who is entering – for per-
sonalization, tracking, security, or access control. Moreover, users’
interactions with doors have been shown to be particularly well
suited for identification purposes [20].

Researchers have measured users’ behavior while interacting
with doors for recognition purposes using different prototypes that
also frequently measured physiological traits of the user unobtru-
sively. While some integrated sensors in the door frame to measure
height profiles and movement patterns while walking through a
door [24–27], others additionally situated sensors on the floor to
collect data on the users’ weight [7], gait [70] or induced vibrations
[13]. Compared to the previously presented approaches, we propose
using the primary user interaction when opening the door for data
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Table 1: Comparison of related works implementing behavior-based user recognition at doors. Factors that are compared in
the respective analysis are marked with (*). Inertial measurements such as acceleration, velocity, or orientation measures are
summarized as “Motion” features. Capacitive and pressure sensors (this includes acoustic sensing) are labeled as “Touch”. The
“Mode” column describes if the systems were evaluated for recognition (1:n) or verification (1:1). Papers that did not disclose or
restrict which hands participants used to interact with the door contain “either” in the “Hands” column.

Authors Systemname Features Hands N Sessions Mode

Futami et al. [15] - Motion either 4 1 1:n
Garcia et al. [16] - Motion dominant 20 1 1:n
Gupta et al. [18] SmartHandle Motion either 11 1 1:n
Gupta et al. [19] Step&Turn Motion, Footsteps* right 40 1 1:1
Han et al. [20] SenseTribute Motion either 5* 1 1:n
Ishida et al. [22] - Motion, Touch either 7; 8 1; one week 1:n
Klieme et al. [29] recorDOOR Motion, Touch, Video, Ultrasonic both* 8 1 1:n
Klieme et al. [30] DoorCollect Motion, Touch either 4 - -
Konishi et al. [31] - Touch left 25 1 1:n & 1:1
Piltaver et al. [47] - Motion either 12 1 1:n
Tietz et al. [59] - Touch* either 25 1 1:n
Vegas et al. [62] - Motion either 47 1 1:n
Wu et al. [64] MoMatch Motion either 27 1 1:n

collection, rather than the person stepping through the door frame.
This way, we only collect user data if necessary for the recognition
process, making our system more privacy-preserving by design.

2.3 Identification Through Interactions With
Objects

2.3.1 On-Demand Tangible User Recognition. Prior work suggests
augmenting everyday objects with sensing capabilities to assess
usage patterns for authentication [9, 15, 18, 20, 65].

For example, sensor-enhanced wristbands or smartwatches can
authenticate users when they touch or move specific objects [36,
64, 67]. The sequence of tangible interactions with multiple objects
– measured via capacitive touch sensors – can serve as a hybrid
(explicit and implicit) authentication mechanism that is perceived
as both usable and secure [9]. Other approaches attach inertial
sensors to movable household items (e.g., cabinet doors, drawers,
remote controls) and successfully use unique movement patterns
for identification [20, 64].

Closely related to this paper, related work has focused on using
only users’ tangible interaction with the door by measuring the
movement of a door (handle) [15, 18, 47, 64], users’ motion [16] or
the touch itself [22, 31, 59].

2.3.2 Tangible Behavior-Based User Recognition at Doors. Table 1
provides an overview of approaches that use tangible door interac-
tions to recognize users based on their behavior.

We observe that most related work leverages the motion of
the door (handle) as the main feature for recognition. These sys-
tems rely on inertial measurements (i.e., angular velocity, accel-
eration, and magnetic field) collected from lever-style door han-
dles [15, 16, 18, 19, 29, 30, 62] or from the door itself [20, 22, 47, 62]
to recognize users. These approaches achieved classification accu-
racies of >= 90% with 12–47 participants [16, 47, 62]. Some also
integrated additional sensors beyond motion data [19, 22, 29, 30].

Only Tietz et al. [59] and Konishi et al. [31] relied solely on touch
features (i.e., without motion sensing), yet still achieved comparable
accuracies of 88% and 93%, respectively.

Moreover, most related work focused on recognition scenarios
(1:n) 1. To the best of our knowledge, none of the related work
conducted a second session to increase the ecological validity of
their results. Ishida et al. [22] conducted a more longitudinal study,
which captured tangible interaction data with a fridge door during
one week, and Konishi et al. [31] mentioned having conducted 5
sessions, but they were performed with pauses of only 1 minute. In
contrast to our work, neither of these works analyzed recognition
performance within and between days.

3 Research Approach
With our paper, we follow related work and investigate user recog-
nition (1:n) in multi-user scenarios based on unique behavioral
patterns while interacting with a door. To achieve this, we see
the greatest potential in approaches that integrate sensing in the
door (handle) [15, 18, 52, 53]. This is motivated by the following
advantages of such a system:

• they identify users without requiring additional tokens or
knowledge [64]

• they leverage users natural tangible interaction with the door
for data collection [64]

• they are privacy-preserving, as they only collect data when it
is necessary without incidentally picking up data non-essential
for recognition (as opposed to, for example, a camera)

Figure 2 provides an overview of our research approach. We
extend related work by gaining more fundamental insights into fac-
tors that influence the performance of these behavioral biometric
systems that only collect data on demand. Hence, we shift the focus
from achieving a high recognition score to making comparisons be-
tween different implementations and tangible interaction variants.
In particular, we analyze (a) the performance of multiple sensors, (b)
the persistence of door-opening behavior, (c) the impact of using only
parts of the interaction for training recognition models, and (d) the
robustness of our approach if different hands are used for opening.

1Verification (1:1) confirms a claimed identity by comparing input to a specific stored
pattern — this is how most authentication works. Recognition (1:N) (or classification)
identifies someone by comparing input against multiple stored patterns to find a
match [54]
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Related Work

Tangible Interaction Behavior-
Based User Recognition in

Doors Context

(Overview in Table 1)

Implementation

Inertial Measurements

Swept Frequency Capacitance

Active Acoustic Sensing

Resistive Force Sensing

Technical 
Exploration

Performance Evaluation

Session 1 vs. Session 2

Right vs. Left Hand

Random Forest vs. LSTM

Figure 2: Building on related work, we implemented a prototype to measure user interaction with a lever-style door handle. It
integrates multiple sensing technologies, including an inertial measurement unit, swept-frequency capacitive sensing, active
acoustic sensing, and resistive force sensing. After refining the prototype through technical exploration, we used it in a user
study with 20 participants to examine (a) sensor performance, (b) persistence of door-opening behavior, (c) the effect of using
partial interactions for training, and (d) robustness when different hands are used.

To this end, we implemented an easily replicable prototype using
commercially available electronic components (cf. Section 4)2. In-
spired by related work, we measured users’ touch, the applied force,
and the movement of the door handle (see Table 1). Thus, we extend
promising previous approaches that measure inertia [15, 18] and
also collect touch features [22, 30]. Opening a door usually involves
touching the handle, pushing it down, swinging the door, and re-
leasing the handle. To make sure we can collect data during all these
phases of interaction, we first performed a technical exploration
using an initial version of our prototype (cf. Section 5) [8]. Based on
the resulting insights, we improved our prototype and informed our
final study design.Next, we used the improved prototype to collect
tangible interaction data from 20 participants over two sessions
(cf. Section 6), as usually done to evaluate the user identification
performance of novel approaches [16, 20, 62, 65]. We extend pre-
vious work by introducing a second session of data collection to
investigate the robustness of user recognition over time.

With our work, we contribute to a deeper understanding of
the underlying interaction factors contributing to performance
and robustness over time and across different usage scenarios (cf.
Sections 7 and 8).

4 Implementation
In this work, we instrument a door to measure user behavior when
opening it. We propose capturing a combination of inertia, capaci-
tance, force, and acoustic resonance. Force measurement was not
part of the initial setup used for our technical exploration (see Sec-
tion 5) but was added based on its results. However, for the sake
of consistency and clarity, we collect the implementation of all
components in our final setup (see Figure 1) in this section. We
list the different sensing technologies and provide the rationale for
including them in our system. We focused on technologies that can
be used to unobtrusively enhance already existing doors.

4.1 Sensor Selection
To capture all parts of user interaction with door handles (gripping,
pushing down, swinging open, and releasing), we aimed at unobtru-
sively sensing the (a) users’ touch, (b) the applied force, and (c) the
movement of the door and the handle. Building upon the related
works presented in Section 2.3.2, we chose sensors that allowed us
to achieve this goal.
2Please find all resources necessary to replicate our prototype and our behavior dataset
here: http://doi.org/10.17605/OSF.IO/UV2YZ.

4.1.1 Touch. Self-capacitive touch sensing only requires one elec-
trode [17], which is repeatedly charged and discharged for sensing
touches. This technology can therefore use the conductive door
handle itself as this electrode, making it ideal for our specific use
case. Sato et al. [52] enhanced self-capacitive touch sensing by loop-
ing through different charging cycle frequencies (aka. frequency
sweeps), instead of using a fixed one. This allowed them to recog-
nize different touch gestures instead of just measuring the presence
of a touch. One of their application examples was a rotary door
knob, which leave us optimistic that the additional features can be
useful for user recognition in our context, too.

4.1.2 Force. Awell-researched approach to retrofitting touch force
and posture sensing capabilities to existing objects is acoustic sens-
ing [44, 45]. This technology is based on the resonant properties
each object has, which are influenced by different touch and grasp
gestures, as well as force. This technology is also easily reproducible,
since commercial audio interfaces can generate the required sinu-
soidal frequencies and also read the sensor output through a normal
audio input interface. Moreover, related work has shown that this
sensing technology can serve to identify users in door contexts [31].
However, after conducting pilot tests with the initial version of our
prototype, we realized that active acoustic sensing did not perform
as desired, so we added force-sensitive resistor strips as suggested
by Tietz et al. [59].

4.1.3 Movement. As highlighted in Section 2.3.2, most related
works measured the movement of a door handle in 3D-space, its
angular velocity, and acceleration by fixing an inertial measurement
unit to it. For example, Gupta et al. [18] achieved promising user
recognition results using inertial measurements (TAR of 87.27%;
FAR of 1.39%; 11 participants). Hence, we build upon their approach.

4.2 Inertial Measurement
We use a 9 degrees of freedom inertial measurement unit (IMU)3
to measure angular velocity, acceleration, and magnetic field in 3
axes. Replicating Gupta et al. [18]’s work, we attach the IMU to the
handle to capture door and handle motion.

4.3 Swept Frequency Capacitance Measurement
We leverage Sato et al. [52]’s swept frequency self-capacitive sens-
ing technique for our work to capture rich touch features. We

3https://learn.adafruit.com/nxp-precision-9dof-breakout, last accessed in July 2024

http://doi.org/10.17605/OSF.IO/UV2YZ
https://learn.adafruit.com/nxp-precision-9dof-breakout
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Figure 3: Our setup consists of an Arduino Uno, a circuit
for swept frequency capacitive sensing, a Raspberry Pi 4, a
HiFiBerry DAC+ ADC pro shield, an ADS1115 ADC, three
self-built force sensors, and an Adafruit precision NXP 9-DoF
breakout board.

generate square waves with an Arduino Uno4 and approximate si-
nusoidal waves using an LC circuit. We use the frequencies (0.6 kHz
to 4MHz in 189 irregular steps over 130ms with at least 1.5 kHz
between frequencies) to approximate the parameters used by [52].

4.4 Active Acoustic Measurement
When generating and measuring an acoustic signal on an object,
the resonant response changes according to whether and how it
is touched [44, 45]. We use this approach to approximate the prop-
erties of the hand and the force used to grip the handle. We use a
Raspberry Pi with a HiFiBerry DAC + ADC pro shield5 at a sam-
pling rate of 192 kHz. As actuator and sensor, we use two unimorph
piezoelectric elements (200Ohm, 4.4 kHz, 27mm diameter). We use
sweeps from 100Hz to 5 kHz (in 91 uniform steps) in 310ms, as our
tests showed the strongest effects in this range.

4.5 Resistive Force Measurement
To measure the force the handle is gripped with, we built pressure-
sensitive strips measuring the change in resistance between two
copper layers separated by Velostat6 and protected the outside with
non-conductive foil. We use three such pressure-sensitive strips
with a width of 5mm (bent around the handle) evenly distributed
across the surface as a compromise between the resolution of force
measurements and leaving enough of the handle exposed for ca-
pacitance measurements (see Figure 1b). We measure the resistance
with a voltage divider connected to an ADS11157 module (ADC
with 16-bit resolution). This module is connected to the Raspberry
Pi via I2C. We opted for this DIY approach rather than using com-
mercial planar pressure sensors like [22] because our door handle
is cylindrical.

4.6 Hardware Composition
All electronics (see Figure 3) were attached to a free-standing door
in our lab (see Figure 1c). Where possible, we hid the electronics on
4https://www.instructables.com/Touche-for-Arduino-Advanced-touch-sensing/, last
accessed in July 2024
5https://www.hifiberry.com/shop/boards/hifiberry-dac-adc-pro/, last accessed in July
2024
6Electrically conductive material composed of a polymer and carbon [12].
7https://www.ti.com/product/ADS1115, last accessed in July 2024

Table 2: Mean recognition accuracy of the sensing technolo-
gies for opening/closing the door.

unique samples accuracy
technology overall for testing mean std

op
en
in
g IMU 6938 1780 90.00% 2.24%

capacitance 2460 630 77.75% 2.08%
acoustic 1075 277 55.50% 2.70%
all sensors 7248 1862 84.25% 3.17%

cl
os
in
g

IMU 9918 2625 94.75% 0.75%
capacitance 3433 908 78.75% 3.40%
acoustic 1471 387 76.00% 1.66%
all sensors 10356 2746 83.50% 2.29%

the back side of the door to present a clean look to the participants
(see Figure 1b). We used a lever-style door with a conductive metal
handle so we could measure capacitance without further modifica-
tion. For non-conductive handles, a solution like copper foil would
be needed. A future iteration of our system could attempt to embed
the electronics completely in the door and thus make the system
invisible.

5 Technical Exploration
To gain an initial impression of user recognition feasibility with
our prototype, we recorded the full door handle interaction cycle
– i.e., opening and closing the door. We asked 4 subjects from our
personal environment to open the door, enter the room, return, and
close it again. Each participant repeated this procedure 40 times.

5.1 Performance Analysis
We split each repetition into opening and closing phases, using a
specific capacitive touch feature (320 kHz) to determine interaction
duration and timestamps, as it proved stable for touch detection. To
account for differing sampling rates (e.g., acoustic: 3.2Hz vs IMU:
25.9Hz), values were backward filled (i.e., repeated) until a new
value was measured.

Our final dataset consists of 18,600 samples from 320 interactions
(80 per participant) and includes 288 features: 9 IMU features (angu-
lar velocity, acceleration, and magnetic field along all three spatial
axes), 189 swept-frequency capacitance features, and 90 acoustic
sensing features. The capacitance and acoustic features comprise
measurements across all applied frequencies.

To determine the overall prediction for each captured interaction
in the testing subset, we predicted a label for each sample and
assigned the final label based on the prevailing class (winner-takes-
it-all). For example, if most predictions for an interaction pointed
to participant 5, the entire interaction was classified as participant
5 and then compared to the true label to assess prediction accuracy
(i.e., was it actually participant 5?). To account for the effect of
randomness on the accuracy, we report the mean accuracy over 10
executions. Overall, we found a mean recognition accuracy for the
combination of all three sensing technologies of 84.25% (opening
the door) and 83.5% (closing, see Table 2).

https://www.instructables.com/Touche-for-Arduino-Advanced-touch-sensing/
https://www.hifiberry.com/shop/boards/hifiberry-dac-adc-pro/
https://www.ti.com/product/ADS1115
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5.2 Implications for User Study
Acoustic sensing consistently performed worst (55.50% and 76.0%)
in our initial test. We, thus, decided to add additional pressure-
sensitive strips to capture force directly (see Section 4.5) and under-
stand if force is a weak predictor in general or if the performance
was caused by our specific approach (acoustic sensing).

We observed comparable performance between opening and
closing the door. Yet, we see more practical relevance in using the
opening motion as personalization inside the smart environment
would be triggered when entering a space. Hence, we focus on open-
ing doors in our user study.

6 User Study
With our user study, we explored whether our embedded user recog-
nition approach is suitable for real-life applications. To this end, we
recruited 20 participants and conducted two study sessions to com-
pare both intra- and inter-session performance. Correspondingly,
our dependent variable was user identification accuracy.

Participants visited the lab for two sessions at least five days apart.
In each session, they opened the door with both hands successively.
Hence, we used a within-subjects design with two independent
variables: session and hand, each with two levels (session: 1, 2; hand:
left, right). During data analysis, we added a third independent
variable – the machine learning model (random forest, LSTM).

6.1 Procedure
Participants were briefed about their task and the aim of the study.
We informed them that their behavior while opening the door was
recorded to distinguish them by their individual behavior.

Participants’ main task was to open the door (and walk through
it) 118 times with their right hand, then 11 times with their left. Af-
terward, they completed a questionnaire about their experience and
impressions of the interaction with the door, as well as demographic
data. The procedure was repeated for the second session.

6.2 Ethical Considerations
Based on institutional and local regulations, low-risk user studies
– like ours – do not require approval by an IRB board. However,
we referred to guidelines on ethical best practices when designing
the study. Hence, before consenting to participate in the study,
participants were provided with detailed information on which
data would be collected, the purpose of the data collection, how it
would be stored, and that participation was voluntary and could
be aborted at any time. We did not collect any audio or video
recordings and used random identifiers to anonymize the collected
data. Participants received a compensation of 10 euros.

6.3 Participants
We recruited 20 participants with an average age of 25.75 years
(𝑠𝑡𝑑 = 6.26, range 19-49) from our local university and personal
environment. Most of them (13) were students. Ten participants
identified as male, nine as female, and one as diverse. All but two
participants indicated being right-handed.

8We used the first repetition for participants to get used to the setting and removed it
for the analysis, yielding 10 repetitions.

6.4 Data Collection
During our study, we collected readings from all four of our sensors.
Those were further processed as described in the next section. In
addition, participants filled out a short questionnaire with Likert
items to describe their interaction with the system and reported on
demographics. Finally, we captured the hand that users preferred
for opening the door. From our observation, this varies for different
doors. Hence, we captured the preference for our specific setup
instead of a general preference. All but one participant indicated
they would use their left hand to open the door in our setup.

6.5 Preprocessing
We removed data from the first repetition of all conditions as well
as any identifying information about the participants. Results from
acoustic sensing were Fourier transformed and smoothed by ap-
plying a Savitzky-Golay filter. Similar to the technical exploration,
we repeated values of acoustic sensing and swept frequency capac-
itance until new readings were available to account for different
sampling rates between the sensors. To detect the bounds of in-
teractions (i.e., distinguish interactions from idle time), we used
the gyroscope measurement on the z-axis. We changed this step
compared to the technical exploration, as the capacitive reading we
had used was not reliable for a larger population. We determined
a baseline (background signal without interaction) as the mode of
all readings and determined the start of the interaction when it
was crossed by a fixed threshold of 0.05. To account for potential
readings in other sensors that could have occurred earlier, we added
0.5 seconds to both the start and end of the interaction.

This resulted in ten repetitions for 20 participants for each hand
and two sessionswith 288 features each: 9 IMU features, 189 features
for swept frequency capacitance, 90 features for acoustic sensing,
and 3 force measurements. Interactions with the door handle took
between 1.78 and 4.53 seconds (𝑚𝑒𝑎𝑛 = 2.49, 𝑠𝑡𝑑 = 0.33)2.

6.6 Models
For our analysis, we employ two models. We chose a random forest
classifier as an established (e.g. [47, 59]) and interpretable model
that requires minimal preprocessing and is robust to outliers [55].
In addition, we trained an LSTM model for its ability to capture
the temporal patterns and sequential dependencies in our collected
behavioral data.The models were implemented using Python with
sci-kit learn and Keras. We outline detailed configurations below.

6.6.1 Random Forest (RF). For our random forest model, we used
the default parameters as in the initial technical exploration. We
trained the model on 75% of the data, or on one full session when
comparing across days. As mentioned in Section 5.1, we applied a
winner-takes-it-all approach to determine the predicted label for
each full interaction, since each interaction in our dataset consisted
of multiple samples. Hence, the model first predicted a class label
for each individual sample, and the most frequently predicted class
was then assigned as the final label for the entire interaction. We
then compared this predicted label to the ground truth to evaluate
classification accuracy. To obtain a more robust estimate of model
performance, we repeated the training and testing process 10 times.
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6.6.2 Long Short-term Memory Network (LSTM). We implemented
a sequential model using Keras that combines dense and LSTM
layers to account for the temporal structure in the data (see Appen-
dix B for the full code). The model was trained using categorical
cross-entropy as the loss function, which is commonly used for
multi-class classification tasks to measure how well the predicted
class probabilities match the true labels. To ensure consistency
across sequences, we set the input window size to match the short-
est recorded interaction. Unless stated otherwise, we split the data
into 60% training, 20% testing, and 20% validation9, and report
performance on the test set. When comparing sessions, we used
60% of the first session for training, 40% for testing, and evaluated
generalization performance on the entire second session.

6.7 Limitations
Our work focuses on gaining insights into the effect of different
implementation variants and interaction factors rather than fine-
tuning our models for competitive recognition accuracies. We also
used a freestanding door situated in our lab for our setup to ensure
a controlled study environment. This may impact the ecological
validity of our results, and results may vary for different doors.

Moreover, we implement our prototype using low-cost commer-
cial electronics to support replicability. This resulted in a rather
large prototype, which was not integrated into the door (handle)
itself. While we were able to avoid the resulting impact on user
behavior in our lab study by placing the prototype on the other side
of the door, it could certainly disturb natural behavior in real-world
settings. The current implementation also emits a sweeping sound
due to the acoustic sensing, which could have influenced partic-
ipants. For future studies, we would, thus, avoid using acoustic
sensing, as it also achieved the lowest recognition accuracy.

To investigate if the performance of behavioral biometric systems
for door contexts is impacted by changes in behavior over time, we
conducted two sessions with 5 or more days in between. However,
to not burden our participants too much with traveling to our lab,
we did not collect data on all days in between or during a longer
period of time. We plan to conduct such a study in the future by
recruiting locally situated employees.

7 Results
Here we report on the performance (baseline accuracy is 5%10) of
the different sensors, recognition rates within and between sessions,
the effect of using less training data, and the feedback participants
had for our system.

7.1 Sensor Comparison
In the first step, we compare classification performance between
sensors. We trained a classifier on both sessions and both hands
for each of the sensors separately, as well as for the combination
of all sensors. Results are shown in Table 3. The Random For-
est classifier performed best for the combination of all sensors
(acc=86.41%). Inertial measurement was the best-performing single

9We made this change compared to the random forest model to account for the
introduction of a validation set which was necessary due to iterative testing to find a
suitable model configuration.
10This is the chance for correctly guessing one out of 20 participants.

Table 3: Prediction accuracy of our random forest (RF) and
neural network approach (LSTM) trained on different config-
urations of sensors as well as training and test data.

Trained on Tested on RF LSTM
sensor session hand session hand acc std acc

IMU both both both both 68.38% 2.25% 43%
Force both both both both 31.16% 1.33% 17%
Capacitance both both both both 54.04% 2.22% 40%
Acoustic both both both both 51.36% 1.92% 31%
All Sensors both both both both 86.41% 1.34% 41%
No Force* both both both both 82.12% 0.87% 34%

All Sensors 1 both 2 both 8.16% 0.21% 11%
All Sensors both left both right 68.73% 0.99% 31%

IMU 1 left 2 left 13.78% 0.64% 22%
Force 1 left 2 left 12.09% 1.02% 11%
Capacitance 1 left 2 left 5.26% 0.25% 8%
Acoustic 1 left 2 left 5.05% 0.95% 8%
All Sensors 1 left 2 left 7.81% 0.42% 11%
*Configuration used in the Technical Exploration

Table 4: Results from training a random forest with either
only a few samples or only including samples from the press
down or release of the door handle using the first session
and the left hand.

Samples Accuracy
condition training test mean std

train with 1 interaction per participant 411 3705 58.94% 1.75%
train with 2 interactions per participant 831 3285 69.18% 1.54%
train with 3 interactions per participant 1242 2874 81.01% 1.60%
train with 4 interactions per participant 1657 2459 80.00% 2.37%
train with 5 interactions per participant 2065 2051 96.26% 1.17%

press down handle 406 105 60.00% 2.49%
release handle 638 150 61.00% 2.54%

sensor (acc=68.38%). The force sensor performedworst (acc=31.16%),
but did contribute to performance (compared to not using it, as in
our technical exploration (acc=82.12%)).

The LSTMmodel performed weaker but showed similar patterns.
Results were similar between using all sensors (acc=41%), only the
IMU (acc=43%), or only capacitance (acc=41%). Force again reached
the lowest accuracy at 17%.

7.2 Transferability Between Hands and Days
In a second step, we investigated whether a model trained on one
day or one hand would perform well when presented with the
respective other one. When training a random forest classifier on
both days but using only one hand and predicting on the other, we
achieved an accuracy of 68.73% (LSTM acc=31%). When training the
classifier on all data from the first session, we achieved a prediction
accuracy of only 8.16% (LSTM acc=11%) in the second session.

To understand this better, we trained separate classifiers for each
sensor in the first session and evaluated them in the second session.
Results can be seen in Table 3. None of the sensors performed
well. The IMU and force sensors performed best at an accuracy of
13.78% and 12.09%, respectively. The LSTM results showed the same
tendencies again, though the IMU performed meaningfully better
at an accuracy of 22% while other results were comparable.
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Figure 4: Results from the Likert Statements presented after the second session of our study.

7.3 Learning With Limited Samples
Finally, we noticed that our models seemed to perform well with
few training samples. We explored this further in two directions: 1)
To understand if scenarios with few or potentially only one train-
ing interaction would be possible, we trained models for different
numbers of available interactions. 2) To understand if particular
phases of the interaction would be sufficient, we trained models on
only the data when the handle is pressed down and released again,
respectively. As this is exploratory, we omitted to do this for all
conditions and used RF in a single session scenario with the left
hand (preferred by almost all users) only.

Results are shown in Table 4. Even with only one repetition
(i.e., one door opening action), we get an accuracy of 58.94% that
increases up to 96.26% when using five repetitions for training. For
the phases of the interaction, we found comparable results for both
pressing down and releasing the handle, with an accuracy of 60.0%
and 61.0% respectively.

7.4 Likerts & Open Feedback
In order to assess possible confounding variables, we also asked
our participants to complete a short questionnaire after the second
session. Refer to Appendix A for an overview of the questionnaire
items. In particular, participants rated various Likert statements
on a 5-point scale ranging from disagree to agree (see Figure 4).
Participants found it easy (Mdn = 5) and fast (Mdn = 5) to use
the door and interacted as usual (Mdn = 5). They did not feel any
influence of the electronics (Mdn = 1) or environment (Mdn = 2) nor
did they actively change their behavior (Mdn = 1) or were aware
afterward that they could have changed it unintentionally (Mdn =
2). When asked if they could imagine using our system, opinions
were more undecided. Participants leaned towards not wanting to
use our approach as a sole factor (Mdn = 2) but could imagine using
it as a second factor (Mdn = 4.5). They also believed that behavior
collected this way could be utilized for other applications (Mdn =
4). We also asked participants to list potential further applications.
They mentioned the extension to handles of car doors or lockers,

and safes. Further comments described where the system could be
used: participants suggested offices, dormitories, laboratory areas,
and residential homes as potential application areas.

In summary, we found no indication that participants felt in-
fluenced by the prototype or study setup. They described the in-
teraction as easy and fast – consistent with typical door use. This
suggests our data is ecologically valid despite being collected in
a lab setting, though further studies are needed to confirm this.
Moreover, participants appeared sufficiently convinced by the con-
cept of identification via door-related behavior to consider using
it for authentication and other use cases. We interpret this as mo-
tivation for further research, as it suggests potential for high user
acceptance of such systems.

8 Discussion
In this paper, we extended setups from previous work with addi-
tional hardware, a second data collection session, and additional
analysis. Here we discuss our insights and identify opportunities
for further research.

8.1 Force Is Less Useful Than Inertia
Based on our technical exploration, we added three pressure-sensitive
stripes to measure the force used to grip the door handle. Our re-
sults are inconclusive as to whether this was beneficial. For both the
random forest classifier and the neural network, the force sensor
achieved the lowest classification accuracy. It was consistently less
reliable than the acoustic sensing that it was supposed to potentially
replace. At the same time, we did observe that the combination of
all sensors worked better than a setup without force sensors. This
indicates that overall, they do seem to contribute to performance.
We also believe that measuring force could become more important
in usage scenarios where a decision should be made before the
interaction is complete – i.e., from only touching the handle or
from pressing it down while the door is still locked – force may
become more relevant, as less movement data is available.
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8.2 Behavior Is Not Persistent Between Sessions
Most related works have evaluated their approaches in a single
session with convincing performance (cf. Table 1). When using a
single session, we saw similarly promising results. However, in
our work, we added a second session to see if the behavior when
opening doors is persistent and could be used across sessions. Our
results do not support this assumption. However, we observed
trends in the sensor performance that could serve as a starting
point for further investigation: for both the random forest and
the LSTM model, we saw better performance between sessions of
the IMU and force sensors. Those sensors have a higher temporal
resolution, whereas both acoustic- and captive sensing capture
data over a time window of about 300ms. Reducing the time those
sensors need to collect data or including other sensors with higher
temporal resolution may improve performance across sessions.
Noticeably, this also underlines the importance of extending study
setups after preliminary tests, as otherwise we would have missed
those effects.

8.3 Behavior With One Hand May Transfer To
The Other

In our study, we investigated whether behavior exhibited with one
hand can be used to distinguish users when they use their other
hand as well. To our surprise, results from both of our models
show that this may be the case. Further research in this direction
is needed, but such an effect would be an important step toward
the real-world applicability of our system. In daily situations, it is
not uncommon that one hand is not available (e.g., when carrying
something), and users may prefer one or the other hand to open
a door depending on the room layout. This suggests that a model
trained on interactions with one door could potentially generalize
to similar doors and still distinguish between users.

8.4 One Interaction May Be Enough
While our results do not indicate that behavior between sessions
is persistent, we did find that training on a per-session basis is
viable. Using as few as one interaction, we were able to achieve
an accuracy of about 58%. Each additional interaction improved
recognition substantially. Keep in mind that we did not optimize
our models for performance, so further improvements to the model
could enable scenarios like registering in the morning and using
recognition throughout the day. However, it remains unclear how
stable the behavior is over longer periods. Further analysis, for
example, over the course of a day, would be needed to understand
when retraining becomes necessary.

8.5 Doors Can Be Leveraged For More Than
Access Control

Our results show that reliable user recognition before the door
swings open or from the pressing motion alone is challenging.
However, this does not rule out meaningful applications. Rather
than serving as a primary access control mechanism, we see our
approach better suited for on-demand recognition scenarios where
real-time decisions or contextual adaptations can occur after the

door interaction is underway. Recognized users could trigger per-
sonalized environmental settings (e.g., lighting or temperature),
initiate seamless context handovers across devices, or enable ac-
cess to certain features or information within a space. Additionally,
user interaction patterns with door handles may offer implicit cues
about their physiological or emotional state, such as stress levels, or
serve as an explicit, tangible input method in smart environments.
These directions point to a broader design space where behavioral
recognition at doors can support ambient intelligence, situational
awareness, and nuanced security responses like silent alarms for
unauthorized entry. Overall, we see many opportunities to leverage
our system both for security research and beyond.

8.6 Investigating User Perception
We explored the feasibility of tangible behavior-based identifica-
tion in door contexts in a broader manner, by analyzing (a) the
performance of multiple sensors, (b) the persistence of door-opening
behavior, (c) the impact of using only parts of the interaction for
training recognition models, and (d) the robustness of this method
if different hands are used. The above sections described how our
findings inform future implementations and research on the perfor-
mance of this approach. However, user acceptance and perceptions
of such systems remain largely unexplored, as related work has
also provided few findings in this area. We therefore see strong
potential for future studies specifically focused on these aspects.

9 Conclusion
In this paper, we explored user recognition during the door-opening
process by combining four sensors embedded in a door handle. In a
two-session study with 20 participants, we demonstrate that users
can be recognized within a single session—even with only a few
samples. While cross-session recognition remains challenging, our
findings show promising results for transferring models between
hands. With our work, we provide fundamental insights and in-
form directions for future research on enabling seamless behavioral
biometrics at doors.
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A Questionnaire
• Opening the door was easy. [5-point Likert-Scale]
• Opening the door was quick. [5-point Likert-Scale]
• I opened the door like I usually do. [5-point Likert-Scale]
• My behavior was influenced by the electronics on the door
(e.g., cables, noises). [5-point Likert-Scale]

• My behavior was influenced by the environment (e.g., lab,
other participants). [5-point Likert-Scale]

• I intentionally changed my behavior during the study (e.g.,
grabbed the door handle harder). [5-point Likert-Scale]

• I think I unintentionally changed my behavior during the
study (e.g, touched door handle in different places). [5-point
Likert-Scale]

• I trust the technology and would feel comfortable using the
prototype exclusively as a security and authentication factor.
[5-point Likert-Scale]

• I trust the technology, but would feel more comfortable if the
prototype were used as a second factor in an authentication
system. [5-point Likert-Scale]

• I can imagine that the authentication of a person by the
individual behavior of opening the door is also transferable
to other applications. [5-point Likert-Scale]

• Can you think of any other fields the prototype could be
applied to in order to improve security? [Free Text]

B LSTM network
We used the following code to generate the neural network used
for our experiments:
model = S e q u e n t i a l ( )
model . add ( Dense ( 3 2 , k e r n e l _ r e g u l a r i z e r = ke r a s .

r e g u l a r i z e r s . l 2 ( 1 e −5 ) , i npu t_ shape = input ,
a c t i v a t i o n = ' r e l u ' ) )

model . add ( Ba t chNorma l i z a t i on ( ) )
model . add ( Dropout ( 0 . 5 ) )
model . add ( Dense ( 1 6 , k e r n e l _ r e g u l a r i z e r = ke r a s .

r e g u l a r i z e r s . l 2 ( 1 e −5 ) , a c t i v a t i o n = ' r e l u ' ) )
model . add ( Ba t chNorma l i z a t i on ( ) )
model . add ( Dropout ( 0 . 5 ) )
model . add ( B i d i r e c t i o n a l ( LSTM ( 1 6 , r e t u rn_ s e quen c e s =

True , a c t i v a t i o n = ' tanh ' ) ) )
model . add ( B i d i r e c t i o n a l ( LSTM ( 1 6 , r e t u rn_ s e quen c e s =

Fa l s e , a c t i v a t i o n = ' tanh ' ) ) )
model . add ( Ba t chNorma l i z a t i on ( ) )
model . add ( Dropout ( 0 . 5 ) )
model . add ( Dense ( 1 6 , k e r n e l _ r e g u l a r i z e r = ke r a s .

r e g u l a r i z e r s . l 2 ( 1 e −5 ) , a c t i v a t i o n = ' r e l u ' ) )
model . add ( Dense ( output , a c t i v a t i o n = ' sof tmax ' ) )
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