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ABSTRACT 
In this paper, we discuss the use of eye-gaze tracking technology 
for mobile phones. In particular we investigate how gaze 
interaction can be used to control applications on handheld 
devices. In contrast to eye-tracking systems for desktop 
computers, mobile devices imply several problems like the 
intensity of light for outdoor use and calibration issues. Therefore, 
we compared two different approaches for controlling mobile 
phones with the eyes: standard eye-gaze interaction based on the 
dwell-time method and gaze gestures. Gaze gestures are a new 
concept, which we think has the potential to overcome many of 
these problems. We conducted a user study to see whether people 
are able to interact with applications using these approaches. The 
results confirm that eye-gaze interaction for mobile phones is 
attractive for the users and that the gaze gestures are an 
alternative method for eye-gaze based interaction. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces – Input devices and strategies.  

General Terms 
Algorithms, Design, Reliability, Human Factors. 

Keywords 
Eye-Tracking, Mobile Phones, Eye-Gaze Interaction, Eye-
Gestures. 

1. INTRODUCTION 
Nowadays, eye-tracking technology works with a video camera 
and image processing algorithms to detect the user’s pupil. Most 
mobile phones sold today have a camera already built-in. Even 
more, many modern phones have a secondary camera on the front 
side as well which is included for video conferencing. Looking 
retrospectively at the development of mobile devices, it is 
noticeable that their processing power as well as the quality of 
their components increases steadily. Thus, it is only a matter of 

time until eye-tracking technology can be offered within these 
devices in software for virtually no extra costs. 
Eye-gaze interaction could be a convenient way of controlling 
mobile devices. It works without mechanical contacts, which 
means a dirt free interaction. The eyes can move quickly and 
normally without fatigue. As small mobile devices do not have 
elaborated input abilities like a big keyboard for two-handed 
typing and moreover, they do not have any pointing device like a 
mouse or a touchpad, eye-gaze could be an additional modality 
for input available in the near future. 
Eye-trackers are used for more than twenty years now as outlined 
in [5]. They are used for computer input in the field of 
accessibility providing means of input for motor impaired people. 
A further use is in advertising, communication design and 
usability analysis. Since a couple of years commercially available 
desktop eye-trackers work reliable.  
Nevertheless, eye-tracking technology is not free of problems. 
One of the problems is the inaccuracy of the eye-gaze position 
caused by the jitter of the eye. As a consequence all eye-gaze 
interaction objects need sizes of at least one degree visual angle. 
In the distance of an arm length, which is a typical distance for 
mobile phones, this size is a little bit less than the size of the 
thumb nail. This means that there can be only few interaction 
objects on the small-sized displays of mobile phones. Another 
problem is the freedom of move in front of an eye-tracker. 
Comfortable eye-trackers do not rely on tracking the eye only, but 
also on head-tracking to achieve this, but work on stationary 
systems. For handheld devices this problem becomes even more 
severe because they can change the direction of the camera very 
quickly due to movement of the hand. Thus dwell-time based eye-
tracking interaction on mobile devices will require some form of 
head-tracking. A further problem lies in the use of an infrared 
LED to gain the glint (reflection spot on the eyeball), which is 
used as a reference point for the tracking. For outdoor use in 
bright sun the detection of the reflection spot becomes 
problematic. Finally the need of a calibration process is a problem 
for mobile devices, because it comprises too much effort for just a 
short interaction and the calibration is lost after putting the mobile 
phone to the ear or back into the pocket. Such attention shifts are 
very common for mobile devices.  

- left blank for the conference copyright note - All the problems mentioned above mainly result in accuracy 
problems of the tracked gaze position. For this reason we 
investigate in our research two different approaches. One 
approach is the eye-gaze interaction based on the dwell-time 
method, for which accuracy problems need to be solved. The 
other approach is an innovative concept based on gaze gestures. 
Gestures do not require an absolute position and hence we think 

 



this approach has the potential to overcome the accuracy 
problems. 
In the next section we will describe the basics of eye-tracking on 
mobile phones. It contains descriptions of common problems and 
finally explains the advantages of gaze gestures and how they 
work. After that, our prototype hardware and software as well as 
the whole experimental setup will be described in detail. This has 
been used for a two-part evaluation of which the procedure and 
results are explained. At the end, we will summarize our work and 
give an outlook on activities that have been planned as a follow 
up to this paper. 

2. EYE-TRACKING ON MOBILE PHONES 
2.1 Basics 
Eye-tracking technology for interaction with mobile phones is not 
yet available. One reason is the lack of processing power to 
handle video streams on these devices in real-time. But it is 
foreseeable by extrapolating the technological trend, that the 
required processing power will be available over the next years. 
Another issue typical for mobile phones is outdoor use. This 
implies varying light conditions and saturation effects by bright 
sun light, which makes it difficult to reliably detect the pupil and 
the glint within a camera picture. Approaches with differential 
pictures and infrared illumination synchronized with the frame 
rate of the video camera or the use of polarized light are 
promising [7]. Therewith, eye-tracking for at least most light 
conditions except the extremes should be achievable. 

 
Figure 1: Measuring tilt and roll angle for standard 

interaction with mobile phones. 
As mentioned in the introduction, eye-trackers, which allow free 
movement of the head, also depend on head-tracking. 
Commercially available eye-trackers for free head movements are 
desktop systems and the camera stays in a stable position. For a 
mobile phone doing eye-tracking the situation is different. The 
camera is built into the device, which is hold by the hand of the 
user and naturally, the hand moves constantly. Especially angular 
movement cause very quick changes in the camera picture.  
To find the camera resolution required to achieve the same 
accuracy as the commercial eye-tracker, we did some experiments 
on the angle a mobile phone is held during standard operation. In 
Figure 1, a volunteer is asked to perform some standard tasks on 
his mobile phone in from of a setup allowing us to record the 
angles at which the mobile phone is held. The recorded data could 
be used to estimate the angles in which mobile phones are used. 

The recorded data could be used to establish vague estimations on 
the angles, mobile phones are used in. From our observation we 
estimated the tilt angle to be about 20° and a roll angle of about 
10°. 

 
Figure 2: An image delivered by the camera of the eye-

tracker. 
The camera of our eye-tracker (ERICA 1 ) has a video stream 
resolution of 640 x 480 pixels and projects an area of about 6 x 
4.5 cm (see Figure 2). This means for 1cm we have approximately 
100 pixels. 
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Figure 3: Estimation of the camera resolution necessary for a 
roll angle of 10°. 

In the following example calculation we estimate the camera 
resolution on the handheld device to get the same resolution as the 
commercial tracker we used. With a face width w of 15 cm, a 
typical distance d of 40 cm and a roll angle β of 10° the necessary 
camera resolution in horizontal direction results to approximately 
3000 pixels (see Figure 3). Already today, such camera 
resolutions are available in mobile phones, at least for still 
images. The supported video streams stay close under the 
required resolution. 
                                                                 
1 http://www.eyeresponse.com/ 



2.2 The Concept of Gaze Gestures 
Gestures are a well-known concept for computer human 
interaction. Typical examples of gestures for manual input are 
Unistroke [2] and Cirrin [6]. Usually, a gesture consists of a 
sequence of strokes, which are performed in a sequential time 
order. 
One advantage of gestures is that the number of available 
commands for one screen can be increased indefinitely by simply 
increasing the set of usable gestures (there is obviously a practical 
limit set by the complexity of the gesture for the user). If in 
contrast, commands are selected by looking at a specific area on 
the screen, for example buttons, as used in dwell-time based gaze 
interaction, the number of available commands is limited by the 
size of the screen and the resolution that can be achieved by eye-
gaze, i.e. the number of distinct areas that can be placed on it.  
That gestures do not require screen real estate is one of central 
reasons, why gestures are an appropriate interaction technique for 
small devices. This is very important because dwell-time based 
eye-gaze interfaces result in big sizes for interaction objects, i.e. 
large buttons and menu items. Especially on small displays of 
current mobile phones this is a major obstacle. Additionally using 
gestures would free the screen so it can be used for outputs of the 
applications. These observations are the reason why gaze gestures 
are worth to be examined in more detail.. 

2.2.1 The Gesture Algorithm 
When looking for gesture recognition algorithms we assessed the 
popular mouse gesture plug-in 2  for the Firefox browser. The 
algorithm has been developed for mouse interaction and takes the 
current x-y position, calculates the difference to a starting point 
and does an integer division for both coordinates by the grid size 
s. If the result is different from zero for at least one coordinate, 
the algorithm puts out a character representing the direction of the 
movement and the current position becomes the starting point for 
the next movement. Otherwise the algorithm waits for the next 
coordinates.  

 
Figure 4: The characters representing the directions. 

Figure 5 depicts an example for three different strokes and how 
coordinates are converted to a stroke, regarding the chosen grid 
size. Horizontal and vertical directions are represented by the 
letters U, D, L, and R for up, down, left and right respectively. 
Diagonal directions are given by 1, 3, 7, and 9 corresponding to 
the familiar layout of the number pad on a standard keyboard. The 
whole direction representation set is depicted in Figure 4. In a 
second step, the algorithm recognizes the actual gestures by 
                                                                 
2 http://optimoz.mozdev.org/gestures/ 

comparing the produced string that represents the movements 
with a given gesture pattern. If the gesture pattern matches, an 
action can be triggered. 
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Figure 5: Stroke detection. 
Another gesture recognition algorithm that inspired our work is 
EdgeWrite [8]. This algorithm uses the order in which four points, 
the corners of a square, are reached by the input device. The 
concept is depicted in Figure 6. It is easy to see, that all 
EdgeWrite gestures can be expressed with the tokens from the 
mouse gesture algorithm and consequently are a subset of the 
mouse gestures. This provides capability to recognize a complex 
alphabet. 

 
Figure 6: The four corners and the six connecting lines used 

for the EdgeWrite gestures and two examples for 
EdgeWritegestures (digits 0 and 2). 

2.2.2 Implementation of Gaze Gesture Recognition 
For our purpose, the basic approach used when working with 
mouse gestures is not feasible at all. The mouse gesture 
recognition algorithm is only used when a gesture key is pressed. 
This signals the algorithm that the user intends to do a gesture. In 
the basic setup, this key is the right mouse key. Of course, this has 
to be performed by the user. When looking at pure eye-gesture 
interaction, using a gesture key is not possible. Therefore, for our 
application of gaze gestures, we changed the algorithm to 
continuous recognition. That is, gestures are recognized in the 
moment they are performed. However for this to work sensible it 
means that we have to discriminate natural eye movement from 
gaze gestures. To achieve this, we enhanced the algorithm with a 
timeout value t. When the algorithm did not output a stroke within 
the time t, it outputs a colon as a timeout token as depicted in the 
middle of Figure 4. The timeout resets the gesture recognition on 
every fixation that lasts longer than this threshold. 

2.2.3 The Robustness of Gaze Gestures 
The gesture algorithm described above uses relative movements 
only. As a consequence it is greatly immune against any 
calibration shift caused by moving the mobile phone relative to 
the eyes. By choosing the size s of the grid, the size of the 
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gestures and the robustness on accuracy can be influenced. With a 
large grid size the gaze gestures are insensitive to inaccuracies up 
to size s.  
These properties make it possible to use an eye-tracker without 
any calibration, because the normal calibration process estimates 
the scaling and the translation to map the x-y position of the pupil 
to screen coordinates. As the gestures only use relative 
movements, absolute coordinates and thus the translation part is 
not needed at all. The scaling converts the sizes of movements of 
the pupil into sizes on the display and depends only on the 
distance of the eye from the display. The distance of the eye to 
the mobile phone does not vary much during operation and 
consequently it is possible to work with a fixed scaling factor 
throughout the whole interaction. 

3. PROTOTYPE 
Dealing with the new interaction technique of gaze gestures, there 
are neither ready-to-use hardware components available nor are 
there applications that make use of it. Hence to evaluate such a 
new approach we had to create a prototypical setup. For our 
prototype, we were combining existing hardware to create a 
prototypical device for our purpose. Naturally, we had to create 
the software ourselves as well. In this section, we will describe 
both, the experimental setup that provides the basis for acquiring 
the interaction and the design of the application. 

3.1 Experimental Setup 
When designing the experimental setup we considered mainly two 
different options. One is based on a mobile phone emulator on the 
PC and the second one uses a real phone. During the development 
and testing of the applications we realized that there is a 
significant difference in the user’s perception between these 
options. Having a real phone (even if stationary in front of the 
screen) conveys a much more realistic interaction experience than 
the emulator. Additionally having a real phone provided us with 
the possibility to explore this new interaction technique on 
different physical devices not looking like the emulator skin. 
To create this realistic setting we decided to use a commercial 
eye-tracker in combination with a mobile phone (Nokia N80) that 
supports wireless LAN for the experimental setup. Additionally 
we had a wooden apparatus with a hook-and-loop fastener 
attached to a screen in front of the participants to provide a fixed 
position for the phone. The camera of the eye-tracker was located 
underneath it. Since the eye-tracker we are using does not provide 
head tracking, we were using a chin rest for stabilizing the 
participants’ heads. The whole experimental setup with a 
participant is shown in Figure 7. 
It is important to note that the setting has been used since it 
exploits available hardware. Furthermore, it is appropriate for 
verifying the interaction techniques. 
During several sessions, the users held the phone in their hands 
and we could see the impact of movement on the interaction 
performance of both techniques. As the participants were not able 
to hold the hand still, which lead to a broken calibration on the 
phone, we used the apparatus for fixing the mobile phone to the 
screen during the study. As mentioned before, for the gesture 
algorithm small hand movements did not matter at all and thus, it 
still worked. But the classical dwell-time approach did not work 
anymore if the movement had been in the size of the interaction 
object, i.e. 2 cm, which is the height of the scroll button shown in 

Figure 9. Therefore, we decided to use the fixation of the mobile 
device for the final user study. 

 mobile phone attached to the 
screen 

Figure 7: Experimental Setup with user. 

chin rest for stabilizing the user’s 
head eye-tracker camera 

To react on gaze-input, the mobile phone requires the coordinates 
generated by the eye-tracker. Thus, for transmitting the gaze 
coordinates to the mobile phone, we developed software, written 
in C++, which acts as a simple socket server and sends out the 
coordinates to every connected device. The mobile phone was 
connected to this server using its built-in WLAN functionality. 
The eye-tracking application on the mobile phone was written in 
Java ME, which is Java for small devices with limited resources. 
Due to our setup, the calibration becomes a little more 
complicated. Therefore, the prototype uses a two-step calibration 
mechanism. At first, the users have to be calibrated to the eye-
tracker respectively its screen using the standard calibration 
mechanism of ERICA. After that they need to be calibrated to the 
mobile phone screen. For the second step, we had to implement 
our own calibration mechanism which will be explained in the 
next section. 

3.2 Mobile Phone Application 
The design rational for the prototype application has been to 
provide means for evaluating two different types of gaze 
interaction with mobile phones. On the one hand the classical eye-
gaze interaction that uses dwell-time for command invocation is 
considered. On the other hand is the translation from eye 
movements into commands, which we call gaze gesture 
interaction, is assessed. This section describes the application on 
the mobile phone that implements these interactions. 

3.2.1 Calibration 
In the prototype setup, users are calibrated to the screen of the 
commercial eye-tracking system. This means, the users’ gaze is 
translated to a pixel coordinate relative to this screen. Since the 
mobile phone has a different resolution and potentially a different 
absolute position, the scaling for both, the x and y-axis as well as 
the offset for both axes have to be calculated. This is required to 



translate each screen-coordinate to its corresponding equivalent 
on the mobile device. 
Therefore, we use a simple two-point calibration approach as 
shown in Figure 8. Users have to look at a point in the upper left 
corner for at least two seconds and afterwards in the lower right 
corner of the screen for the same amount of time. The results are 
two coordinates in the resolution of the eye-tracker screen. These 
are used to calculate the scaling and offset for both axes. 

  
Figure 8: Calibration screen. Step 1(left) and step 2(right). 

3.2.2 Classical Eye-Gaze 
For the classical eye-gaze part of the mobile application, we 
decided to use an application people are used to: a phone book, 
which can be used to search for people and call them. The 
implementation consists of a list of names, ordered by first name, 
which can be scrolled up and down and of which names can be 
chosen to start a call. 

  
Figure 9: Phone book application. 

The interaction with this list is based on dwell-time, that is, 
commands are executed by looking at a specific area for longer 
than a predefined threshold. Figure 9 shows the screen and its 
three interaction areas. The upper and lower fourth of the screen 
are used for scrolling. If a user looks at one of those areas for 
more than two seconds the list scrolls up respectively down. The 
longer the look remains in the area, the faster the list scrolls until 
the maximum speed has been reached. To activate a name, the 
inner 1/2 part of the screen has to be used. If a name is inside of 
this area it can be chosen by looking at it for the same threshold 
time as for activating the scrolling. 
Visual feedback is provided to the users to support them. If the 
gaze is pointed at an area, it is highlighted more intense. 
Therewith, it indicates, that an interaction is about to happen. 

The application includes a safety mechanism, for the case a wrong 
part is invoked from the list. Whenever a name is chosen, either 
with or without purpose, the users are asked to decide whether or 
not to call the person using a yes-or-no dialogue with two 
activation areas as shown in Figure 10. For this dialogue, dwell-
time interaction is used as well. That is, looking at yes or no for a 
specific amount of time will activate the respective command. 

 
Figure 10: Call screen with two choices. 

3.2.3 Gaze-Gestures 
The concept of gaze-gesture interaction differs fundamentally 
from the classical approach using dwell-time. Instead of fixed 
absolute coordinates it only depends on relative coordinates, 
because not the position of a pattern but only the pattern itself is 
of importance for the invocation of a specific command. 
Implicitly, this means that for eye gesture recognition no exact 
calibration is required and movements of the mobile phone do not 
matter. As mentioned before, regarding the factor mobility, this is 
a huge advantage compared to the classical approach. 
Since for gestures the length of one eye-stroke is required, a 
minimum value, the grid size s, must be defined. For our 
prototype we decided to use 60% of the smaller value of the 
mobile phone display extent, the screen width or the screen 
height. That is, the formula looks like this:  

s = 0.6 * Min(width,height) 
It is reasonable to assume, that the distances covered by eye 
movements are smaller than the display, at least in horizontal 
direction. In vertical direction the gaze position can move from 
the display to the keys. Choosing a grid size close to the 
dimension of the display increases the chances to distinguish 
reliably between intentional gestures and natural eye movements. 
This also means that the corners of the mobile phone display are 
perfect fixation points for the gestures. The grid size chosen for 
our prototype (Nokia N80) was 235 pixels on the mobile phone 
display, which translates to approximately 80 pixels on the eye-
tracker or a visual angle of 2.2°. Additionally to this value, a 
timeout has to be specified which interrupts a sequence of strokes. 
That is, if the user fixates a position for longer than the timeout, 
the gesture recognition produces the timeout token. For our 
prototype we set this value to 1.5 seconds. 
To test the gaze gestures we implemented a simple open and close 
interaction in our prototype. One gaze gesture opens the 
integrated web browser of the mobile phone, while another 
gesture closes the browser. The gaze gestures used are depicted in 
Figure 11. 



We designed the gestures so that the edges and corners of the 
mobile phone screen can be used as help points and help lines. 
The layout and complexity of the gestures used are a tradeoff. On 
the one hand they should be short, simple and easy to remember. 
On the other hand the gesture should not occur in the eye 
movements during normal interaction. To check the occurrences 
of gestures while interacting with a mobile phone, we evaluated 
eye movements for standard mobile phone usage, such as writing 
SMS. The results are presented in the section on evaluation. 

 
Figure 11: Open browser (left) and close browser (right) 

gestures. The red dot marks the start-point. 
In contrast to the dwell-time interaction, there is no intermediate 
feedback for the gestures. The only feedback is not on the gesture 
but on the action (e.g. the browser is started respectively closed). 

4. EVALUATION 
In our work, we want to find out whether eye-gaze interaction is 
an appropriate way of interacting with a mobile phone and how it 
compares to dwell-time based eye gaze interaction. Our research 
questions include: Are people able to perform eye-gaze 
interaction on mobile phones? How do people rate the different 
interaction types? Which interaction type is preferred by the 
users? 
To find the answers to these questions, we performed a two-
phased evaluation using the prototype described earlier. At first, 
we conducted a user study, for which we let the users perform the 
two different tasks of our mobile application and asked them to 
answer a questionnaire. In the second phase, a big dataset of user 
gazes for normal mobile phone interaction has been analyzed to 
find gesture appearances. 
This section describes the conduction of the user study and the 
evaluation. At the end the various results of both evaluations will 
be listed and explained in detail. 

4.1 Procedure 
4.1.1 User Study 
To evaluate the interaction types, we conducted a user study with 
eight participants in the age between 23 and 50. The average age 
was 30 years. Two participants were female, six were male. All of 
them owned a mobile phone, thus, they were used to dealing with 
mobile phones. Only one of them had ever tried eye-gaze 
interaction before. 
In the first phase, the general idea of eye-gaze interaction was 
explained to each participant, whereupon, they were calibrated to 
the commercial eye-tracker. After that, the mobile phone was 
attached to the screen and the second calibration was performed. 

For the study, each user had to perform two tasks. At first, the 
participants were told to select a predefined name from the phone 
book with dwell-time interaction for scrolling and selecting. The 
name was chosen by the tester and given to each participant after 
the functionality of the application was explained to them. The 
condition was that the name may not be located at the first two 
positions nor at the last two the list because they are the easiest to 
choose since scrolling is only possible in one direction for them. 
Without telling them, the time has been logged for each user. In 
particular we recorded how long it took them to choose the name. 
The second task was for testing gaze gesture interaction. After the 
idea and functionality of the gaze gesture application had been 
explained to the participants, they were told to open the browser 
with the gesture. Therefore, each participant could try to execute 
the gesture until they finally managed to do so. When they 
managed to open the browser, they were asked to perform the 
gaze gesture for closing it again. 
At the end of the practical part, the participants were asked to 
freely answer questions prepared in a questionnaire. Questions 
included demographic data and preferences regarding the 
interaction types. 

4.1.2 Gesture Occurrence Evaluation 
The main goal of the gaze gesture occurrence evaluation was to 
find out, whether the gaze gestures used in the study appear in 
standard mobile phone interactions. Therefore, we were able to 
access a dataset that was created during the work for [3], in which 
Holleis et al. were creating a keystroke level model for advanced 
mobile phone interaction. For their evaluation, they recorded the 
gaze-coordinates of 11 persons for three different standard tasks: 
writing a text message, changing the ring tone of the mobile 
phone and setting the alarm clock. Each participant performed 
these tasks with his or her own mobile phone. Fortunately, they 
used the same commercial eye-tracker and thus the same data 
format. On this dataset, we applied the same algorithm that we 
used for the gesture recognition. 

4.2 Results 
4.2.1 Execution 
Each participant was able to perform both tasks without greater 
problems. For the phone book selection, the fastest participant 
took 12 seconds to call the person while the slowest one needed 
37 seconds. Two persons accidentally chose the wrong person 
first but had no problem recovering from their error. To perform a 
single gesture, the fastest participant needed approximately 
300ms per stroke and the slowest one needed 860 ms per stroke. 
This means that setting the upper time limit to 1000 ms would not 
decrease the gesture recognition efficiency but would decrease the 
number of unintended gestures. Thus, we think that for future 
experiments, a threshold of 1 second for each stroke would be the 
most appropriate. 

4.2.2 User Preferences 
After the practical part, one of the first questions for the 
participants was about the interaction type they preferred and 
why. As depicted in Figure 12, two participants preferred gestures 
while the majority of five people tended to the dwell-time 
interaction. Only one participant was undecided. Amongst the two 
participants that favored the gestures, one noted that he uses 



mouse gestures with an internet browser and thus, knows how 
helpful they can become if one gets used to them. 
Consequent to this question, the participants were asked about 
advantages and disadvantages of the respective interaction types. 
For dwell-time, it was noted by five people (four of them favoring 
dwell time) that for them it is a more natural interaction. One 
reason for this was what one called it: similar to the interaction 
one would have done with the hands. Hence, they rated the 
gestures to be more complex and stated that it could be hard to 
remember the gestures, even more, if they get too complex. 
Two participants, who stated that they liked the gesture approach, 
said that they found it hard to imagine whether this concept has 
the potential to support manifold applications like dwell-time. 
They named this limitation as a disadvantage of gaze-gestures. 

User Preferences
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Figure 12: Users favoring a specific interaction type. 

The biggest disadvantage of dwell-time lies in the way, in which 
people normally interact with computer devices. They read and 
then they interact. The problem is that a look that is longer than 
the threshold invokes an action. Thus, people get stressed. Five 
participants explicitly mentioned that they found it hard to “not 
perform” an action when they just wanted to read the names in the 
list for example. This effect is well-known and first mentioned by 
Jacob [4], who named this the “Midas Touch Problem”. Wherever 
you look, something will happen. Two of the participant 
described themselves “in panic” when they were forced to look 
away from a specific point to avoid interaction. It seems 
important to mention, that the two people favoring the gestures 
were amongst the five mentioning this problem. This weakness 
shows the power of gestures, since for them, this problem simply 
does not exist. Gestures and thus commands are only invoked if 
the user intends to do so. 
Our results show, that the classical gaze-interaction approach 
using dwell-time is by far the more intuitive one. This is 
promoted by its characteristic of being a direct interaction, which 
enables feedback mechanisms. Nevertheless, the gesture approach 
has proven to be an appropriate alternative for gaze interaction. 
Two participants even favored it mostly due to its robustness 
compared to the dwell-time method. Moreover, it is a two-sided 
robustness. On the one hand, it is robust to input errors, since it is 
unlikely that unintended gestures appear, as explained in the next 
chapter. On the other hand, it does not depend on an exact 
calibration. For mobile phones, this is an undeniable advantage, 
since it lies in the nature of mobile devices that they are 

constantly moved and cannot be positioned fix in front of the 
users’ eyes. 

4.2.3 Gestures Occurrence 
Overall, the dataset available to us, contained 37 minutes of eye-
gaze interaction with mobile phones. On this set, we applied our 
gesture algorithm with the same values that we used for our 
application. The maximum time threshold (t) was set to 1.5 
seconds and the grid size s was set to 80 pixels (in the pixel units 
of the commercial eye tracker ERICA). During the 37 minutes of 
recorded data, there was only one appearance of one gesture, the 
one for opening the browser (see Figure 11 right). 

Table 1: Gesture string for the same dataset of 95 seconds eye-
movement but with different parameters. 

Parameter
s 

Gesture String 

s=60, 
t=1500 

7LRDU37RLRD7::::RL::RDUL3U::LRL 
RL:UD37::::::RD7::RL::UD::UDRL:::RL 
37DU::::::::::RLRDL::DU37:3L37:U:DU 

s=80, 
t=1500 

7LDU3D7::3U:::::::DU:DU:::RL:37:::::: 
RL:R:::L:::R:L::RLRLDU::::::::::RLRDL 
::::D::::UDU 

s=100 
t=1000 

7LDU3::::DU:::::::::::::::::::RL::DU:::::::::: 
RL:::R:::L:::::::::::::D::::U::D:::::::::::UL::::::
:::37::::R 

 
In our algorithm the value used for the minimum stroke depends 
on the screen size of the mobile phone: the smaller the mobile 
phone screen, the smaller the value. Thus, we decided to run the 
test a second time, with a smaller value as well, to see if the 
number of unintended gestures increases. Table 1 shows the 
gesture strings for the same dataset of coordinates but for different 
grid sizes. The table explicitly states why a second test row is 
necessary, since for the smaller grid size s, more strokes and thus, 
more possible unintended gestures occur As expected, setting the 
minimum stroke value to 60 pixels three unintentional 
occurrences of gaze gestures, this time of the closing gesture, 
were found in the 37 minutes of interaction, which still is a very 
small amount. Table 2 presents these results. 

Table 2: Occurrences of unintended gestures during 37 
minutes for three different interaction tasks. 

 
R1R7 D9D7 

s=60 
t=1500 

0 3 

s=80 
t=1500 

1 0 

s=100 
t=1000 

0 0 

 
The calculations with different parameter settings show that the 
chance of unintended invocation by gaze gestures decreases if the 
value s is increased or t is decreased. This means that adjusting 
these values minimizes the risk of unwillingly executed 



commands by gaze gestures. We showed that in our study, no 
stroke was performed that took the participant longer than 860ms. 
Thus, our threshold of 1500ms was set way too high. To be on the 
safe side, we propose a new value t of 1000ms, i.e. one second. 
We set s to 80 pixels because we estimated 60% of the smaller 
extent of the mobile phone’s screen to be a good value. However, 
all participants used the corners of the screen to perform their 
gesture. From the analysis with different parameters we suggest to 
use values of s=100px, which is 80% of the width of our 
prototype mobile phone and t=1000ms. With these values no 
unintended occurrences of the gaze gestures used in the study 
were found as see in Table 2. 
Even though our results show that the gestures are not likely to 
appear in normal eye-gaze interaction, they can. Consequently, 
commands may be invoked unwillingly. Thus, we propose an 
improvement to our algorithm. Not every gesture is needed in 
every context. For example a gesture for opening an application 
makes no sense when the application is currently open. The idea 
is to use context-sensitive gestures instead of the current 
approach. That is, a gesture is only active in a specific context and 
will be inactive in any other case. Therewith, the risk of 
performing a gesture without purpose is reduced to a minimum. 

5. DISCUSSION AND FUTURE WORK 
In this paper, we described our work conducted to evaluate eye 
gaze interaction as a new input method for mobile phones. We 
analyzed and compared a dwell time based gaze interaction 
approach to a completely new concept that we refer to as gaze-
gestures. Gaze gestures have several advantages compared to the 
interaction based on dwell-time.  
Most notably: 

• The gestures are robust to movements or the absolute 
position of the user’s gaze, since only relative movements 
are considered. This makes it possible to use this interaction 
technique without exact calibration.  

• Gaze gestures are unlikely to be executed unwillingly and 
the number of gestures that can be practically used is very 
large. 

• No screen real estate is required for eye-gesture interaction.  
In a user study, we were able to show that users liked the idea of 
gaze interaction with mobile phones and none of the participants 
had grave problems performing the tasks given to them. For 
further evaluation of the gaze gestures concept, we used an 
existing dataset of 37 minutes of standard interaction with mobile 
phones to see, whether the chosen gestures could be performed 
unintended. The appearance rate was very low with a number of 
one occurrence for our gestures.  
From the evaluation, we learned that the values for stroke size and 
the time threshold highly influence the occurrence rate. Thus, 
combined with the time measurements from the user study we 
determined the optimal values to be s=100 pixel and t=1000ms.  
For further studies, these values should be used. Although the 
majority of participants preferred the classical gaze interaction, 
our evaluation shows, that gestures have a great potential for the 
use with mobile phones. 
Even though, the concept has proven useful, there are still 
technical challenges to solve. For dwell-time based interaction, a 
high accuracy of the tracking has to be reached combined with 

auto calibration. Since for gestures these limitations do not exist, 
they could become faster available because only a low accuracy 
and low cost tracker is required. In [1] Dickie et al. are using a 
low cost solution that could most probably be extended to be used 
for facilitating gaze gesture interaction. Even though a movable 
prototype was not needed for our evaluation, since it concerned 
the interaction techniques and their applicability to small screen 
devices, for future studies, we are planning to build a hand-held 
prototype to validate our concept in outdoor studies. 
In the evaluation, some participants mentioned that gestures may 
not be appropriate for a big range of applications, but we think 
they are. Therefore, one of the next logical steps will be to 
develop and, more importantly, evaluate multiple domains of eye-
gesture interaction. Ideally, they should include 1:1 realizations of 
dwell-time controllable applications, which would allow a much 
more intense comparison of the two approaches.  
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