
Eye-Gaze Interaction for Mobile Phones

Heiko Drewes
Media Informatics Group

Amalienstr. 17, 80333 Munich,
Germany

heiko.drewes@ifi.lmu.de

Alexander De Luca
Media Informatics Group

Amalienstr. 17, 80333 Munich,
Germany

alexander.de.luca@ifi.lmu.de

Albrecht Schmidt

Frauenhofer IAIS; University of Bonn
Schloss Birlinghoven, St. Augustin,

Germany
albrecht.schmidt@acm.org

ABSTRACT
In this paper, we discuss the use of eye-gaze tracking technology
for mobile phones. In particular we investigate how gaze
interaction can be used to control applications on handheld
devices. In contrast to eye-tracking systems for desktop
computers, mobile devices imply several problems like the
intensity of light for outdoor use and calibration issues. Therefore,
we compared two different approaches for controlling mobile
phones with the eyes: standard eye-gaze interaction based on the
dwell-time method and gaze gestures. Gaze gestures are a new
concept, which we think has the potential to overcome many of
these problems. We conducted a user study to see whether people
are able to interact with applications using these approaches. The
results confirm that eye-gaze interaction for mobile phones is
attractive for the users and that the gaze gestures are an
alternative method for eye-gaze based interaction.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – Input devices and strategies.

General Terms
Algorithms, Design, Reliability, Human Factors.

Keywords
Eye-Tracking, Mobile Phones, Eye-Gaze Interaction, Eye-
Gestures.

1. INTRODUCTION
Nowadays, eye-tracking technology works with a video camera
and image processing algorithms to detect the user’s pupil. Most
mobile phones sold today have a camera already built-in. Even
more, many modern phones have a secondary camera on the front
side as well which is included for video conferencing. Looking
retrospectively at the development of mobile devices, it is
noticeable that their processing power as well as the quality of
their components increases steadily. Thus, it is only a matter of

time until eye-tracking technology can be offered within these
devices in software for virtually no extra costs.
Eye-gaze interaction could be a convenient way of controlling
mobile devices. It works without mechanical contacts, which
means a dirt free interaction. The eyes can move quickly and
normally without fatigue. As small mobile devices do not have
elaborated input abilities like a big keyboard for two-handed
typing and moreover, they do not have any pointing device like a
mouse or a touchpad, eye-gaze could be an additional modality
for input available in the near future.
Eye-trackers are used for more than twenty years now as outlined
in [5]. They are used for computer input in the field of
accessibility providing means of input for motor impaired people.
A further use is in advertising, communication design and
usability analysis. Since a couple of years commercially available
desktop eye-trackers work reliable.
Nevertheless, eye-tracking technology is not free of problems.
One of the problems is the inaccuracy of the eye-gaze position
caused by the jitter of the eye. As a consequence all eye-gaze
interaction objects need sizes of at least one degree visual angle.
In the distance of an arm length, which is a typical distance for
mobile phones, this size is a little bit less than the size of the
thumb nail. This means that there can be only few interaction
objects on the small-sized displays of mobile phones. Another
problem is the freedom of move in front of an eye-tracker.
Comfortable eye-trackers do not rely on tracking the eye only, but
also on head-tracking to achieve this, but work on stationary
systems. For handheld devices this problem becomes even more
severe because they can change the direction of the camera very
quickly due to movement of the hand. Thus dwell-time based eye-
tracking interaction on mobile devices will require some form of
head-tracking. A further problem lies in the use of an infrared
LED to gain the glint (reflection spot on the eyeball), which is
used as a reference point for the tracking. For outdoor use in
bright sun the detection of the reflection spot becomes
problematic. Finally the need of a calibration process is a problem
for mobile devices, because it comprises too much effort for just a
short interaction and the calibration is lost after putting the mobile
phone to the ear or back into the pocket. Such attention shifts are
very common for mobile devices.

- left blank for the conference copyright note - All the problems mentioned above mainly result in accuracy
problems of the tracked gaze position. For this reason we
investigate in our research two different approaches. One
approach is the eye-gaze interaction based on the dwell-time
method, for which accuracy problems need to be solved. The
other approach is an innovative concept based on gaze gestures.
Gestures do not require an absolute position and hence we think

this approach has the potential to overcome the accuracy
problems.
In the next section we will describe the basics of eye-tracking on
mobile phones. It contains descriptions of common problems and
finally explains the advantages of gaze gestures and how they
work. After that, our prototype hardware and software as well as
the whole experimental setup will be described in detail. This has
been used for a two-part evaluation of which the procedure and
results are explained. At the end, we will summarize our work and
give an outlook on activities that have been planned as a follow
up to this paper.

2. EYE-TRACKING ON MOBILE PHONES
2.1 Basics
Eye-tracking technology for interaction with mobile phones is not
yet available. One reason is the lack of processing power to
handle video streams on these devices in real-time. But it is
foreseeable by extrapolating the technological trend, that the
required processing power will be available over the next years.
Another issue typical for mobile phones is outdoor use. This
implies varying light conditions and saturation effects by bright
sun light, which makes it difficult to reliably detect the pupil and
the glint within a camera picture. Approaches with differential
pictures and infrared illumination synchronized with the frame
rate of the video camera or the use of polarized light are
promising [7]. Therewith, eye-tracking for at least most light
conditions except the extremes should be achievable.

Figure 1: Measuring tilt and roll angle for standard

interaction with mobile phones.
As mentioned in the introduction, eye-trackers, which allow free
movement of the head, also depend on head-tracking.
Commercially available eye-trackers for free head movements are
desktop systems and the camera stays in a stable position. For a
mobile phone doing eye-tracking the situation is different. The
camera is built into the device, which is hold by the hand of the
user and naturally, the hand moves constantly. Especially angular
movement cause very quick changes in the camera picture.
To find the camera resolution required to achieve the same
accuracy as the commercial eye-tracker, we did some experiments
on the angle a mobile phone is held during standard operation. In
Figure 1, a volunteer is asked to perform some standard tasks on
his mobile phone in from of a setup allowing us to record the
angles at which the mobile phone is held. The recorded data could
be used to estimate the angles in which mobile phones are used.

The recorded data could be used to establish vague estimations on
the angles, mobile phones are used in. From our observation we
estimated the tilt angle to be about 20° and a roll angle of about
10°.

Figure 2: An image delivered by the camera of the eye-

tracker.
The camera of our eye-tracker (ERICA 1) has a video stream
resolution of 640 x 480 pixels and projects an area of about 6 x
4.5 cm (see Figure 2). This means for 1cm we have approximately
100 pixels.

°≈⇒== 10
280

15
22

tan αα
d

w

d
x

22
tan =⎟

⎠
⎞

⎜
⎝
⎛ + βα

pxcmdx 300036.0402
2

tan2 ≈⋅⋅≈⎟
⎠
⎞

⎜
⎝
⎛ +⋅= βα

 w
 x

dα β

Figure 3: Estimation of the camera resolution necessary for a
roll angle of 10°.

In the following example calculation we estimate the camera
resolution on the handheld device to get the same resolution as the
commercial tracker we used. With a face width w of 15 cm, a
typical distance d of 40 cm and a roll angle β of 10° the necessary
camera resolution in horizontal direction results to approximately
3000 pixels (see Figure 3). Already today, such camera
resolutions are available in mobile phones, at least for still
images. The supported video streams stay close under the
required resolution.

1 http://www.eyeresponse.com/

2.2 The Concept of Gaze Gestures
Gestures are a well-known concept for computer human
interaction. Typical examples of gestures for manual input are
Unistroke [2] and Cirrin [6]. Usually, a gesture consists of a
sequence of strokes, which are performed in a sequential time
order.
One advantage of gestures is that the number of available
commands for one screen can be increased indefinitely by simply
increasing the set of usable gestures (there is obviously a practical
limit set by the complexity of the gesture for the user). If in
contrast, commands are selected by looking at a specific area on
the screen, for example buttons, as used in dwell-time based gaze
interaction, the number of available commands is limited by the
size of the screen and the resolution that can be achieved by eye-
gaze, i.e. the number of distinct areas that can be placed on it.
That gestures do not require screen real estate is one of central
reasons, why gestures are an appropriate interaction technique for
small devices. This is very important because dwell-time based
eye-gaze interfaces result in big sizes for interaction objects, i.e.
large buttons and menu items. Especially on small displays of
current mobile phones this is a major obstacle. Additionally using
gestures would free the screen so it can be used for outputs of the
applications. These observations are the reason why gaze gestures
are worth to be examined in more detail..

2.2.1 The Gesture Algorithm
When looking for gesture recognition algorithms we assessed the
popular mouse gesture plug-in 2 for the Firefox browser. The
algorithm has been developed for mouse interaction and takes the
current x-y position, calculates the difference to a starting point
and does an integer division for both coordinates by the grid size
s. If the result is different from zero for at least one coordinate,
the algorithm puts out a character representing the direction of the
movement and the current position becomes the starting point for
the next movement. Otherwise the algorithm waits for the next
coordinates.

Figure 4: The characters representing the directions.

Figure 5 depicts an example for three different strokes and how
coordinates are converted to a stroke, regarding the chosen grid
size. Horizontal and vertical directions are represented by the
letters U, D, L, and R for up, down, left and right respectively.
Diagonal directions are given by 1, 3, 7, and 9 corresponding to
the familiar layout of the number pad on a standard keyboard. The
whole direction representation set is depicted in Figure 4. In a
second step, the algorithm recognizes the actual gestures by

2 http://optimoz.mozdev.org/gestures/

comparing the produced string that represents the movements
with a given gesture pattern. If the gesture pattern matches, an
action can be triggered.

R 9

U

starting point
for first stroke

starting point
for second stroke

detected
stroke

Figure 5: Stroke detection.
Another gesture recognition algorithm that inspired our work is
EdgeWrite [8]. This algorithm uses the order in which four points,
the corners of a square, are reached by the input device. The
concept is depicted in Figure 6. It is easy to see, that all
EdgeWrite gestures can be expressed with the tokens from the
mouse gesture algorithm and consequently are a subset of the
mouse gestures. This provides capability to recognize a complex
alphabet.

Figure 6: The four corners and the six connecting lines used

for the EdgeWrite gestures and two examples for
EdgeWritegestures (digits 0 and 2).

2.2.2 Implementation of Gaze Gesture Recognition
For our purpose, the basic approach used when working with
mouse gestures is not feasible at all. The mouse gesture
recognition algorithm is only used when a gesture key is pressed.
This signals the algorithm that the user intends to do a gesture. In
the basic setup, this key is the right mouse key. Of course, this has
to be performed by the user. When looking at pure eye-gesture
interaction, using a gesture key is not possible. Therefore, for our
application of gaze gestures, we changed the algorithm to
continuous recognition. That is, gestures are recognized in the
moment they are performed. However for this to work sensible it
means that we have to discriminate natural eye movement from
gaze gestures. To achieve this, we enhanced the algorithm with a
timeout value t. When the algorithm did not output a stroke within
the time t, it outputs a colon as a timeout token as depicted in the
middle of Figure 4. The timeout resets the gesture recognition on
every fixation that lasts longer than this threshold.

2.2.3 The Robustness of Gaze Gestures
The gesture algorithm described above uses relative movements
only. As a consequence it is greatly immune against any
calibration shift caused by moving the mobile phone relative to
the eyes. By choosing the size s of the grid, the size of the

mouse or
gaze path

U

L

D

R

7

1

9

3

:

gestures and the robustness on accuracy can be influenced. With a
large grid size the gaze gestures are insensitive to inaccuracies up
to size s.
These properties make it possible to use an eye-tracker without
any calibration, because the normal calibration process estimates
the scaling and the translation to map the x-y position of the pupil
to screen coordinates. As the gestures only use relative
movements, absolute coordinates and thus the translation part is
not needed at all. The scaling converts the sizes of movements of
the pupil into sizes on the display and depends only on the
distance of the eye from the display. The distance of the eye to
the mobile phone does not vary much during operation and
consequently it is possible to work with a fixed scaling factor
throughout the whole interaction.

3. PROTOTYPE
Dealing with the new interaction technique of gaze gestures, there
are neither ready-to-use hardware components available nor are
there applications that make use of it. Hence to evaluate such a
new approach we had to create a prototypical setup. For our
prototype, we were combining existing hardware to create a
prototypical device for our purpose. Naturally, we had to create
the software ourselves as well. In this section, we will describe
both, the experimental setup that provides the basis for acquiring
the interaction and the design of the application.

3.1 Experimental Setup
When designing the experimental setup we considered mainly two
different options. One is based on a mobile phone emulator on the
PC and the second one uses a real phone. During the development
and testing of the applications we realized that there is a
significant difference in the user’s perception between these
options. Having a real phone (even if stationary in front of the
screen) conveys a much more realistic interaction experience than
the emulator. Additionally having a real phone provided us with
the possibility to explore this new interaction technique on
different physical devices not looking like the emulator skin.
To create this realistic setting we decided to use a commercial
eye-tracker in combination with a mobile phone (Nokia N80) that
supports wireless LAN for the experimental setup. Additionally
we had a wooden apparatus with a hook-and-loop fastener
attached to a screen in front of the participants to provide a fixed
position for the phone. The camera of the eye-tracker was located
underneath it. Since the eye-tracker we are using does not provide
head tracking, we were using a chin rest for stabilizing the
participants’ heads. The whole experimental setup with a
participant is shown in Figure 7.
It is important to note that the setting has been used since it
exploits available hardware. Furthermore, it is appropriate for
verifying the interaction techniques.
During several sessions, the users held the phone in their hands
and we could see the impact of movement on the interaction
performance of both techniques. As the participants were not able
to hold the hand still, which lead to a broken calibration on the
phone, we used the apparatus for fixing the mobile phone to the
screen during the study. As mentioned before, for the gesture
algorithm small hand movements did not matter at all and thus, it
still worked. But the classical dwell-time approach did not work
anymore if the movement had been in the size of the interaction
object, i.e. 2 cm, which is the height of the scroll button shown in

Figure 9. Therefore, we decided to use the fixation of the mobile
device for the final user study.

 mobile phone attached to the
screen

Figure 7: Experimental Setup with user.

chin rest for stabilizing the user’s
head eye-tracker camera

To react on gaze-input, the mobile phone requires the coordinates
generated by the eye-tracker. Thus, for transmitting the gaze
coordinates to the mobile phone, we developed software, written
in C++, which acts as a simple socket server and sends out the
coordinates to every connected device. The mobile phone was
connected to this server using its built-in WLAN functionality.
The eye-tracking application on the mobile phone was written in
Java ME, which is Java for small devices with limited resources.
Due to our setup, the calibration becomes a little more
complicated. Therefore, the prototype uses a two-step calibration
mechanism. At first, the users have to be calibrated to the eye-
tracker respectively its screen using the standard calibration
mechanism of ERICA. After that they need to be calibrated to the
mobile phone screen. For the second step, we had to implement
our own calibration mechanism which will be explained in the
next section.

3.2 Mobile Phone Application
The design rational for the prototype application has been to
provide means for evaluating two different types of gaze
interaction with mobile phones. On the one hand the classical eye-
gaze interaction that uses dwell-time for command invocation is
considered. On the other hand is the translation from eye
movements into commands, which we call gaze gesture
interaction, is assessed. This section describes the application on
the mobile phone that implements these interactions.

3.2.1 Calibration
In the prototype setup, users are calibrated to the screen of the
commercial eye-tracking system. This means, the users’ gaze is
translated to a pixel coordinate relative to this screen. Since the
mobile phone has a different resolution and potentially a different
absolute position, the scaling for both, the x and y-axis as well as
the offset for both axes have to be calculated. This is required to

translate each screen-coordinate to its corresponding equivalent
on the mobile device.
Therefore, we use a simple two-point calibration approach as
shown in Figure 8. Users have to look at a point in the upper left
corner for at least two seconds and afterwards in the lower right
corner of the screen for the same amount of time. The results are
two coordinates in the resolution of the eye-tracker screen. These
are used to calculate the scaling and offset for both axes.

Figure 8: Calibration screen. Step 1(left) and step 2(right).

3.2.2 Classical Eye-Gaze
For the classical eye-gaze part of the mobile application, we
decided to use an application people are used to: a phone book,
which can be used to search for people and call them. The
implementation consists of a list of names, ordered by first name,
which can be scrolled up and down and of which names can be
chosen to start a call.

Figure 9: Phone book application.

The interaction with this list is based on dwell-time, that is,
commands are executed by looking at a specific area for longer
than a predefined threshold. Figure 9 shows the screen and its
three interaction areas. The upper and lower fourth of the screen
are used for scrolling. If a user looks at one of those areas for
more than two seconds the list scrolls up respectively down. The
longer the look remains in the area, the faster the list scrolls until
the maximum speed has been reached. To activate a name, the
inner 1/2 part of the screen has to be used. If a name is inside of
this area it can be chosen by looking at it for the same threshold
time as for activating the scrolling.
Visual feedback is provided to the users to support them. If the
gaze is pointed at an area, it is highlighted more intense.
Therewith, it indicates, that an interaction is about to happen.

The application includes a safety mechanism, for the case a wrong
part is invoked from the list. Whenever a name is chosen, either
with or without purpose, the users are asked to decide whether or
not to call the person using a yes-or-no dialogue with two
activation areas as shown in Figure 10. For this dialogue, dwell-
time interaction is used as well. That is, looking at yes or no for a
specific amount of time will activate the respective command.

Figure 10: Call screen with two choices.

3.2.3 Gaze-Gestures
The concept of gaze-gesture interaction differs fundamentally
from the classical approach using dwell-time. Instead of fixed
absolute coordinates it only depends on relative coordinates,
because not the position of a pattern but only the pattern itself is
of importance for the invocation of a specific command.
Implicitly, this means that for eye gesture recognition no exact
calibration is required and movements of the mobile phone do not
matter. As mentioned before, regarding the factor mobility, this is
a huge advantage compared to the classical approach.
Since for gestures the length of one eye-stroke is required, a
minimum value, the grid size s, must be defined. For our
prototype we decided to use 60% of the smaller value of the
mobile phone display extent, the screen width or the screen
height. That is, the formula looks like this:

s = 0.6 * Min(width,height)
It is reasonable to assume, that the distances covered by eye
movements are smaller than the display, at least in horizontal
direction. In vertical direction the gaze position can move from
the display to the keys. Choosing a grid size close to the
dimension of the display increases the chances to distinguish
reliably between intentional gestures and natural eye movements.
This also means that the corners of the mobile phone display are
perfect fixation points for the gestures. The grid size chosen for
our prototype (Nokia N80) was 235 pixels on the mobile phone
display, which translates to approximately 80 pixels on the eye-
tracker or a visual angle of 2.2°. Additionally to this value, a
timeout has to be specified which interrupts a sequence of strokes.
That is, if the user fixates a position for longer than the timeout,
the gesture recognition produces the timeout token. For our
prototype we set this value to 1.5 seconds.
To test the gaze gestures we implemented a simple open and close
interaction in our prototype. One gaze gesture opens the
integrated web browser of the mobile phone, while another
gesture closes the browser. The gaze gestures used are depicted in
Figure 11.

We designed the gestures so that the edges and corners of the
mobile phone screen can be used as help points and help lines.
The layout and complexity of the gestures used are a tradeoff. On
the one hand they should be short, simple and easy to remember.
On the other hand the gesture should not occur in the eye
movements during normal interaction. To check the occurrences
of gestures while interacting with a mobile phone, we evaluated
eye movements for standard mobile phone usage, such as writing
SMS. The results are presented in the section on evaluation.

Figure 11: Open browser (left) and close browser (right)

gestures. The red dot marks the start-point.
In contrast to the dwell-time interaction, there is no intermediate
feedback for the gestures. The only feedback is not on the gesture
but on the action (e.g. the browser is started respectively closed).

4. EVALUATION
In our work, we want to find out whether eye-gaze interaction is
an appropriate way of interacting with a mobile phone and how it
compares to dwell-time based eye gaze interaction. Our research
questions include: Are people able to perform eye-gaze
interaction on mobile phones? How do people rate the different
interaction types? Which interaction type is preferred by the
users?
To find the answers to these questions, we performed a two-
phased evaluation using the prototype described earlier. At first,
we conducted a user study, for which we let the users perform the
two different tasks of our mobile application and asked them to
answer a questionnaire. In the second phase, a big dataset of user
gazes for normal mobile phone interaction has been analyzed to
find gesture appearances.
This section describes the conduction of the user study and the
evaluation. At the end the various results of both evaluations will
be listed and explained in detail.

4.1 Procedure
4.1.1 User Study
To evaluate the interaction types, we conducted a user study with
eight participants in the age between 23 and 50. The average age
was 30 years. Two participants were female, six were male. All of
them owned a mobile phone, thus, they were used to dealing with
mobile phones. Only one of them had ever tried eye-gaze
interaction before.
In the first phase, the general idea of eye-gaze interaction was
explained to each participant, whereupon, they were calibrated to
the commercial eye-tracker. After that, the mobile phone was
attached to the screen and the second calibration was performed.

For the study, each user had to perform two tasks. At first, the
participants were told to select a predefined name from the phone
book with dwell-time interaction for scrolling and selecting. The
name was chosen by the tester and given to each participant after
the functionality of the application was explained to them. The
condition was that the name may not be located at the first two
positions nor at the last two the list because they are the easiest to
choose since scrolling is only possible in one direction for them.
Without telling them, the time has been logged for each user. In
particular we recorded how long it took them to choose the name.
The second task was for testing gaze gesture interaction. After the
idea and functionality of the gaze gesture application had been
explained to the participants, they were told to open the browser
with the gesture. Therefore, each participant could try to execute
the gesture until they finally managed to do so. When they
managed to open the browser, they were asked to perform the
gaze gesture for closing it again.
At the end of the practical part, the participants were asked to
freely answer questions prepared in a questionnaire. Questions
included demographic data and preferences regarding the
interaction types.

4.1.2 Gesture Occurrence Evaluation
The main goal of the gaze gesture occurrence evaluation was to
find out, whether the gaze gestures used in the study appear in
standard mobile phone interactions. Therefore, we were able to
access a dataset that was created during the work for [3], in which
Holleis et al. were creating a keystroke level model for advanced
mobile phone interaction. For their evaluation, they recorded the
gaze-coordinates of 11 persons for three different standard tasks:
writing a text message, changing the ring tone of the mobile
phone and setting the alarm clock. Each participant performed
these tasks with his or her own mobile phone. Fortunately, they
used the same commercial eye-tracker and thus the same data
format. On this dataset, we applied the same algorithm that we
used for the gesture recognition.

4.2 Results
4.2.1 Execution
Each participant was able to perform both tasks without greater
problems. For the phone book selection, the fastest participant
took 12 seconds to call the person while the slowest one needed
37 seconds. Two persons accidentally chose the wrong person
first but had no problem recovering from their error. To perform a
single gesture, the fastest participant needed approximately
300ms per stroke and the slowest one needed 860 ms per stroke.
This means that setting the upper time limit to 1000 ms would not
decrease the gesture recognition efficiency but would decrease the
number of unintended gestures. Thus, we think that for future
experiments, a threshold of 1 second for each stroke would be the
most appropriate.

4.2.2 User Preferences
After the practical part, one of the first questions for the
participants was about the interaction type they preferred and
why. As depicted in Figure 12, two participants preferred gestures
while the majority of five people tended to the dwell-time
interaction. Only one participant was undecided. Amongst the two
participants that favored the gestures, one noted that he uses

mouse gestures with an internet browser and thus, knows how
helpful they can become if one gets used to them.
Consequent to this question, the participants were asked about
advantages and disadvantages of the respective interaction types.
For dwell-time, it was noted by five people (four of them favoring
dwell time) that for them it is a more natural interaction. One
reason for this was what one called it: similar to the interaction
one would have done with the hands. Hence, they rated the
gestures to be more complex and stated that it could be hard to
remember the gestures, even more, if they get too complex.
Two participants, who stated that they liked the gesture approach,
said that they found it hard to imagine whether this concept has
the potential to support manifold applications like dwell-time.
They named this limitation as a disadvantage of gaze-gestures.

User Preferences

0

1

2

3

4

5

6

gestures
dwell-t ime
undecided

Figure 12: Users favoring a specific interaction type.

The biggest disadvantage of dwell-time lies in the way, in which
people normally interact with computer devices. They read and
then they interact. The problem is that a look that is longer than
the threshold invokes an action. Thus, people get stressed. Five
participants explicitly mentioned that they found it hard to “not
perform” an action when they just wanted to read the names in the
list for example. This effect is well-known and first mentioned by
Jacob [4], who named this the “Midas Touch Problem”. Wherever
you look, something will happen. Two of the participant
described themselves “in panic” when they were forced to look
away from a specific point to avoid interaction. It seems
important to mention, that the two people favoring the gestures
were amongst the five mentioning this problem. This weakness
shows the power of gestures, since for them, this problem simply
does not exist. Gestures and thus commands are only invoked if
the user intends to do so.
Our results show, that the classical gaze-interaction approach
using dwell-time is by far the more intuitive one. This is
promoted by its characteristic of being a direct interaction, which
enables feedback mechanisms. Nevertheless, the gesture approach
has proven to be an appropriate alternative for gaze interaction.
Two participants even favored it mostly due to its robustness
compared to the dwell-time method. Moreover, it is a two-sided
robustness. On the one hand, it is robust to input errors, since it is
unlikely that unintended gestures appear, as explained in the next
chapter. On the other hand, it does not depend on an exact
calibration. For mobile phones, this is an undeniable advantage,
since it lies in the nature of mobile devices that they are

constantly moved and cannot be positioned fix in front of the
users’ eyes.

4.2.3 Gestures Occurrence
Overall, the dataset available to us, contained 37 minutes of eye-
gaze interaction with mobile phones. On this set, we applied our
gesture algorithm with the same values that we used for our
application. The maximum time threshold (t) was set to 1.5
seconds and the grid size s was set to 80 pixels (in the pixel units
of the commercial eye tracker ERICA). During the 37 minutes of
recorded data, there was only one appearance of one gesture, the
one for opening the browser (see Figure 11 right).

Table 1: Gesture string for the same dataset of 95 seconds eye-
movement but with different parameters.

Parameter
s

Gesture String

s=60,
t=1500

7LRDU37RLRD7::::RL::RDUL3U::LRL
RL:UD37::::::RD7::RL::UD::UDRL:::RL
37DU::::::::::RLRDL::DU37:3L37:U:DU

s=80,
t=1500

7LDU3D7::3U:::::::DU:DU:::RL:37::::::
RL:R:::L:::R:L::RLRLDU::::::::::RLRDL
::::D::::UDU

s=100
t=1000

7LDU3::::DU:::::::::::::::::::RL::DU::::::::::
RL:::R:::L:::::::::::::D::::U::D:::::::::::UL::::::
:::37::::R

In our algorithm the value used for the minimum stroke depends
on the screen size of the mobile phone: the smaller the mobile
phone screen, the smaller the value. Thus, we decided to run the
test a second time, with a smaller value as well, to see if the
number of unintended gestures increases. Table 1 shows the
gesture strings for the same dataset of coordinates but for different
grid sizes. The table explicitly states why a second test row is
necessary, since for the smaller grid size s, more strokes and thus,
more possible unintended gestures occur As expected, setting the
minimum stroke value to 60 pixels three unintentional
occurrences of gaze gestures, this time of the closing gesture,
were found in the 37 minutes of interaction, which still is a very
small amount. Table 2 presents these results.

Table 2: Occurrences of unintended gestures during 37
minutes for three different interaction tasks.

R1R7 D9D7

s=60
t=1500

0 3

s=80
t=1500

1 0

s=100
t=1000

0 0

The calculations with different parameter settings show that the
chance of unintended invocation by gaze gestures decreases if the
value s is increased or t is decreased. This means that adjusting
these values minimizes the risk of unwillingly executed

commands by gaze gestures. We showed that in our study, no
stroke was performed that took the participant longer than 860ms.
Thus, our threshold of 1500ms was set way too high. To be on the
safe side, we propose a new value t of 1000ms, i.e. one second.
We set s to 80 pixels because we estimated 60% of the smaller
extent of the mobile phone’s screen to be a good value. However,
all participants used the corners of the screen to perform their
gesture. From the analysis with different parameters we suggest to
use values of s=100px, which is 80% of the width of our
prototype mobile phone and t=1000ms. With these values no
unintended occurrences of the gaze gestures used in the study
were found as see in Table 2.
Even though our results show that the gestures are not likely to
appear in normal eye-gaze interaction, they can. Consequently,
commands may be invoked unwillingly. Thus, we propose an
improvement to our algorithm. Not every gesture is needed in
every context. For example a gesture for opening an application
makes no sense when the application is currently open. The idea
is to use context-sensitive gestures instead of the current
approach. That is, a gesture is only active in a specific context and
will be inactive in any other case. Therewith, the risk of
performing a gesture without purpose is reduced to a minimum.

5. DISCUSSION AND FUTURE WORK
In this paper, we described our work conducted to evaluate eye
gaze interaction as a new input method for mobile phones. We
analyzed and compared a dwell time based gaze interaction
approach to a completely new concept that we refer to as gaze-
gestures. Gaze gestures have several advantages compared to the
interaction based on dwell-time.
Most notably:

• The gestures are robust to movements or the absolute
position of the user’s gaze, since only relative movements
are considered. This makes it possible to use this interaction
technique without exact calibration.

• Gaze gestures are unlikely to be executed unwillingly and
the number of gestures that can be practically used is very
large.

• No screen real estate is required for eye-gesture interaction.
In a user study, we were able to show that users liked the idea of
gaze interaction with mobile phones and none of the participants
had grave problems performing the tasks given to them. For
further evaluation of the gaze gestures concept, we used an
existing dataset of 37 minutes of standard interaction with mobile
phones to see, whether the chosen gestures could be performed
unintended. The appearance rate was very low with a number of
one occurrence for our gestures.
From the evaluation, we learned that the values for stroke size and
the time threshold highly influence the occurrence rate. Thus,
combined with the time measurements from the user study we
determined the optimal values to be s=100 pixel and t=1000ms.
For further studies, these values should be used. Although the
majority of participants preferred the classical gaze interaction,
our evaluation shows, that gestures have a great potential for the
use with mobile phones.
Even though, the concept has proven useful, there are still
technical challenges to solve. For dwell-time based interaction, a
high accuracy of the tracking has to be reached combined with

auto calibration. Since for gestures these limitations do not exist,
they could become faster available because only a low accuracy
and low cost tracker is required. In [1] Dickie et al. are using a
low cost solution that could most probably be extended to be used
for facilitating gaze gesture interaction. Even though a movable
prototype was not needed for our evaluation, since it concerned
the interaction techniques and their applicability to small screen
devices, for future studies, we are planning to build a hand-held
prototype to validate our concept in outdoor studies.
In the evaluation, some participants mentioned that gestures may
not be appropriate for a big range of applications, but we think
they are. Therefore, one of the next logical steps will be to
develop and, more importantly, evaluate multiple domains of eye-
gesture interaction. Ideally, they should include 1:1 realizations of
dwell-time controllable applications, which would allow a much
more intense comparison of the two approaches.

6. ACKNOWLEDGMENTS
We would like to thank Nokia, Finland that provided the
hardware used for this prototype.

7. REFERENCES
[1] Dickie, C. et al. 2005. eyeLook: using attention to facilitate

mobile media consumption. In Proceedings of the 18th
Annual ACM Symposium on User interface Software and
Technology (Seattle, WA, USA, October 23 - 26, 2005).
UIST '05. ACM Press, New York, NY, 103-106.

[2] Goldberg, D.; Richardson, C. (1993): Touch-typing with a
stylus. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems CHI '93. S. 80 – 87.

[3] Holleis, P. et al. Keystroke-Level Model for Advanced
Mobile Phone Interaction. To appear in Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems 2007 (CHI '07), San Jose, CA, USA, April/May
2007.

[4] Jacob, R. J. 1990. What you look at is what you get: eye
movement-based interaction techniques. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems: Empowering People (Seattle, Washington, United
States, April 01 - 05, 1990). J. C. Chew and J. Whiteside,
Eds. CHI '90. ACM Press, New York, NY, 11-18.

[5] Majaranta, P. and Räihä, J. Twenty Years of Eye Typing:
Systems and Design Issues, Proceedings of Eye Tracking
Research and Applications [ETRA2002], pages 15-22, New
Orleans LA, ACM, 2002.

[6] Mankoff, J. et al. Cirrin: a word-level unistroke keyboard for
pen input. In Proceedings of the 11th Annual ACM
Symposium on User interface Software and Technology (San
Francisco, California, United States, November 01 - 04,
1998). UIST '98. ACM Press, New York, NY, 213-214.

[7] Morimoto CH, Koons D, Amir A, Flickner M (1999) Frame-
rate pupil detector and gaze tracker. In: Proceedings of the
IEEE ICCV'99 frame-rate workshop.

[8] Wobbrock, J. O., Myers, B. A., and Kembel, J. A.:
EdgeWrite: a stylus-based text entry method designed for
high accuracy and stability of motion. UIST '03. (2003), 61-
70.

