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Abstract. This paper investigates novel ways to direct computers by eye gaze. 
Instead of using fixations and dwell times, this work focuses on eye motion, in 
particular gaze gestures. Gaze gestures are insensitive to accuracy problems and 
immune against calibration shift. A user study indicates that users are able to 
perform complex gaze gestures intentionally and investigates which gestures 
occur unintentionally during normal interaction with the computer. Further 
experiments show how gaze gestures can be integrated into working with 
standard desktop applications and controlling media devices. 
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1   Introduction 

Eye-trackers are video-based, and the cost of video cameras has dropped substantially 
in the past few years. Commercially available eye-trackers work with a resolution of 
640 x 480 pixels and this is the resolution of a web cam, which can be bought as a 
consumer device for a few dollars. Most mobile devices sold today have a built-in 
camera and there are already the first laptops and desktop computers with built-in 
camera on the market. It is foreseeable that future monitors will have an integrated 
camera for no extra cost, as it is the case for integrated speakers today. 

The processing power of a standard computer is sufficient to do real-time 
processing of a video stream. This means that within the near future eye-tracking 
technology will be available for no extra costs. There are already projects for low-cost 
or off-the-shelf eye-trackers [1], [2]. 

There are eye-tracker systems for disabled people to direct the computer and it is 
imaginable that eye-tracking could become an additional input modality for 
everybody. But the systems for the disabled are cumbersome to operate and less 
efficient compared to the classical way of interaction with keyboard and mouse. For 
this reason researchers from the field of human computer interaction think about new 
interfaces utilizing the eye-gaze.    



1.1   Eye-Tracking 

Quantitative research on eye-movements became possible with the invention of the 
motion camera and the first research dates back to this time. This kind of research was 
mostly done by psychologists who wanted to understand perception. Most eye-tracker 
systems were built for analysis of the eye movement and its application in fields like 
advertisement. The first ideas to use the eye-gaze for interaction with the computer 
date back to the early 80s and 90s [3] [4] [5]. This was the time when it became 
possible to process a digital video stream in real-time. For an overview on eye-
tracking see [6]. 

The technological basis of nowadays eye-tracking is easy to understand. An 
infrared LED causes a reflection spot on the eyeball. As the eye is perfectly round, the 
reflection spot stays at the same position no matter in which direction the eye is 
looking. A video camera detects the reflection spot and the center of the pupil. The 
direction of the eye-gaze can be calculated from the distance of both points by simple 
linear mapping. 

 

    

Fig. 1. Video-based eye-tracking uses the reflection of an infrared LED and the center of the 
pupil to calculate the direction of the eye-gaze. The reflection spot stays in the same position, 
while the pupil moves. 

After a calibration procedure, for example gazing at the four corners of the display, 
the eye-tracker can deliver screen coordinates to the computer. The method requires 
that the head stays in the same position. Consequently, such systems need a head 
fixation or at least a chin rest, but this is no problem for the disabled person who can’t 
move anything except the eyes. A typical commercial system of such an eye-tracker is 
the ERICA1 system, which we used for our research. 

To achieve freedom of movement in front of the display a head-tracker is 
necessary. Normally this is done by a second video camera. Such systems are more 
expensive, but also commercially available, for example the EyeGaze Eyefollower2 or 
Tobii 1750 Eye Tracker3. 
 

                                                           
1 http://www.eyeresponse.com   
2 http://www.eyegaze.com 
3 http://www.tobii.com  



1.2   The Problems of Eye-Gaze Based Interaction 

Eye-gaze based interaction is now available for more than 20 years [7], but it is solely 
used in the domain of accessibility. Systems for eye-gaze based interaction typically 
display a keyboard layout on the display and to enter a character the user has to gaze 
for a certain time, the dwell time, on the corresponding key. The time which could be 
saved by the proverbial quick movement of the eyes is eaten up by the dwell time. 
Reducing the dwell time leads to the Midas-Touch problem – inspecting the display 
causes unwanted actions [5]. 

The accuracy problem, which is not only a question of the resolution of the video 
camera but is intrinsic because of the jitter in the eye-movement, leads to big sizes for 
the keyboard layout. This causes a space problem on the display. 

A general problem is the fact that the eye is mainly an input sensor and not an 
output actor. The eyes move to see something and not to trigger actions. Using the 
eyes for both, input and output, may result in conflicts [8]. On the other hand we can 
communicate with other persons by the direction where we look. As we know that 
other persons are aware of where we are looking, we keep our eyes under control as a 
part of our social protocol. The question how much output activity we can put on the 
movement of the eyes and how much unintentional eye movements interfere with 
intentional eye movements is not clear yet. 

1.3   The Concept of Gestures 

Gestures are a well-known concept for computer human interaction. Typical examples 
are Unistroke [9] and Cirrin [10]. A gesture consists of a sequence of elements, 
typically strokes, which are performed in a sequential time order. The advantage of 
gestures is that the number of commands can be increased by increasing the set of 
gestures. If commands are selected from a list, the increase of commands results in a 
bigger list und this can cause a space problem. For this reason gestures are used for 
interaction with small devices. As one problem of eye-gaze interfaces mentioned 
above is a space problem, gaze gestures are worth examining, especially for 
interaction with small displays. 

1.4   Related work 

Most approaches to utilize the gaze position for computer control follow the concept 
of gaze as a pointing device and as an alternative for mouse input. There is only little 
research on different concepts like gestures.  

Most work on gestures aims to identify the user’s task or attention and use this as 
context information for smart interfaces. Qvarfordt and Zhai used eye-gaze patterns to 
build a dialog system [11]. They studied gaze patterns in human-human dialogs and 
used the results to mediate a human-computer dialog. In contrast to our approach the 
users did not learn gaze gestures to operate the system. The users were not even aware 
that they perform gestures. 



Isokoski proposed the use of off-screen targets for text input [12]. To enter text the 
eye-gaze has to visit the off-screen targets in a certain order. The eye movements 
resulting from this are gaze gestures. The difference to the gaze gestures presented in 
this paper is that off-screen targets force the gesture to be performed in a fixed 
location and with a fixed size. The gaze gestures researched in our user study are 
scalable and can be performed in any location. 

2   The Gaze Gesture Algorithm 

As there was not much research done on gaze gestures the main research question is 
whether people are able to perform complex gestures with the eyes. The question 
which algorithm to use is secondary until the first question is answered.  

2.1 Searching for a Gaze Gesture Algorithm 

The popular and freely available mouse-gesture plug-in4 for the Firefox web browser 
inspired us to implement a similar gaze-gesture algorithm. The mouse-gesture plug-in 
traces the mouse movements when a gesture key, normally the right mouse key, is 
pressed and translates the movements into a string of characters or tokens 
representing strokes in eight directions. Horizontal and vertical directions are given 
by the letters U, D, L, and R for up, down, left and right respectively. Diagonal 
directions are given by 1, 3, 7, and 9 corresponding to the familiar layout of the 
number pad on a standard keyboard. A gesture is defined by a particular string 
consisting of these eight characters. 

 

Fig. 2 The names of the eight directions of a stroke. 

The stroke detection uses a grid of size s. The algorithm maps every point reported 
by the mouse to a point on the grid by a simple integer division. The origin of the grid 
is the starting point of the stroke. If the integer division has a result different from 
zero for at least one of the coordinates, the algorithm calculates the direction. It 
outputs the corresponding character, but only if it is different from the character 
before.  

                                                           
4 http://optimoz.mozdev.org/gestures 
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Fig. 3. The figure shows how a mouse or gaze path is translated into the string of characters 
R9U. The end point of a detected stroke is the origin for the grid to detect the next stroke. 

The other gesture algorithm which inspired our work is EdgeWrite [13]. This 
algorithm starts with the four corners of a square and the six connecting lines. A 
stroke is a move from one corner to another corner and a gesture is a series of 
connected strokes. It is easy to see that all EdgeWrite gestures can be expressed with 
the tokens from the mouse gesture algorithm and consequently are a subset of the 
mouse gestures. This is interesting because the EdgeWrite gestures have the 
capability for a big complex alphabet.  

 

 

Fig. 4. The four corners and the six connecting lines used for the EdgeWrite gestures and three 
examples for EdgeWrite gestures (digits 0, 2 and 3).  

2.2   Implementing a Gaze Gesture Algorithm  

We liked the simplicity of the mouse gesture algorithm, but we disliked the need of a 
gesture key. So the first modification of the algorithm is the introduction of 
continuous recognition. Consequently the algorithm must divide between natural eye 
movements and gestures. The situation is similar for detecting commands with speech 
recognition.  

To better separate the gestures from the natural movement we introduced a time 
aspect. During the performance of a gesture only short fixations and no long fixation 
should occur. A long fixation should reset the gesture recognition. We extended the 
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algorithm with timeout detection and introduced a colon as the ninth token. The 
algorithm generates a colon as output if no other token was generated for time t. 

The eye-gaze gesture recognition algorithm is a two-step process. In the first step 
the algorithm takes the x-y position of the current eye-gaze in pixels and maps this to 
strokes as described above. In the second step the algorithm recognizes the actual 
gestures by comparing the string to the given gesture pattern string. If the gesture 
pattern matches an action can be triggered. 

The software is implemented for the Windows platform and the software is written 
in C++ with Visual Studio.  

3   User Study 

We conducted a user study with nine participants, six male and three female persons 
in the age from 23 to 47 years. All persons had a European cultural background and 
academic education. All of them used computers regularly, but none of them had 
experience with eye-tracking systems. 

3.1 Experimental Setup 

For the user study we used the commercial eye-tracker ERICA. The system consists 
of a camera and a tablet PC mounted together on a stand. The display has a size of 
246 mm x 185 mm and a resolution of 1024 x 768 pixels. The distance of the eyes 
from the screen is 48 cm ± 2 cm. This values result in 0.028° visual angle per pixel or 
around 36 pixels for 1°. The accuracy of the system is ± 0.5°.  
The ERICA system delivers a maximal update rate of 60 Hz or about one position 
every 17 milliseconds. During the movement of the eye no data are delivered. This 
results in a gap during a saccade. 
 

 

Fig. 5. The ERICA eye-tracker system used for the user study. 

The software written for the user study did the gesture recognition. The grid size 
was set to 80 pixels and the timeout parameter t was 1000 milliseconds. The program 



gave auditory feedback i.e. prompted the recognition of a gesture with a beep. It also 
had options to display helping lines or blank or structured background. The structured 
background was a screenshot of a spreadsheet application. 

3.2 Design of the User Study 

The user study consisted of three different tasks. Prior to the experiment the 
participant got a brief introduction to the system. 

The first task was to close a dialog by using eye-gestures instead of the mouse. The 
participants were instructed to perform the action by visiting the corners clockwise for 
YES and counter-clockwise for NO. (Could also be OK and CANCEL). The gaze 
gesture recognition scanned for the patterns RDLU, DLUR, LURD and URDL for 
YES and for the patterns LDRU, DRUL, RULD and ULDR for NO. The time needed 
for the operation was recorded.  

 

 

Fig. 6. The first task in the user study was to close a dialog with a gaze gesture. 

In the second task the users had to do three different gaze gestures of increasing 
difficulty on three different backgrounds. Again the software logged the gaze activity. 
To prove that the user is able to do the requested gesture, each gesture had to be 
repeated three times. This resulted in 27 gestures per candidate. The gestures used 
were RLRLRL, 3U1U and RD7DR7, see Figure 2 for an illustration. For each 
performed gesture the required time was recorded. 

 

 

Fig. 7. The three gaze gestures shown had to be performed for the second task in the user study.  

The first background showed an outlined square with diagonal lines as shown in 
Figure 8. The helping lines were given to guide the gaze gestures. The second 
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background was a screenshot of a desktop with an open spreadsheet document. This 
enabled the test users to choose positions for fixations. And the third background was 
just gray.  

 

Fig. 8. Screenshot of the program written for the user study. The display modes are blank, 
structured background and display of helping lines.  

The third task was to surf the internet for three minutes. The gesture recognition 
software logged the resulting gesture string. The reason for this task was to find out 
which patterns occur during normal work, or at least during surfing. 

3.3 Results of the User Study 

All users were instantly able to close the dialogs by gaze with YES and NO using 
eye-gestures. The average time to perform the gesture was about 1900 milliseconds 
with a standard deviation of about 600 milliseconds. This time is in the same range 
than performing the action by mouse including a homing from keyboard to mouse and 
clicking a button. All participants reported this as an easy task. 

Table 1.  Average time to perform the gesture for closing the dialog in the first task. 

Gesture Gesture time 
 average over all subjects (ms) 

YES (clockwise all corners) 1905 
NO (counter-clockwise all corners) 1818 

 
In the second task, where the participants had to perform the three different 

gestures, we were surprised that all users were able to perform all gestures on the 
helpline and text background, most of them with ease. The number of attempts to 
complete a gesture varied very much. In many cases users were able to perform the 



gestures instantly whereas for some others it took quite long to complete the task 
successfully. Table 2 shows the task performance times for the 3U1U gesture. 

Table 2.  Total time in milliseconds to perform three times the 3U1U gesture 

Participant Helping Lines Text Background Blank Background 

P1 26808 30795 23915 
P2 33528 28400 25407 

P3 5899 35611 23513 

P4 160370 38506 74567 

P5 25106 33177 97240 

P6 10355 9353 15022 

P7 12789 60708 71633 

P8 26849 32477 10926 

P9 23724 114074 56722 

Mean 36159 42567 44327 
Std. Dev. 47452 29874 31216 

 
For the blank background all users could accomplish the gestures RLRLRL and 

3U1U. Five of nine users were even able to perform the most difficult task (RD7DR7 
on a blank background). In some of these cases it initially took quite long to get the 
gesture, but after the first success it took not much time to repeat the gesture again. 
Overall we learned that with a structured background such as text, tables or web 
pages, even difficult gaze-gestures can be performed reliably and that neither the 
background nor the complexity of the gesture has a significant impact on the 
completion time. The time for the gesture depends only on the number of segments. 
The average time required for a segment was 557 milliseconds. 

Table 3.  Average gestures time and standard deviation in milliseconds to perform the three 
different gestures on three different backgrounds in the second task. The data are from nine 
participants, except RD7DR7 on blank background, where only 5 participants were able to 
perform the gesture. 

Gesture Helping Lines Text Background Blank Background 

RLRLRL 3113 (±627) 3089 (±728) 3288 (±810) 

3U1U 2222 (±356) 2311 (±443) 2429 (±307) 

RD7DR7 3163 (±490) 3563 (±651) 3569 (±520) 

 
The third task recorded the characters produced by the gaze gesture recognition 

algorithm while surfing. The total time for the 9 users was 1700 seconds or 28 
minutes, resulting in 2737 characters. This results in 1.6 characters per second or 
about 600 milliseconds for a stroke. This string was searched for the gestures of the 
first and second task. 



Table 4.  Statistics for detected strokes within half an hour of web surfing. 

Stroke Occurrences Percentage Stroke Occurrences Percentage 

: 388 14,1%    
1 136  5,0% D 178  6,5% 

3 136  5,0% U 229  8,3% 

7 138  5,0% L 685 25,0% 

9 115  4,2% R 732 26,7% 

 
Table 5 shows the occurrence of the gestures from the first and second task. Some 

of the eight gestures to enter YES or NO respectively in a dialog did not occur in the 
whole string and others at most 3 times. When restricting the recognition to the 
context of use (e.g. currently a dialog is open) the risk to answer a dialog 
unintentionally seems to be extremely low. 

The RLRLRL gesture occurs very often (69 times in the sample of all participants), 
because this is the natural eye movement during reading and consequently should not 
be used for commands in general. The 3U1U and RD7DR7 gestures didn’t occur 
during the half hour of surfing. In particular the 3U1U gesture seems to be a good 
candidate for a gesture that is generally applicable, relatively easy to perform, and 
very unlikely to appear during normal use. 

Table 5.  Occurrence of the gestures from task 1 and 2 within half an hour of web surfing. 

Gesture  Gesture  Gesture  

RDLU 0 DRUL 2 RLRLRL 69 
DLUR 2 RULD 3 3U1U 0 
LURD 1 ULDR 0 RD7DR7 0 

URDL 1 LDRU 1   

4   Experiments with Standard Applications and Media Devices 

After the positive results from the first user study, the next step was to look for fields 
of application for this novel type of interaction. The EdgeWrite gestures provide a full 
alphabet, but the gaze gestures are not adequate for text input. As seen in the user 
study a gesture needs 1 to 2 seconds to enter and even the standard dwell time method 
is faster and typing with the fingers is definitely the more efficient way of text input. 

A useful application of gaze gestures is the field of accessibility. Because of the 
robustness against accuracy problems and immunity against calibration shift a gaze 
gesture is the perfect way to invoke a recalibration process for the disabled users of 
eye-tracker systems. It is also imaginable to use the gestures for general macro 
functions within accessibility systems. For example a gaze gesture could be used to 
save a document and close the application or to paste content from the clipboard. 



One idea was to offer the macro functionality as an extra input modality for 
everybody. For this reason we implemented a software prototype which is able to 
recognize a list of gestures and trigger a corresponding command. We used the 
WM_APPCOMMAND of the Windows operating system to realize an open 
document, save document and close document function which works with standard 
Windows software such as Word. When observing people working with documents 
and application we noticed that many users put the hands to the mouse to select the 
save option from the menu and return the hand to the keyboard for further text entry. 
With the use of gaze gestures it is imaginable to leave the hands on the keyboard - 
saving the lengthy time for homing and selection – and invoke the save operation with 
the eyes. 

To test the idea we put some colleges, not involved in our research, in front of our 
system and asked them to type something and save the document with the gaze 
gesture. They were instantly able to perform the operation asked for. They told us that 
there is some fascination in the possibility to direct the computer without touching, 
but for not to grab the mouse they would press the short cut ctrl-s to save their 
document. The returned to their office and saved the next document by using the 
mouse. Of course every command invoked by a gaze gesture could also be invoked by 
a key press. Whether or how many people would use gaze gestures if offered as 
standard interaction is not clear. 

This result motivated us to look for further applications. Gaze gestures could be 
useful in the case that keyboard and pointing device are out of reach. This situation is 
typical for controlling media devices, especially media center computers. Such 
devices normally come along with remote control.  

 

 

Fig. 9. Screenshot of the media player and a window with helping lines to perform the gestures. 
It turned out that it is more convenient to use the edges of the main display to enter the gesture 
and the helping lines are not necessary. 

The accuracy of an eye-tracker is given in visual angle. In principle this means, 
that the spatial accuracy in millimeters or pixels on the screen gets worse with 
growing distance. But gaze gestures on a big grid are insensitive to accuracy problems 
and seem to be well suited to the situation.  



Thus, we extended our software with additional commands for media control such 
as play, pause, stop, previous track, next track, media channel up and down and 
volume control. To test the system we placed candidates in a distance of one meter 
away from the display. The one meter distance is the maximum our eye-tracker optics 
is able to focus and it is longer than the arms of the candidates, so the couldn’t reach 
the keyboard. The observations were encouraging. 

 
The first observation was that people didn’t need the helping lines offered. The 

corners of the display window or the screen provide a natural orientation to perform 
the gestures. The candidates had no difficulties to perform the gestures. 

The next observation was that people experienced it easier to perform big scaled 
gestures than small scaled gestures. From our recorded data we know that the time 
needed for a saccade does not increase much if the saccade length gets bigger. A 
saccade above 5° visual angle lasts about 120 milliseconds (see also [14]). The 
influence of the scale used for the gesture does not have a big effect on the time to 
perform the gesture. 

It also turned out that the grid size of the gesture algorithm is not critical. The big 
scaled gestures were reliably detected with the grid size settings for the small scaled 
gestures. People seem to perform horizontal and vertical eye movements with high 
precision. 

Another observation from this category was the insensitivity of the gesture 
recognition to the aspect ratio. The gestures do not have to be in square shape. An 
aspect ratio of 4:3 and 16:9 for the corners also work well. See figure 11 for an 
illustration. 

 

 

Fig. 11. The gesture algorithm is independent from the aspect ratio. 

There was already research to use eye-trackers for remote control [15]. Vertegaal 
et al. used one remote control and eye-trackers on several devices and used the eye-
tracker information to find out which device the remote control is meant for. Using 
the gaze gestures would allow the remote control to be eliminated. 

5   Conclusions and Future Work 

It seems that the concept of gaze gestures has a potential to be used as an input 
modality. Gaze gestures solve some of the big problems of eye-gaze interaction. First 
of all the gaze gestures use only relative eye movements and consequently do not 

1 : 1 4 : 3 16 : 9 



need a calibration of the eye-tracker. Accuracy is not an issue, because the gaze is not 
used for pointing. As the grid size of the gesture algorithm can be chosen as large as 
10° visual angle and the time needed to perform a gesture segment is several hundred 
milliseconds, the gaze gesture detection does not demand high spatial and temporal 
resolution from the eye-tracker. This makes it possible to manufacture eye-trackers, 
which can detect gaze gestures only, with cheap standard devices. Finally the use of 
gaze gestures does not exhibit the Midas-Touch problem and the users do not feel 
stressed by not being allowed to look too long at something.  

Research on this topic is still in the early beginning and the presented algorithm is 
not yet fully researched. Further user studies should be done on the question which 
gestures occur unintentional during normal looking, e.g. watching videos. The 
parameters of the algorithm, the grid size s and the timeout t, will be a subject for 
optimization. A bigger grid size up to the dimensions of the display will lead to fewer 
unintended gestures, because the eye movements normally stay within the display and 
typical saccade lengths are much smaller than the width or height of the display. 

The question whether users will accept gaze gestures as an additional input 
modality is very interesting. In the field of accessibility the concept of gaze gestures 
will certainly bring benefit for the user, for example as a substitute of accelerator keys 
(ctrl-s) or to invoke a recalibration process. In addition to the application as a 
substitute for remote controls as mentioned above, the gaze gestures can be very 
useful in fields with high hygienic demands. A surgeon in the operating room could 
interact with electronic devices using gaze gestures.  

It also seems worthwhile to think about alternative gesture algorithms. This will 
lead to a closer look on the low-level recognition algorithms. The eye-trackers of 
today are optimized for the detection of fixations and dwell times. Normally the eyes 
move in saccades, but some people are also able to roll the eyes smoothly.  

Our future efforts will focus on gaze gestures on mobile devices, where eye-gaze 
input is difficult because of the small display size. 

 

 

Fig. 12. Gaze gestures on small displays. 
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