
Interacting with the Computer using Gaze Gestures

Heiko Drewes1, Albrecht Schmidt2

1 Media Informatics Group, LMU University of Munich,

Amalienstraße 17, 80333 München, Germany
heiko.drewes@ifi.lmu.de

2 Fraunhofer IAIS and B-IT, University of Bonn,

Schloss Birlinghoven, 53754 Sankt Augustin, Germany
albrecht.schmidt@acm.org

Abstract. This paper investigates novel ways to direct computers by eye gaze.
Instead of using fixations and dwell times, this work focuses on eye motion, in
particular gaze gestures. Gaze gestures are insensitive to accuracy problems and
immune against calibration shift. A user study indicates that users are able to
perform complex gaze gestures intentionally and investigates which gestures
occur unintentionally during normal interaction with the computer. Further
experiments show how gaze gestures can be integrated into working with
standard desktop applications and controlling media devices.

Keywords: eye-tracker, gaze gestures

1 Introduction

Eye-trackers are video-based, and the cost of video cameras has dropped substantially
in the past few years. Commercially available eye-trackers work with a resolution of
640 x 480 pixels and this is the resolution of a web cam, which can be bought as a
consumer device for a few dollars. Most mobile devices sold today have a built-in
camera and there are already the first laptops and desktop computers with built-in
camera on the market. It is foreseeable that future monitors will have an integrated
camera for no extra cost, as it is the case for integrated speakers today.

The processing power of a standard computer is sufficient to do real-time
processing of a video stream. This means that within the near future eye-tracking
technology will be available for no extra costs. There are already projects for low-cost
or off-the-shelf eye-trackers [1], [2].

There are eye-tracker systems for disabled people to direct the computer and it is
imaginable that eye-tracking could become an additional input modality for
everybody. But the systems for the disabled are cumbersome to operate and less
efficient compared to the classical way of interaction with keyboard and mouse. For
this reason researchers from the field of human computer interaction think about new
interfaces utilizing the eye-gaze.

1.1 Eye-Tracking

Quantitative research on eye-movements became possible with the invention of the
motion camera and the first research dates back to this time. This kind of research was
mostly done by psychologists who wanted to understand perception. Most eye-tracker
systems were built for analysis of the eye movement and its application in fields like
advertisement. The first ideas to use the eye-gaze for interaction with the computer
date back to the early 80s and 90s [3] [4] [5]. This was the time when it became
possible to process a digital video stream in real-time. For an overview on eye-
tracking see [6].

The technological basis of nowadays eye-tracking is easy to understand. An
infrared LED causes a reflection spot on the eyeball. As the eye is perfectly round, the
reflection spot stays at the same position no matter in which direction the eye is
looking. A video camera detects the reflection spot and the center of the pupil. The
direction of the eye-gaze can be calculated from the distance of both points by simple
linear mapping.

Fig. 1. Video-based eye-tracking uses the reflection of an infrared LED and the center of the
pupil to calculate the direction of the eye-gaze. The reflection spot stays in the same position,
while the pupil moves.

After a calibration procedure, for example gazing at the four corners of the display,
the eye-tracker can deliver screen coordinates to the computer. The method requires
that the head stays in the same position. Consequently, such systems need a head
fixation or at least a chin rest, but this is no problem for the disabled person who can’t
move anything except the eyes. A typical commercial system of such an eye-tracker is
the ERICA1 system, which we used for our research.

To achieve freedom of movement in front of the display a head-tracker is
necessary. Normally this is done by a second video camera. Such systems are more
expensive, but also commercially available, for example the EyeGaze Eyefollower2 or
Tobii 1750 Eye Tracker3.

1 http://www.eyeresponse.com
2 http://www.eyegaze.com
3 http://www.tobii.com

1.2 The Problems of Eye-Gaze Based Interaction

Eye-gaze based interaction is now available for more than 20 years [7], but it is solely
used in the domain of accessibility. Systems for eye-gaze based interaction typically
display a keyboard layout on the display and to enter a character the user has to gaze
for a certain time, the dwell time, on the corresponding key. The time which could be
saved by the proverbial quick movement of the eyes is eaten up by the dwell time.
Reducing the dwell time leads to the Midas-Touch problem – inspecting the display
causes unwanted actions [5].

The accuracy problem, which is not only a question of the resolution of the video
camera but is intrinsic because of the jitter in the eye-movement, leads to big sizes for
the keyboard layout. This causes a space problem on the display.

A general problem is the fact that the eye is mainly an input sensor and not an
output actor. The eyes move to see something and not to trigger actions. Using the
eyes for both, input and output, may result in conflicts [8]. On the other hand we can
communicate with other persons by the direction where we look. As we know that
other persons are aware of where we are looking, we keep our eyes under control as a
part of our social protocol. The question how much output activity we can put on the
movement of the eyes and how much unintentional eye movements interfere with
intentional eye movements is not clear yet.

1.3 The Concept of Gestures

Gestures are a well-known concept for computer human interaction. Typical examples
are Unistroke [9] and Cirrin [10]. A gesture consists of a sequence of elements,
typically strokes, which are performed in a sequential time order. The advantage of
gestures is that the number of commands can be increased by increasing the set of
gestures. If commands are selected from a list, the increase of commands results in a
bigger list und this can cause a space problem. For this reason gestures are used for
interaction with small devices. As one problem of eye-gaze interfaces mentioned
above is a space problem, gaze gestures are worth examining, especially for
interaction with small displays.

1.4 Related work

Most approaches to utilize the gaze position for computer control follow the concept
of gaze as a pointing device and as an alternative for mouse input. There is only little
research on different concepts like gestures.

Most work on gestures aims to identify the user’s task or attention and use this as
context information for smart interfaces. Qvarfordt and Zhai used eye-gaze patterns to
build a dialog system [11]. They studied gaze patterns in human-human dialogs and
used the results to mediate a human-computer dialog. In contrast to our approach the
users did not learn gaze gestures to operate the system. The users were not even aware
that they perform gestures.

Isokoski proposed the use of off-screen targets for text input [12]. To enter text the
eye-gaze has to visit the off-screen targets in a certain order. The eye movements
resulting from this are gaze gestures. The difference to the gaze gestures presented in
this paper is that off-screen targets force the gesture to be performed in a fixed
location and with a fixed size. The gaze gestures researched in our user study are
scalable and can be performed in any location.

2 The Gaze Gesture Algorithm

As there was not much research done on gaze gestures the main research question is
whether people are able to perform complex gestures with the eyes. The question
which algorithm to use is secondary until the first question is answered.

2.1 Searching for a Gaze Gesture Algorithm

The popular and freely available mouse-gesture plug-in4 for the Firefox web browser
inspired us to implement a similar gaze-gesture algorithm. The mouse-gesture plug-in
traces the mouse movements when a gesture key, normally the right mouse key, is
pressed and translates the movements into a string of characters or tokens
representing strokes in eight directions. Horizontal and vertical directions are given
by the letters U, D, L, and R for up, down, left and right respectively. Diagonal
directions are given by 1, 3, 7, and 9 corresponding to the familiar layout of the
number pad on a standard keyboard. A gesture is defined by a particular string
consisting of these eight characters.

Fig. 2 The names of the eight directions of a stroke.

The stroke detection uses a grid of size s. The algorithm maps every point reported
by the mouse to a point on the grid by a simple integer division. The origin of the grid
is the starting point of the stroke. If the integer division has a result different from
zero for at least one of the coordinates, the algorithm calculates the direction. It
outputs the corresponding character, but only if it is different from the character
before.

4 http://optimoz.mozdev.org/gestures

U

L

D

R

7

1

9

3

Fig. 3. The figure shows how a mouse or gaze path is translated into the string of characters
R9U. The end point of a detected stroke is the origin for the grid to detect the next stroke.

The other gesture algorithm which inspired our work is EdgeWrite [13]. This
algorithm starts with the four corners of a square and the six connecting lines. A
stroke is a move from one corner to another corner and a gesture is a series of
connected strokes. It is easy to see that all EdgeWrite gestures can be expressed with
the tokens from the mouse gesture algorithm and consequently are a subset of the
mouse gestures. This is interesting because the EdgeWrite gestures have the
capability for a big complex alphabet.

Fig. 4. The four corners and the six connecting lines used for the EdgeWrite gestures and three
examples for EdgeWrite gestures (digits 0, 2 and 3).

2.2 Implementing a Gaze Gesture Algorithm

We liked the simplicity of the mouse gesture algorithm, but we disliked the need of a
gesture key. So the first modification of the algorithm is the introduction of
continuous recognition. Consequently the algorithm must divide between natural eye
movements and gestures. The situation is similar for detecting commands with speech
recognition.

To better separate the gestures from the natural movement we introduced a time
aspect. During the performance of a gesture only short fixations and no long fixation
should occur. A long fixation should reset the gesture recognition. We extended the

R 9

U

origin of grid
for first stroke

origin of grid
for second stroke

detected
stroke

mouse or
gaze path

algorithm with timeout detection and introduced a colon as the ninth token. The
algorithm generates a colon as output if no other token was generated for time t.

The eye-gaze gesture recognition algorithm is a two-step process. In the first step
the algorithm takes the x-y position of the current eye-gaze in pixels and maps this to
strokes as described above. In the second step the algorithm recognizes the actual
gestures by comparing the string to the given gesture pattern string. If the gesture
pattern matches an action can be triggered.

The software is implemented for the Windows platform and the software is written
in C++ with Visual Studio.

3 User Study

We conducted a user study with nine participants, six male and three female persons
in the age from 23 to 47 years. All persons had a European cultural background and
academic education. All of them used computers regularly, but none of them had
experience with eye-tracking systems.

3.1 Experimental Setup

For the user study we used the commercial eye-tracker ERICA. The system consists
of a camera and a tablet PC mounted together on a stand. The display has a size of
246 mm x 185 mm and a resolution of 1024 x 768 pixels. The distance of the eyes
from the screen is 48 cm ± 2 cm. This values result in 0.028° visual angle per pixel or
around 36 pixels for 1°. The accuracy of the system is ± 0.5°.
The ERICA system delivers a maximal update rate of 60 Hz or about one position
every 17 milliseconds. During the movement of the eye no data are delivered. This
results in a gap during a saccade.

Fig. 5. The ERICA eye-tracker system used for the user study.

The software written for the user study did the gesture recognition. The grid size
was set to 80 pixels and the timeout parameter t was 1000 milliseconds. The program

gave auditory feedback i.e. prompted the recognition of a gesture with a beep. It also
had options to display helping lines or blank or structured background. The structured
background was a screenshot of a spreadsheet application.

3.2 Design of the User Study

The user study consisted of three different tasks. Prior to the experiment the
participant got a brief introduction to the system.

The first task was to close a dialog by using eye-gestures instead of the mouse. The
participants were instructed to perform the action by visiting the corners clockwise for
YES and counter-clockwise for NO. (Could also be OK and CANCEL). The gaze
gesture recognition scanned for the patterns RDLU, DLUR, LURD and URDL for
YES and for the patterns LDRU, DRUL, RULD and ULDR for NO. The time needed
for the operation was recorded.

Fig. 6. The first task in the user study was to close a dialog with a gaze gesture.

In the second task the users had to do three different gaze gestures of increasing
difficulty on three different backgrounds. Again the software logged the gaze activity.
To prove that the user is able to do the requested gesture, each gesture had to be
repeated three times. This resulted in 27 gestures per candidate. The gestures used
were RLRLRL, 3U1U and RD7DR7, see Figure 2 for an illustration. For each
performed gesture the required time was recorded.

Fig. 7. The three gaze gestures shown had to be performed for the second task in the user study.

The first background showed an outlined square with diagonal lines as shown in
Figure 8. The helping lines were given to guide the gaze gestures. The second

RLRLRL

3U1U RD7DR7

background was a screenshot of a desktop with an open spreadsheet document. This
enabled the test users to choose positions for fixations. And the third background was
just gray.

Fig. 8. Screenshot of the program written for the user study. The display modes are blank,
structured background and display of helping lines.

The third task was to surf the internet for three minutes. The gesture recognition
software logged the resulting gesture string. The reason for this task was to find out
which patterns occur during normal work, or at least during surfing.

3.3 Results of the User Study

All users were instantly able to close the dialogs by gaze with YES and NO using
eye-gestures. The average time to perform the gesture was about 1900 milliseconds
with a standard deviation of about 600 milliseconds. This time is in the same range
than performing the action by mouse including a homing from keyboard to mouse and
clicking a button. All participants reported this as an easy task.

Table 1. Average time to perform the gesture for closing the dialog in the first task.

Gesture Gesture time
 average over all subjects (ms)

YES (clockwise all corners) 1905
NO (counter-clockwise all corners) 1818

In the second task, where the participants had to perform the three different

gestures, we were surprised that all users were able to perform all gestures on the
helpline and text background, most of them with ease. The number of attempts to
complete a gesture varied very much. In many cases users were able to perform the

gestures instantly whereas for some others it took quite long to complete the task
successfully. Table 2 shows the task performance times for the 3U1U gesture.

Table 2. Total time in milliseconds to perform three times the 3U1U gesture

Participant Helping Lines Text Background Blank Background

P1 26808 30795 23915
P2 33528 28400 25407

P3 5899 35611 23513

P4 160370 38506 74567

P5 25106 33177 97240

P6 10355 9353 15022

P7 12789 60708 71633

P8 26849 32477 10926

P9 23724 114074 56722

Mean 36159 42567 44327
Std. Dev. 47452 29874 31216

For the blank background all users could accomplish the gestures RLRLRL and

3U1U. Five of nine users were even able to perform the most difficult task (RD7DR7
on a blank background). In some of these cases it initially took quite long to get the
gesture, but after the first success it took not much time to repeat the gesture again.
Overall we learned that with a structured background such as text, tables or web
pages, even difficult gaze-gestures can be performed reliably and that neither the
background nor the complexity of the gesture has a significant impact on the
completion time. The time for the gesture depends only on the number of segments.
The average time required for a segment was 557 milliseconds.

Table 3. Average gestures time and standard deviation in milliseconds to perform the three
different gestures on three different backgrounds in the second task. The data are from nine
participants, except RD7DR7 on blank background, where only 5 participants were able to
perform the gesture.

Gesture Helping Lines Text Background Blank Background

RLRLRL 3113 (±627) 3089 (±728) 3288 (±810)

3U1U 2222 (±356) 2311 (±443) 2429 (±307)

RD7DR7 3163 (±490) 3563 (±651) 3569 (±520)

The third task recorded the characters produced by the gaze gesture recognition

algorithm while surfing. The total time for the 9 users was 1700 seconds or 28
minutes, resulting in 2737 characters. This results in 1.6 characters per second or
about 600 milliseconds for a stroke. This string was searched for the gestures of the
first and second task.

Table 4. Statistics for detected strokes within half an hour of web surfing.

Stroke Occurrences Percentage Stroke Occurrences Percentage

: 388 14,1%
1 136 5,0% D 178 6,5%

3 136 5,0% U 229 8,3%

7 138 5,0% L 685 25,0%

9 115 4,2% R 732 26,7%

Table 5 shows the occurrence of the gestures from the first and second task. Some

of the eight gestures to enter YES or NO respectively in a dialog did not occur in the
whole string and others at most 3 times. When restricting the recognition to the
context of use (e.g. currently a dialog is open) the risk to answer a dialog
unintentionally seems to be extremely low.

The RLRLRL gesture occurs very often (69 times in the sample of all participants),
because this is the natural eye movement during reading and consequently should not
be used for commands in general. The 3U1U and RD7DR7 gestures didn’t occur
during the half hour of surfing. In particular the 3U1U gesture seems to be a good
candidate for a gesture that is generally applicable, relatively easy to perform, and
very unlikely to appear during normal use.

Table 5. Occurrence of the gestures from task 1 and 2 within half an hour of web surfing.

Gesture Gesture Gesture

RDLU 0 DRUL 2 RLRLRL 69
DLUR 2 RULD 3 3U1U 0
LURD 1 ULDR 0 RD7DR7 0

URDL 1 LDRU 1

4 Experiments with Standard Applications and Media Devices

After the positive results from the first user study, the next step was to look for fields
of application for this novel type of interaction. The EdgeWrite gestures provide a full
alphabet, but the gaze gestures are not adequate for text input. As seen in the user
study a gesture needs 1 to 2 seconds to enter and even the standard dwell time method
is faster and typing with the fingers is definitely the more efficient way of text input.

A useful application of gaze gestures is the field of accessibility. Because of the
robustness against accuracy problems and immunity against calibration shift a gaze
gesture is the perfect way to invoke a recalibration process for the disabled users of
eye-tracker systems. It is also imaginable to use the gestures for general macro
functions within accessibility systems. For example a gaze gesture could be used to
save a document and close the application or to paste content from the clipboard.

One idea was to offer the macro functionality as an extra input modality for
everybody. For this reason we implemented a software prototype which is able to
recognize a list of gestures and trigger a corresponding command. We used the
WM_APPCOMMAND of the Windows operating system to realize an open
document, save document and close document function which works with standard
Windows software such as Word. When observing people working with documents
and application we noticed that many users put the hands to the mouse to select the
save option from the menu and return the hand to the keyboard for further text entry.
With the use of gaze gestures it is imaginable to leave the hands on the keyboard -
saving the lengthy time for homing and selection – and invoke the save operation with
the eyes.

To test the idea we put some colleges, not involved in our research, in front of our
system and asked them to type something and save the document with the gaze
gesture. They were instantly able to perform the operation asked for. They told us that
there is some fascination in the possibility to direct the computer without touching,
but for not to grab the mouse they would press the short cut ctrl-s to save their
document. The returned to their office and saved the next document by using the
mouse. Of course every command invoked by a gaze gesture could also be invoked by
a key press. Whether or how many people would use gaze gestures if offered as
standard interaction is not clear.

This result motivated us to look for further applications. Gaze gestures could be
useful in the case that keyboard and pointing device are out of reach. This situation is
typical for controlling media devices, especially media center computers. Such
devices normally come along with remote control.

Fig. 9. Screenshot of the media player and a window with helping lines to perform the gestures.
It turned out that it is more convenient to use the edges of the main display to enter the gesture
and the helping lines are not necessary.

The accuracy of an eye-tracker is given in visual angle. In principle this means,
that the spatial accuracy in millimeters or pixels on the screen gets worse with
growing distance. But gaze gestures on a big grid are insensitive to accuracy problems
and seem to be well suited to the situation.

Thus, we extended our software with additional commands for media control such
as play, pause, stop, previous track, next track, media channel up and down and
volume control. To test the system we placed candidates in a distance of one meter
away from the display. The one meter distance is the maximum our eye-tracker optics
is able to focus and it is longer than the arms of the candidates, so the couldn’t reach
the keyboard. The observations were encouraging.

The first observation was that people didn’t need the helping lines offered. The

corners of the display window or the screen provide a natural orientation to perform
the gestures. The candidates had no difficulties to perform the gestures.

The next observation was that people experienced it easier to perform big scaled
gestures than small scaled gestures. From our recorded data we know that the time
needed for a saccade does not increase much if the saccade length gets bigger. A
saccade above 5° visual angle lasts about 120 milliseconds (see also [14]). The
influence of the scale used for the gesture does not have a big effect on the time to
perform the gesture.

It also turned out that the grid size of the gesture algorithm is not critical. The big
scaled gestures were reliably detected with the grid size settings for the small scaled
gestures. People seem to perform horizontal and vertical eye movements with high
precision.

Another observation from this category was the insensitivity of the gesture
recognition to the aspect ratio. The gestures do not have to be in square shape. An
aspect ratio of 4:3 and 16:9 for the corners also work well. See figure 11 for an
illustration.

Fig. 11. The gesture algorithm is independent from the aspect ratio.

There was already research to use eye-trackers for remote control [15]. Vertegaal
et al. used one remote control and eye-trackers on several devices and used the eye-
tracker information to find out which device the remote control is meant for. Using
the gaze gestures would allow the remote control to be eliminated.

5 Conclusions and Future Work

It seems that the concept of gaze gestures has a potential to be used as an input
modality. Gaze gestures solve some of the big problems of eye-gaze interaction. First
of all the gaze gestures use only relative eye movements and consequently do not

1 : 1 4 : 3 16 : 9

need a calibration of the eye-tracker. Accuracy is not an issue, because the gaze is not
used for pointing. As the grid size of the gesture algorithm can be chosen as large as
10° visual angle and the time needed to perform a gesture segment is several hundred
milliseconds, the gaze gesture detection does not demand high spatial and temporal
resolution from the eye-tracker. This makes it possible to manufacture eye-trackers,
which can detect gaze gestures only, with cheap standard devices. Finally the use of
gaze gestures does not exhibit the Midas-Touch problem and the users do not feel
stressed by not being allowed to look too long at something.

Research on this topic is still in the early beginning and the presented algorithm is
not yet fully researched. Further user studies should be done on the question which
gestures occur unintentional during normal looking, e.g. watching videos. The
parameters of the algorithm, the grid size s and the timeout t, will be a subject for
optimization. A bigger grid size up to the dimensions of the display will lead to fewer
unintended gestures, because the eye movements normally stay within the display and
typical saccade lengths are much smaller than the width or height of the display.

The question whether users will accept gaze gestures as an additional input
modality is very interesting. In the field of accessibility the concept of gaze gestures
will certainly bring benefit for the user, for example as a substitute of accelerator keys
(ctrl-s) or to invoke a recalibration process. In addition to the application as a
substitute for remote controls as mentioned above, the gaze gestures can be very
useful in fields with high hygienic demands. A surgeon in the operating room could
interact with electronic devices using gaze gestures.

It also seems worthwhile to think about alternative gesture algorithms. This will
lead to a closer look on the low-level recognition algorithms. The eye-trackers of
today are optimized for the detection of fixations and dwell times. Normally the eyes
move in saccades, but some people are also able to roll the eyes smoothly.

Our future efforts will focus on gaze gestures on mobile devices, where eye-gaze
input is difficult because of the small display size.

Fig. 12. Gaze gestures on small displays.

Acknowledgments. The work has been conducted in the context of the research
project Embedded Interaction (‘Eingebettete Interaktion’) and was partly funded by
the DFG (‘Deutsche Forschungsgemeinschaft’).

References

1. Hansen, D. W. and MacKay, D. J. C. Hansen, J. P. Nielsen, M.: Eye tracking off
the shelf. ETRA 2004, ACM Press (2004), 58-58

2. Li, D., Babcock, J., and Parkhurst, D.: openEyes: a low-cost head-mounted eye-
tracking solution. ETRA 2006, ACM Press (2006), 95-100

3. Bolt, R. A.: Gaze-orchestrated dynamic windows. SIGGRAPH '81, ACM Press
(1981), 109-119.

4. Ware, C., and Mikaelian, H. H.: An evaluation of an eye tracker as a device for
computer input. Proceedings of the CHI + GI '87, ACM Press (1987), 183-188.

5. Jacob, R. J.: What you look at is what you get: eye movement-based interaction
techniques. CHI '90, ACM Press (1990), 11-18

6. Duchowski, A. T.: Eye Tracking Methodology: Theory and Practice. Springer-
Verlag New York (2003), ISBN:1852336668

7. Majaranta, P. Räihä, K.: Twenty years of eye typing: systems and design issues.
ETRA 2002, ACM Press (2002), 15-22

8. Zhai, S., Morimoto, C., and Ihde, S.: Manual and gaze input cascaded (MAGIC)
pointing. CHI '99. ACM Press (1999), 246-253.

9. Goldberg, D. and Richardson, C.: Touch-Typing With a Stylus. CHI '93, ACM
Press (1993), 80 - 87

10. Mankof, J., and Abowd, G. D.: Cirrin: a word-level unistroke keyboard for pen
input. UIST '98, ACM Press (1998), 213 - 214

11. Qvarfordt, P. and Zhai, S.: Conversing with the User Based on Eye-Gaze Patterns.
CHI '05, ACM Press (2005), 221-230

12. Isokoski, P.: Text input methods for eye trackers using off-screen targets. ETRA
'00. ACM Press (2000), 15-21

13. Wobbrock, J. O., Myers, B. A., and Kembel, J. A.: EdgeWrite: a stylus-based text
entry method designed for high accuracy and stability of motion. UIST '03. ACM
Press (2003), 61-70.

14. Abrams, R. A., Meyer, D. E., and Kornblum, S.: Speed and accuracy of saccadic
eye movements: Characteristics of impulse variability in the oculomotor system.
Journal of Experimental Psychology: Human Perception and Performance 15, 3
(1989), 529-543.

15. Vertegaal, R., Mamuji, A., Sohn, C., and Cheng, D.: Media eyepliances: using eye
tracking for remote control focus selection of appliances. CHI '05, ACM Press
(2005), 1861-1864.

