
Model-Based Testing of Infotainment Systems on the Basis of a Graphical
Human-Machine Interface

Linshu Duan∗, Alexander Höfer†, Heinrich Hussmann‡
∗AUDI AG and Ludwig-Maximilians-Universität München

Email: linshu.duan@audi.de
†AUDI AG,Infotainment System Development and Testing

Auto-Union-Str., 85055 Ingolstadt Germany
Email: alexander.hoefer@audi.de

‡Ludwig-Maximilians-Universität München,Institut für Informatik
Amalienstraße 17, 80333 Munich Germany

Email: heinrich.hussmann@ifi.lmu.de

Abstract—Automotive infotainment systems were getting
more and more features in recent years. The usability of
their HMIs (human-machine interfaces) has been improved
considerably. However the complexity of the HMI software
is growing. Testing the HMI became very demanding and
time consuming. Because of multiplicity of HMI variants, a
better code coverage is a goal for the development process of
most manufacturers. Model-based testing is one way to achieve
a better code coverage and keep the costs and complexity
acceptable. However, the existing research approaches in the
area of model-based HMI testing can not satisfy the needs
for our testing purposes. In the work a model-based testing
approach will be proposed for testing both the logical behavior
and the graphical interface of the automotive infotainment
HMI. As an important part of the testing approach a test-
oriented HMI specification model will be designed. It is a
model, which describes the required behavior of the HMI
and contains the necessary information for the testing process.
Test generation methods and the design of tests will also
be proposed. These results can be generally used for testing
advanced GUI-driven applications. Specific coverage criteria
for infotainment HMIs, methods for automatic test generation
and verification of the system behavior are also focuses of the
work. The paper introduces the ideas and the goals of our
model-based testing approach for infotainment HMIs.

Keywords-Model-Based Testing; Automated HMI Testing;
Infotainment System Tests

I. INTRODUCTION

A human-machine interface of an infotainment system is
the interface, through which the user communicates with
the infotainment system. It could consist of a graphical user
interface, a control unit, a touch pad, a multifunction wheel
and possibly speech input and output facilities. The focus
of our research is also to test the graphical human-machine
interface of infotainment systems. Both the logical behavior
and the graphical interface of the HMI are our test purposes.
The term HMI used in this work is resigned to the GUI part
of the HMI.
The complexity of HMI software is growing with function-
ality and complexity of infotainment systems very strongly

[1]. A user interface giving a faultless experience is one
of the most important requirements of today’s infotainment
systems. However HMI faults are an essential part of all
infotainment system faults during the development phase,
because testing HMI at full length is a very demanding,
time consuming and costly task. Test designers have to
spend a lot of time for defining tests and adapting existing
tests for different system variants and software updates. Test
executors have to execute the defined tests step by step
manually. For foreign-language systems test executors are in
demand, who are not only native speakers, but also adept at
testing. Absence of native-speaking testers could lead to low
code coverage and higher fault rates for foreign-language
systems.
The following researches have to be done for the model-
based HMI testing approach:

• Designing a test-oriented HMI specification model
• Identification of test generation criteria and test gener-

ation methods specific for infotainment HMIs
• Definition of methods and interfaces for automatic

test execution, observation and verification of the SUT
(system under test)

Researches and methods in GUI-testing area are discussed
in Section II. Section III explains a widely used HMI frame-
work as preliminaries for the introduction of the test-oriented
HMI specification model. Four kinds of HMI faults and three
kinds of tests are introduced in Section IV. Afterwards some
specific coverage criteria are introduced in V. Test execution
methods are presented in VI. In Section VII metrics for the
evaluation of the concept are mentioned.

II. RELATED WORK

A number of research efforts have addressed the test
automation of GUI applications. Some of them are based
on record and playback concepts [2]. The recorded sessions
are later played back whenever it is necessary to recreate
the same GUI states. Several attempts have been made

2010 Second International Conference on Advances in System Testing and Validation Lifecycle

978-0-7695-4146-4/10 $26.00 © 2010 IEEE

DOI 10.1109/VALID.2010.11

5

2010 Second International Conference on Advances in System Testing and Validation Lifecycle

978-0-7695-4146-4/10 $26.00 © 2010 IEEE

DOI 10.1109/VALID.2010.11

5

2010 Second International Conference on Advances in System Testing and Validation Lifecycle

978-0-7695-4146-4/10 $26.00 © 2010 IEEE

DOI 10.1109/VALID.2010.11

5

to automate test case generation for GUIs, for which two
different ways can be identified in the research. 1) Plan-
ning: Given a set of operators, an initial state and a goal
state, a planner produces a sequence of operators that will
transform the initial state to a goal state [3]. 2) Model-
based approaches: The behavior of the SUT is verified
with the expected behavior defined as models. Finite-state
machine (FSM) [4] is a model usually used for defining the
expected behavior. Other models e.g., event-flow model are
also proposed in this area [5]. In [6] NModel is proposed
for model-based testing of GUI-driven applications. The
NModel framework developed at Microsoft Research allows
us to create a FSM model and generate tests automatically.
Experience has been made with a sample system containing
11 screens and a simple menu behavior. Complex user inputs
and the system reaction to the user inputs are not considered.
An infotainment HMI of the new generation consists of
up to about 1500 screens and very advanced mechanisms
to support the complexity and to ensure the correctness of
the HMI behavior, e.g., synchronization mechanism, history
and deep history states, mediators observing data changes
etc. The approach addresses PC applications, which contain
the complete logic in itself. These applications do not
exchange data with external logic or database. This abates
the complexity of the model and the difficulties have to
be faced. So this approach can not satisfy the needs for
testing infotainment HMIs directly. Furthermore, most of
the existing approaches focus on testing the menu behavior.
Detection of widget and displaying faults are not faced. The
main objectives of the work are a model-based HMI testing
approach, which satisfies the needs and complexity of testing
infotainment HMIs.

III. TEST-ORIENTED HMI SPECIFICATION MODEL

This section at first introduces a widely used HMI frame-
work. Based on this knowledge, we discuss the test-oriented
specification model needed for test generation.

A. A Widely Used HMI Framework

Most of today’s HMI development tools are based on GUI
frameworks following the MVC (model-view-controller)
pattern [7]. MVC defines the separation of the view, model
and controller layer. In the view layer screens and contained
graphical elements present the data contained in the model.
The model layer contains the data to be displayed and
in many of the implementations also the business logic.
Controller processes the user inputs, changes the model data,
informs the business logic and updates the visual data in
the screens. The left part of Figure 1 shows the principle of
MVC: the solid line presents a direct association, the dashed
an indirect association, e.g., via an observer.

The right part of Figure 1 shows one of the ways,
how infotainment HMIs implement the MVC pattern. In
infotainment HMIs, widgets are widely used. Widgets are

Figure 1. Model-View-Controller Pattern and A Widely Used Structure
of Infotainment HMIs

graphical elements, which usually contain both the graphical
presentation and the controllers, e.g., event handling. Some
of the widgets even own some behaviors, e.g., in a select
list entries can be focused by scrolling up or down and
the focused entry will be highlighted. Widgets actually
breach the pattern. Even so, such implementations are re-
garded as model-view-controller implementations. Usually
the widgets are preprogrammed and available as libraries
for the screen creation. To create instances of widgets, they
have to be parametrized. Today’s HMI development tools
support model-based implementation of controllers (we are
not talking about the widget controllers here). A widely used
model is the statechart diagram [8]. The statecharts define
the behavior of the controller, i.e., it processes events and
operates correspondingly. E.g., By a user event it enters
into another state and replaces one screen with another.
In other words the statechart defines the menu behavior of
the HMI. In an HMI framework the component containing
the data is commonly called data pool. The data pool
and the application logic in infotainment HMIs can be
regarded as the model of the MVC pattern. The data pool
contains variables, which can be modified by the application
logic. The controller can access this data directly e.g., to
decide the behavior at a decision point. Frequently some
widgets contained in different screens should display the
same data. To avoid inconsistency between the screens,
widgets are usually implemented as observers for the data.
The application logic in infotainment systems is usually
connected with bus systems joining some databases and
physical ECUs (electronic control units), e.g., CD player
or navigation receiver. The application logic evaluates e.g.,
the validity of a city name given by the user based on
the navigation database content. The evaluation result will
be written in an agreed variable in the data pool. Widgets
or the controller who are observers of this value will be
informed about this data change. The application logic is
usually implemented manually, thus not model-based.

B. Test-Oriented Specification Model

A test-oriented HMI specification model describes the
required behavior of the HMI and contains the necessary
information for the testing process. An assumption of the
concept is that a test-oriented HMI specification model is
available in the proposed form. Depending on the HMI de-

666

velopment process, a HMI test-oriented specification model
could be completely created by test engineers for testing
goals, or created by enriching the information required for
testing into an HMI specification model, if a model-based
HMI specification already exists. A HMI specification is
usually created by the HMI specification group and describes
the required behavior the implementation should conform
to. Model-based HMI specification [9] is the trend today.
However, at many manufactures HMI development tools are
still in use for the specification phase until now. The develop-
ment tools are not specially designed for specifications being
created by people with a different background than software
developers. This leads to many informal description and
errors in the specification model. Some researches are arisen
to find out specification concepts suitable for the design
phases and different specification concepts implement the
MVC pattern in different ways. No matter in which way the
test-oriented HMI specification model will be resulted, it is
important for our testing purpose that all testing required
information can be contained in the specification and is
completely accessible for the test generation. Requirements
in the HMI framework and the specification concept will be
identified for our testing purposes. The work and a prototype
will base upon them. The result should be a test-oriented
specification model, which has the minimal specification
complexity but sufficient information for testing. Tests will
be generated from the test-oriented behavior model accord-
ing to different coverage criteria.

IV. TEST GENERATION

HMI faults can be categorized into four types: faults in
the menu behavior, widget behavior, displaying data and
languages. Our concept is designed to detect faults of the
first three types automatically and to support testers in
finding faults of the last type. So three kinds of tests will be
generated to face the first three faults types.

A. Menu Behavior Tests

As the name implies, menu behavior tests verify the
HMI menu behavior: whether the GUI switches to the
correct screen in response to some inputs from the user
or underlying application. A frequent error is that the GUI
goes to an unexpected screen after the return button is
pressed. It was described in the section above that the menu
behavior is defined by the statechart diagram. Erroneous
implementation of history states in the statechart diagram is
usually the reason. In order to generate menu behavior tests,
the statechart diagrams have to be traversed. Tests can be
selected based on different coverage criteria. Selected tests
contain both user actions and the expected screen. For test
execution, user actions are transformed into test steps. The
expected behavior is the occurrence of the expected screen.
If the expected screen is defined as an ID, there must be

an interface or a method reporting the ID of the currently
displayed screen on the SUT.

B. Widget Behavior Tests

Static widgets e.g., titles display particular static data and
do not have a behavior. Whereas dynamic widgets e.g., select
lists own some behaviors and change their looks depending
on the context. E.g., the typical behavior of a list is the
highlighting of the focused line by scrolling through the list.
There is typically an arrow, which appears to indicate that
the user still can scroll down or up. Dynamic widgets are
very error-prone. Tests acting with such dynamic widgets
inside the same screen without causing a menu change are
defined as widget tests. In the most of the GUI frameworks,
widgets are preprogrammed manually. Thus, the behavior
of dynamic widgets is only described in program code. For
the test-oriented HMI specification concept a widget model
describing the widget behavior will be proposed. This model
is similar to menu behavior model. Widget tests will also be
generated automatically. Created widget tests are driven by
the menu behavior tests. I.e., when an expected screen has
been reached, the appropriate widgets tests will be invoked.
Integration plan and methods avoiding impacts have still
to be worked out. For observation of the widget behaviors
simple image processing methods are applied.

C. Display Tests

Tests specially for detecting displaying errors are grouped
into display tests. Overlapping texts, text out of the defined
pixel area and erroneous color are frequent displaying errors.
Display tests are based strongly on image processing and are
also driven by menu behavior tests. A style-sheet containing
the necessary information will be integrated into the test-
oriented specification.

Language errors occur very frequently during the HMI
development process, e.g., a title text in a foreign language,
which is translated inconsistently to the context, or another
text than specified is displayed as the title text because
of misunderstood widget IDs. Currently language errors
are found manually, because automating the detection of
language errors causes more work than benefits. Our concept
does not define methods to detect language errors directly
or automatically, but it can be helpful. Screenshots can be
made for all reached screens by the tests and provided for
(native-speaking) testers for review. In this way, the testers
do not have to execute the tests step by step manually.

V. COVERAGE CRITERIA

Coverage criteria are used to instruct the test generation
and to measure the quality or, more precisely, the adequacy
of the tests. Well-known coverage criteria [10] such as struc-
tural coverage (e.g., state coverage and transition coverage)
and functional criteria are also suitable for HMI testing
and will be used for our menu and widget behavior tests.

777

In this work, some infotainment system specific coverage
criteria are proposed, which can be combined with the
known criteria. Some examples are:

1) Usage Oriented Coverage
Division of infotainment system tests into different test
levels is very important for the daily testing life. Levels
are used to distinguish the frequency and the order
of test execution as well as the priority to handle the
found faults. Functions offered by infotainment system
have very different usage frequency. E.g., entering a
street occurs more often than entering a country. This
criterion is relevant for all three kinds of tests, since if
a screen is contained in a test of level 1, the behavior
and the displaying effect of the contained widgets also
have high priority.

2) Application Oriented Coverage
The GUI reacts to data coming from an application.
In some situations, data changes are initialized by the
application without any user requests. E.g., warning
about empty tank. This kind of information is always
very important for the safety of drivers. This behavior
should be tested consciously. Test generation has to
able to generate tests covering all of these cases. This
criterion is relevant for menu behavior tests, since the
reaction of the HMI to the incoming application data
is to switch to another screen (information screen).

3) Screen Coverage
Each screen of the HMI presents a state of the infotain-
ment system. Tests generated according to the screen
coverage should reach as many as possible screens
defined in the system. This criterion is especially
useful to help finding the language errors. Screenshots
can be made from all reached screens. Many graphical
and language errors can be found quickly by reviewing
the screenshots. This criterion is only useful for menu
behavior tests.

Furthermore widget coverage, language coverage and user
input coverage are also important criteria for infotainment
HMI testing.

VI. EXECUTION OF TESTS

There are several test tools for infotainment systems in
the market. These tools allow definition of tests and support
automatic execution of defined tests on the SUT. Figure 2
demonstrates the principle how defined tests are executed
automatically with the help of a test tool. A test tool provides
interfaces to bus systems and physical ECUs contained in
the infotainment system. Test steps can be executed by the
test system. Behavior of the system and their ECUs are
observed via particular interfaces and evaluated by means of
expected behavior defined in advance. Tests generated from
our test-oriented HMI specification model can be executed
automatically with the help of such a test tool.

Figure 2. Infotainment Testing System

VII. EVALUATION METHODS

Two approaches are planned to evaluate the concept. The
first one is using a beginning HMI project and creating
a sample HMI specification for chosen functions. Tests
should be generated and executed on the real test system.
This is basically the way to detect problems occurring in
the practice. A second approach is defined to evaluate the
success of the concept. The evaluation will be based on the
following metrics: 1) Error statistic of a past project in a
comparable volume will be evaluated. It will be counted
how many faults now can be detected automatically, which
were found manually. 2) Timing of the detected faults. The
later a fault is found the more expensive it is. The concept
allows testing the system automatically and systematically as
soon as the SUT is available. 3) Code coverage of manually
defined tests will be compared with the one of automatically
generated tests based on some chosen coverage criteria. 4)
Time saved by reviewing screenshots. 5) The quality of the
reported faults.

VIII. CONCLUSION

A model-based testing approach for graphical HMIs of
infotainment systems is researched in our work. A test-
oriented HMI model is designed, which describes the
required behavior of the SUT and contains information
required for testing. This concept appropriates to testing
advanced GUI-driven applications. Special criteria, methods
and interfaces for testing infotainment HMIs are proposed.
Based on this approach tests can be generated and ex-
ecuted automatically. Testing of foreign-language systems
can be supported. A better code coverage can be achieved
in this way. The approach considers the real complexity
of advanced HMIs and addresses practical problems and
requirements.

REFERENCES

[1] Q. S. S. GmbH, “Ready for the future: Software trends
for in-car infotainment systems,” 2005. [Online]. Available:
http://www.epn-online.com/page/18329

[2] Hammontree, M. L., Hendrickson, J. J., and H. andBilly W.,
“Integrated data capture and analysis tools for research and
testing on graphical user interfaces,” pp. 431–432, 1992, cHI
’92: Proceedings of the SIGCHI conference on Human factors
in computing systems.

888

[3] M. A. M., P. M. E., and S. M. Lou, “Hierarchical gui test case
generation using automated planning,” IEEE Trans. Softw.
Eng., vol. 27, no. 2, pp. 144–155, 2001.

[4] F. Belli, “Finite-state testing and analysis of graphical user
interfaces,” in ISSRE ’01: Proceedings of the 12th Inter-
national Symposium on Software Reliability Engineering.
Washington, DC, USA: IEEE Computer Society, 2001, p. 34.

[5] M. A. M., “An event-flow model of gui-based applications for
testing: Research articles,” Softw. Test. Verif. Reliab., vol. 17,
no. 3, pp. 137–157, 2007.

[6] V. Chinnapongse, I. Lee, O. Sokolsky, S. Wang, and P. L.
Jones, “Model-based testing of gui-driven applications,” in
Software Technologies for Embedded and Ubiquitous Systems.
Springer-verlag New York Inc, 2009, vol. 5860/2009, pp.
203–214, 7th IFIP WG 10.2 International Workshop, SEUS
2009 Newport Beach, CA, USA, 2009 Proceedings.

[7] H. Mössenböck, Objektorientierte Programmierung in
Oberon-2. Springer-Verlag, Oktober 1998.

[8] D. Harel, “Statecharts: A visual formalism for complex sys-
tems,” Sci. Comput. Program., vol. 8, no. 3, pp. 231–274,
1987.

[9] G. Wegner, P. Endt, and C. Angelski, “Das elektrische lasten-
heft als mittel zur kostenreduktion bei der entwicklung der
menschen-machine-schnittstelle von infotinament-systemen
im fahrzeug,” in Infotainment Telematik im Fahrzeug.
Expert-Verlag GmbH, 2004, pp. 38–45.

[10] C. Gaston and D. Seifert, “Evaluating coverage based testing,”
in Model-Based Testing of Reactive Systems. Springer-Verlag
New York, LLC, 2005.

999

