Diplomarbeit
Interaction Management for Ubiquitous Augmented Reality User Interfaces

CAR - Car Augmented Reality

Aufgabensteller: Prof. Gudrun Klinker Ph.D.
Betreuer: Dipl.-Inform. Christian Sandor
Vortragender: Otmar Hilliges

May 13, 2004
Summary

• Diploma thesis within the CAR project November ‘03 - May ‘04.

• Designed and implemented a method for interaction management for UAR systems.
 – Providing easy I/O device adaption
 – Introduced an abstraction layer for I/O devices.
 – A powerful formal model to design UI behavior.

• Designed and implemented a runtime development environment.
 – Significantly decreases implementation of UIs (runtime prototyping).
 – Allows the adaption and exchange of devices at runtime.
 – Tweaking and tuning UI behaviour to experiment with interaction techniques is possible.

• Implemented the UI behavior descriptions for CAR.
Outline

- Introduction
- Requirements Analysis
- Related Work
- Implementation
- Future Work
Introduction

- What are UAR user interfaces?
- What is the problem space for such user interfaces?
- What design issues do those problems precipitate?
Introduction - Concepts

• Ubiquitous Augmented Reality user interfaces
 – Multi-user
 – Multi-device
 – Multi-modal
 – Mobile and distributed
Introduction - Collaboration

Co-allocated vs. Collaborative working
Introduction - I/O adaption

- UAR user interfaces incorporate new devices
 - Special purpose input devices.
 - Multimedia output.
Introduction - Multimodal Integration
Introduction - Runtime Prototyping

- Variety of I/O devices
- Dynamic system setups
- Non standardized interaction techniques

- Experiments with interaction techniques must be carried out
- Changing the connectivity structure at runtime

Runtime Prototyping
Outline

- Introduction
- Requirements Analysis
- Related Work
- Implementation
- Future Work
Requirements Analysis

• The requirements have been gathered throughout different projects:
 – TRAMP.
 – SHEEP.
 – ARCHIE
 – CAR.
Requirements Analysis

- **Functional Requirements:**
 - **Adapt I/O components.** The control component is the glue that holds together the complete UI.
 - **Input fusion.** To deal with different modalities the component must be able to integrate multi-modal input.
 - **Output fission.** Generate content for multiple output components.
 - **Input Recognition.** Disambiguate input from inter-social communication.
 - **Handle Privacy.** Differentiate between public and private information.
 - **Formal model** to describe UI behavior is needed that can be executed, modified and stored persistently.
Requirements Analysis

- **Non-Functional Requirements:**
 - **Availability.** If the UIC fails the whole system gets unusable.
 - **Robustness.** New users will make errors in the usage of the system.
 - **Reliability.** The same interactions must always produce the same results.
 - **Responsiveness.** For usability reasons the user must get immediate feedback whether an interaction succeeded or not.
 - **Scalability** due to steep increasing interpretation and management effort.
 - **Flexibility** to deal with inherently dynamic setups and changing I/O components.
Requirements Analysis

• Pseudo Requirements:
 – **DWARF** is the target environment and the developed component must be able to communicate with other services.
Outline

- Introduction
- Requirements Analysis
- Related Work
- Implementation
- Future Work
Related Work

- Interaction Management
 - Quickset
 - Unit
 - MetaDESK
 - Papier-Mâché
 - DART

- Petri Net vs. Finite automata

- Runtime Prototyping
Related Work: Quickset

- **Quickset**: Cohen et.al

 Oregon Institute of Science and Technology

System for collaborative, multi-modal planning of tactical military simulations.
+ Powerful integration of speech, gesture and web-based input.
+ Very robust resolving disambiguities using AI techniques.
- Rigid architecture heavily application dependent.
- System can not be used in other setups.
Related Work: Unit

- **Unit**: Alex Olwal, Columbia University 2002

 - Framework for the design of flexible interaction techniques.

 - Abstraction layer between I/O devices and application.

 - Units form a graph that allows the programmer to develop powerful interaction techniques.

 + Flexible data manipulation.

 + Units are reusable.

 - No clear differentiation between discrete and continuous data.

 - Developers have to deal with I/O device’s details.

QuickTime™ and a Cinepak decompressor are needed to see this picture.
Related Work: MetaDESK

- **MetaDESK**: Brygg Ulmer et.al., MIT 1997
 Groundbreaking system in the field of TUIs. The DESK is a illuminated table enriched with special purpose tools (TUIsf) for urban planning.

 + Lots of creative tangible interaction and presentation techniques.
 - Software architecture is application specific.
Related Work: Papier-Mâché

- **Papier-Mâché:**
A Toolkit for developing TUIs. Using computer vision, electronic tags and barcodes.
+ Provides a API for TUI based systems.
+ Includes a variety of out of the box recognition algorithms.
- Code based approach.
- Only focuses on TUIs.
Related Work: DART

- **DART**: A toolkit for AR applications using a classic multimedia design tool (Macromedia Director).
 - Very easy to create content and application logic for non-programmers.
 - Director is already well-known and provides powerful means to design UIs.
 - Interactions are very limited.
 - Not changeable at runtime.
RW: Petri Nets vs. Finite Automata

- **FNA:**
 - FNAs are used to model workflows (navigation, repair instructions).
 - One active state. Step by Step execution.
 - Very difficult to model concurrent and multi-user situations.
 - Low learning threshold

- **Petri Nets:**
 - Introduced to model concurrent and distributed systems.
 - Powerful mathematical model
 - Meets requirements for distributed, multi-user and multi-modal systems.
 - High ceiling
Related Work: Runtime Development

- **Squeak:**
 - Multimedia design and development environment for educational purposes. Fully tweak-able.
 - Very easy to develop interactive graphical applications. Even kids can do it.
 - Limited to the classic WIMP-desktop.

QuickTime™ and a MPEG-4 Video decompressor are needed to see this picture.
Outline

• Introduction
• Requirements Analysis
• Related Work
• Implementation
• Future Work
Implementation

• What I implemented in this thesis:
 – Interaction Management component based on DWARF and Petri Nets.
 – A runtime development environment for that component.
Implementation

- Layering and 3rd party software
 - DWARF, Jfern, Graham-Kirby Compiler
Implementation

- Integration with DWARF UI architecture
Implementation: Interaction Management

- Multi-modal integration
 - Input components emit tokens
 - Data is analyzed and modified inside Petri nets transitions
 - Commands are sent out to output components
Implementation: Runtime Prototyping

• Runtime development
 – Net structure modifications
 – Dynamic code modification
 – Connectivity management
Implementation: Runtime Prototyping

- Results: Mini-Sheep and CAR UI
Implementation: Object Design

- **UIC Implementation Details**
 - **Net Administration**
 - Visualize Petri Net execution and communication
 - Add/Remove tokens
 - Receive and send structured events
 - Modify net structure
 - Compile guards and actions
 - **GuI**
 - Visualize Petri net execution
 - Controls for Editing PN and N&A
 - Logging and debugging output
Outline

• Introduction
• Requirements Analysis
• Related Work
• Implementation
• Future Work
Future Work

- Improve UI of development environment
- Add convenience functionality
 - Palettes
 - Toolbars
 - Repository of interaction atoms.
- Programming by example
- Authoring within Augmented Reality.
Future Work II

- Extensions to the DWARF UI architecture:
 - User model.
 - Improved recognition techniques and multi-modal integration using Bayes nets and hidden Markov chains.
 - API for device integration.
Outline

• Introduction
• Requirements Analysis
• Related Work
• Implementation
• Future Work
Questions

Any Questions?
Thank You!