Diplomarbeit **Interaction Management for Ubiquitous Augmented Reality User Interfaces**

CAR - Car Augmented Reality

- Prof. Gudrun Klinker Ph.D. Aufgabensteller:
- Betreuer:
- Vortragender:
- Dipl.-Inform. Christian Sandor
- **Otmar Hilliges**

Summary

- Diploma thesis within the CAR project November '03 May '04.
- Designed and implemented a method for interaction management for UAR systems.
 - Providing easy I/O device adaption
 - Introduced an abstraction layer for I/O devices.
 - A powerful formal model to design UI behavior.
- Designed and implemented a runtime development environment.
 - Significantly decreases implementation of UIs (runtime prototyping).
 - Allows the adaption and exchange of devices at runtime.
 - Tweaking and tuning UI behaviour to experiment with interaction techniques is possible.
- Implemented the UI behavior descriptions for CAR.

Outline

- Introduction
- Requirements Analysis
- Related Work
- Implementation
- Future Work

Introduction

- What are UAR user interfaces?
- What is the problem space for such user interfaces?
- What design issues do those problems precipitate?

Introduction - Concepts

- Ubiquitous Augmented Reality user interfaces
 - Multi-user
 - Multi-device
 - Multi-modal
 - Mobile and distributed

Introduction - Collaboration

Co-allocated vs. Collaborative working

Introduction - I/O adaption

- UAR user interfaces incorporate new devices
 - Special purpose input devices.
 - Multimedia output.

Otmar Hilliges

Introduction - Multimodal Integration

Otmar Hilliges

May 13, 2004

8/36

Introduction - Runtime Prototyping

- Variety of I/O devices
- Dynamic system setups
- Non standardized interaction techniques

- Experiments with interaction techniques must be carried out
- Changing the connectivity structure at runtime

> Runtime Prototyping

Outline

- Introduction
- Requirements Analysis
- Related Work
- Implementation
- Future Work

- The requirements have been gathered throughout different projects:
 - TRAMP.
 - SHEEP.
 - ARCHIE
 - CAR.

- Functional Requirements:
 - Adapt I/O components. The control component is the glue that holds together the complete UI.
 - Input fusion. To deal with different modalities the component must be able to integrate multi-modal input.
 - Output fission. Generate content for multiple output components.
 - Input Recognition. Disambiguate input from inter-social communication.
 - Handle Privacy. Differentiate between public and private information.
 - Formal model to describe UI behavior is needed that can be executed, modified and stored persistently.

- Non Functional Requirements:
 - **Availability**. If the UIC fails the whole system gets unusable.
 - Robustness. New users will make errors in the usage of the system.
 - Reliability. The same interactions must always produce the same results.
 - Responsiveness. For usability reasons the user must get immediate feedback whether an interaction succeeded or not.
 - Scalability due to steep increasing interpretation and management effort.
 - Flexibility to deal with inherently dynamic setups and changing I/O components.

- Pseudo Requirements:
 - DWARF is the target environment and the developed component must be able to communicate with other services.

Outline

- Introduction
- Requirements Analysis
- Related Work
- Implementation
- Future Work

Related Work

- Interaction Management
 - Quickset
 - Unit
 - MetaDESK
 - Papier-Mâché
 - DART
- Petri Net vs. Finite automata
- Runtime Prototyping

Related Work: Quickset

• Quickset: Cohen et.al

Oregon Institue of Science and Technology

- System for collaborative, multi-modal planning of tactical military simulations.
- + Powerful integration of speech, gesture and web-based input.
- + Very robust resolving disambiguites using AI techniques.
- Rigid architecture heavily application dependent.
- System can not be used in other setups.

Otmar Hilliges

QuickTime[™] and a Cinepak decompressor are needed to see this picture.

Related Work: Unit

• Unit: Alex Olwal, Columbia University 2002

- Framework for the design of flexible interaction techniques.

- Abstraction layer between I/O devices and application.
- Units form a graph that allows the programmer to develop powerful interaction techniques.
- + Flexible data manipulation.
- + Units are reusable.
- No clear differentiation between discrete and continous data.
- Developers have to deal with I/O device's details.

QuickTime™ and a Cinepak decompressor are needed to see this picture.

Related Work: MetaDESK

- MetaDESK: Brygg Ulmer et.al., MIT 1997 Groundbreaking system in the field of TUIs. The DESK is a illuminated table enriched with special purpose tools (TUIsf) for urban planning.
- + Lots of creative tangible interaction and presentation techniques.
- Software architecture is application specific.

Otmar Hilliges

Related Work: Papier-Mâché

- Papier-Mâché: A Toolkit for developing TUIs. Using computer vision, electronic tags and barcodes.
- + Provides a API for TUI based systems.
- + Includes a variety of out of the box recognition algorithms.
- Code based approach.
- Only focuses on TUIs.

Related Work: DART

• DART:

A toolkit for AR applications using a classic multimedia design tool (Macromedia Director).

- + Very easy to create content and application logic for non-programmers.
- + Director is already well-know and provides powerful means to design UIs.
- Interactions are very limited.

Otmar Hilliges

- Not changeble at runtime.

RW: Petri Nets vs. Finite Automata

• FNA:

- FNAs are used to model workflows (navigation, repair instructions).
- One active state. Step by Step execution.
- Very diffucult to model concurrent and multi-user situations.
- Low learning threshold

Otmar Hilliges

- Petri Nets:
 - Introduced to model concurrent and distributed systems.
 - Powerful mathematical model
 - Meets requirements for distributed, multi-user and multi-modal systems.
 - High ceiling

Related Work: Runtime Development

- Squeak:
 - Multimedia design and development environment for educational purposes. Fully tweak-able.
 - Very easy to develop interactive graphical applications. Even kids can do it.
 - Limited to the classic WIMP-desktop.

QuickTime[™] and a MPEG-4 Video decompressor are needed to see this picture.

Outline

- Introduction
- Requirements Analysis
- Related Work
- Implementation
- Future Work

Implementation

- What I implemented in this thesis:
 - Interaction Management component based on DWARF and Petri Nets.
 - A runtime development environment for that component.

Implementation

- Layering and 3rd party software
 - DWARF, Jfern, Graham-Kirby Compiler

Interactive Runtime Development Environment		
Petri Net Kernel		
JFern	Graham-Kirby Compiler	DWARF Middleware

Implementation

Integration with DWARF UI architecture

Implementation: Interaction Management

- Multi-modal integration
 - Input components emit tokens
 - Data is analyzed and modified inside Petri nets transitions
 - Commands are sent out to output components

May 13, 2004

28/3

Implementation: Runtime Prototyping

- Runtime development
 - Net structure modifications
 - Dynamic code modification
 - Connectivity management

May 13, 2004

29/3

Implementation: Runtime Prototyping

• Results: Mini-Sheep and CAR UI

Implementation: Object Design

- UIC Implementation Details
- **GethAndumircistivantion**
 - Missencalliers Freditrie hett
 - ALERANDER ALERANDER
 - Commensifertiediting
 - = Recently have strengthere.
 - Activity guards and
 - Betwigging Mutplify
 Needs & Abilities

Outline

- Introduction
- Requirements Analysis
- Related Work
- Implementation
- Future Work

Future Work

- Improve UI of development environment
- Add convenience functionality
 - Palettes
 - Toolbars
 - Repository of interaction atoms.
- Programming by example
- Authoring within Augmented Reality.

Future Work II

- Extensions to the DWARF UI architecture:
 - User model.
 - Improved recognition techniques and multi-modal integration using Bayes nets and hidden Markov chains.
 - API for device integration.

Outline

- Introduction
- Requirements Analysis
- Related Work
- Implementation
- Future Work

Any Questions ? Thank You!

