
Interactive Prototyping for Ubiquitous Augmented Reality
User Interfaces

Otmar Hilliges
University of Munich

LFE Media Informatics

otmar.hilliges@ifi.lmu.de

Christian Sandor
Technische Universität

München

sandor@in.tum.de

Gudrun Klinker
Technische Universität

München

klinker@in.tum.de

ABSTRACT
User interfaces for ubiquitous augmented reality incorporate
a wide variety of concepts such as multi-modal, multi-user,
multi-device aspects and new input/output devices. In this
paper we present a twofold approach that consists of an
execution engine for ubiquitous augmented reality user in-
terfaces and a runtime development environment that en-
ables rapid prototyping and live system adaption for such
advanced user interfaces.

Categories and Subject Descriptors: H.5.2 User Inter-
faces, D.1.7 Visual Programming

General Terms: Management, Experimentation

Keywords: Software architectures, visual programming,
augmented reality, tangible user interfaces, ubiquitous com-
puting, multi-user, multi-modal

1. MOTIVATION
User interfaces in ubiquitous augmented reality (UAR) [1,

2] arise from the convergence of augmented reality and ubiq-
uitous computing. The expressiveness of UAR is powerful
as it inherits a variety of concepts such as multiple users,
input devices and displays. In contrast to WIMP user in-
terfaces, in which much research and usability evaluations
have helped to establish its paradigm with idioms such as
Drag and Drop or Point and Click, the interaction elements
in UAR have not yet been formalized.

We present an approach for interactive prototyping of in-
teraction management for UAR user interfaces. Our ap-
proach comprises two parts. First, the development of an
execution engine for UAR user interfaces. Second, the cre-
ation of a runtime development system to alter the behavior
of the user interface at system runtime.

Since designers are often less tech savvy, one of our main
goals was to reduce the amount of programming necessary
to create functional UAR prototypes. We choose a visual
programming approach based on the formal model of Petri
nets to explicitly model flexible adaption of I/O devices at
runtime and data flow through the user interface.

2. RELATED WORK AND CONTRIBUTION
Papier-Mâché [3] is a toolkit for building tangible user in-

terfaces (TUI) without having expertise in hardware design
and computer vision. The toolkit consists of a library to

Copyright is held by the author/owner.
IUI’06, January 29–February 1, 2006, Sydney, Australia.
ACM 1-59593-287-9/06/0001.

adapt various sensor techniques and to abstract input hard-
ware. Further it provides a high-level event model and an
API for incorporating tangible input. Our approach con-
tains a similar device abstraction and event model. We do
not limit ourselves to TUI but support all kinds of input
devices that are able to emit a defined set of events. We
support a formal model to describe the flow of events and
a visual programming environment while Papier-Mâché is a
Java class-library.

Jacobs et.al propose in [4] a user interface management
system. Likewise in our approach, continuous data streams
and discrete events are distinguished, and a graphical edi-
tor for the specification of changes in the media design layer
according to those events is provided. In virtual reality,
where input hardware is to a certain degree standardized
and known in advance, dynamic device exchange is not re-
ally an issue. With UAR, in contrast, we are concerned with
semantical equivalence and flexible exchange of I/O devices
and distribution of software components over several hosts.
Additionally, we consider output fission and control of mul-
tiple output components to be an issue.

3. INTERACTION MANAGEMENT
The WIMP assumption that input occurs sequentially

does not hold for UAR any longer. In UAR several modali-
ties are used by multiple users in a truly parallel manner to
interact with the system. Furthermore, the highly dynamic
nature of UAR requires a way to flexibly adapt and exchange
devices, possibly at runtime. Hence, a special-purpose mech-
anism has to enable UAR systems to give users the ability
to interact with the system in the way they want, with their
preferred devices. We call this interaction management.

In addition, interaction management has to allow UAR
systems to adapt themselves to the current user and her
preferences, as well as to the her context (e.g. current activ-
ity, users’ inter-social engagement or the available devices).
The system has to present content in the preferred way and
optimized to the currently available display devices.

To meet these requirements, we have developed a user-
interface architecture [1, 2] for UAR systems that enables
multi-modal, parallel-user input as well as flexible device
adaptation at runtime. For communication purposes we uti-
lize DWARF [5], but the presented functionalities could be
implemented on top of any sophisticated publisher/subscriber
system.

We arrange the user interface components in three layers,
Media Analysis, Interaction Management and Media Design.
Most data flow linearly from the Media Analysis layer, which



contains input components, to the Interaction Management
layer, where the tokens are interpreted. From there the data
flow continues to Media Design layer where the output com-
ponents reside.

We have developed a standardized format for tokens that
are sent from the input components to the Interaction Man-
agement layer. Due to this standardized format, we can
exchange one input device for another - as long as they emit
the same type of tokens.

Similarly, the Interaction Management layer sends com-
mands to the Media Design layer. The commands consist of
actions that have to be executed by the output components.
One can interchange output components in the same way as
with input components. Due to the flexible Dwarf compo-
nent model the exchange of I/O components works even at
system runtime.

4. INTERACTION MANAGEMENT WITH
PETRI NETS

Petri nets, or place-transition nets, are classical models of
concurrency, non-determinism and control flow. Petri nets
provide an elegant and mathematically rigorous modeling
framework for dynamic systems. They also provide an easy-
to-learn and understandable graphical notation.

A Petri net consists of places, tokens, arcs and transitions.
The arcs connect places and transitions. Places and arcs
may have capacities. A transition fires when all places at
the end of incoming arcs contain enough tokens. Transitions
execute actions when fired.

Places of Petri nets usually represent states or resources
in the system, while transitions model the activities of the
system.

Transitions are used to encapsulate atomic interactions.
More complex interactions can be modeled by combining
several transitions.

The characteristics exhibited by the activities in a multi-
modal user interface such as concurrency, decision-making
and synchronization are modeled very effectively with Petri
nets. In Figure 1 some of these characteristics are repre-
sented.

(a) (b) (c)

Figure 1: From left to right: Petri nets modeling Se-
quential Execution, Concurrency and Synchroniza-
tion

We map input events to tokens that are put into incoming
places. Code encapsulated in transitions extracts the con-
tent from user input tokens and interprets it. Tokens gen-
erated by transitions are sent to output components, thus
enabling us to model interactions, and implicitly, the behav-
ior of the user interface.

Transitions link inputs to a semantic entity. Transitions
can be seen as predicates over input attributes. A transi-
tion encapsulates actions which are fired when the predicate
evaluates to true, which causes a change in the user inter-

faces state; for example, the addition or removal of an item
in a graphical view or a change of properties of some item
in an output component.

A set of places, arcs and transitions forms an expression
or, in terms of user interaction, a declaration of intent (e.g.
insert an element to a view, selection/de-selection).

5. UI EXECUTION ENGINE
The core component of the Interaction Management layer

is the User Interface Controller (UIC) [6]. It combines the
functionalities of Dialog Control and Discrete Integration.
It interprets input tokens sent by the Media Analysis com-
ponents and then triggers actions that are dispatched to
components in the Media Design layer.

The UIC has been implemented on top of the object-
oriented Petri net framework JFern1. JFern’s Petri net model
is based on the traditional model of hierarchical Petri nets
with the additional concept of object-based tokens - places
can contain arbitrary Java objects as tokens.

We take advantage of two of its main features, the ability
to use arbitrary objects, including Dwarf events, as tokens
and the possibility to describe transitions guards and actions
in native Java code. That implies a high expressiveness of
the single statements and very little learning required for
programmers familiar with the Java language.

We have built a communication layer around the JFern
kernel, connecting input places with components of the Me-
dia Analysis layer and connecting output places with com-
ponents of the Media Design layer.

We utilized the described user interface execution engine
to build the mixed-reality, multi-player game Sheep which is
described in [7, 8]. That approach showed that it is powerful
enough to control the user interface of mixed-reality appli-
cations. It also gives developers and technically interested
users remarkably easy insight at runtime into the processes
occurring by visualizing on screen the Petri net execution.

6. RUNTIME DEVELOPMENT

Figure 2: The UIC showing a very simple Petri net
and the net structure modification tab.

Since the code-based approach utilized in Sheep did not
scale very well in terms of development time and methodol-
ogy, we built a visual programming environment to specify
Petri nets. This has the advantage of letting the developer

1http://sourceforge.net/projects/jfern



modify the user interface at runtime based on feedback from
users. This also makes it easier to deal with the resulting
complexity of the Petri nets by hiding the underlying XML
representation in favor of a pure graphical notation.

The basic functionality of our tool is to define the net
structure (Figure 2). This means to specify how many inputs
and what sort of inputs are needed to execute one task (e.g.
a gesture and a speech command) and also what sort of
output is generated. With the net structure we also define
how different tasks are related to each other.

6.1 Dynamic Code Modifications
To change the behavior of the system we need to modify

the data manipulation that is done within the control struc-
ture. In our case this means to exchange the code of the
actions which execute arbitrary Java code and have access
to the tokens that reside in the input places. The code ex-
ecuted actually changes the state of attached components
from the Media Design layer.

In most cases code boils done to a few lines. Essen-
tially actions extract data from input tokens, which are
Dwarf events, and compose new Dwarf events which are
sent to the output components. We are able to exchange the
code of the actions at runtime utilizing the Graham-Kirby-
Compiler2 and in consequence, that enables us to modify
the user interface behavior dynamically.

6.2 Connectivity Management
Connections between I/O devices and the UIC are based

on Dwarf infrastructure and communication channels set
up at runtime. Developers can define attributes on out-
going - and respectively predicates on incoming - connec-
tions. Within our tool the developer can add new incoming
connections by attaching input components to input places
of the Petri net. Further the developer can define pred-
icates on that connection to select from different compo-
nents which offer to produce matching events. The connec-
tions will be set up whenever a matching pair of data pro-
ducers/consumers is present in the network environment.
Whenever attributes or predicates change, the regarding
connections are disconnected and, if available, new com-
munication partners are connected. Output places can be
modified accordingly. This allows us to flexibly adapt dif-
ferent output components and control which components
receive what commands. So we can use different modali-
ties to present content to the user or show different content
on devices belonging to different users or user groups, e.g.
private information vs. publicly available information. An-
other aspect of our architecture allows developers to keep
full control over the granularity of their Petri nets. Since
any arc in a Petri net can be replaced by a Dwarf connec-
tion a developer can model everything in one self-contained
component or, on the other end, have several interwoven
components each modeling just one single interaction. Such
atomic Petri nets can then be reused in different applica-
tions.

This implementation stage has been used in the CAR3 [9]
project. Its goal is to provide a collaboration platform for
a team of interdisciplinary researchers to experiment with
the next generation of car user interfaces. It incorporates

2http://www-ppg.dcs.st-and.ac.uk/Java/
DynamicCompilation/
3http://www1.in.tum.de/DWARF/ProjectBar

concepts of mixed and augmented reality, adaptive user in-
terfaces, multi-modal user interfaces and attentive user in-
terfaces.

7. CONCLUSION AND FUTURE WORK
In this paper we have presented an execution engine for

UAR user interfaces that has been shown to meet the re-
quirements for flexibility, adaptivity and powerful interac-
tion management [2, 8].

Further we have presented a runtime development system
for such user interfaces. No formal user studies have been
carried out yet. Our experiences from building systems with
it have shown that it has reached a level where programmers
can use it to quickly assemble and tune UAR systems such
as CAR and others4.

While we succeeded in creating a tool for the technical
user that is significantly easier and faster than writing code,
we found that an even more visual approach would be nec-
essary to enable technically unskilled designers to build such
user interfaces since Petri nets and probably any formal
model would, for them, be hard to understand and hence
unintuitive to use.

8. ACKNOWLEDGEMENTS
Special thanks to Dwarf Ph.D. students Thomas Reicher, Martin

Bauer, Martin Wagner and Asa MacWilliams.

9. REFERENCES
[1] Christian Sandor. A Software Toolkit and Authoring Tools for

User Interfaces in Ubiquitous Augmented Reality. PhD thesis,
Technische Universität München, München, Germany, 2005.

[2] Christian Sandor and Gudrun Klinker. A rapid prototyping
software infrastructure for user interfaces in ubiquitous
augmented reality. Personal Ubiquitous Comput.,
9(3):169–185, 2005.

[3] Scott R. Klemmer, Jack Li, James Lin, and James A. Landay.
Papier-Mâché: Toolkit Support for Tangible Input. In CHI ’04:
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, Vienna, Austria, 2004.

[4] Robert J. K. Jacob, Leonidas Deligiannidis, and Stephen
Morrision. A Software Model and Specification Language for
Non-WIMP User Interfaces. ACM Transactions on
Computer-Human Interaction, 6(1):1–46, 1999.

[5] Martin Bauer, Bernd Bruegge, Gudrun Klinker, Asa
MacWilliams, Thomas Reicher, Stefan Riss, Christian Sandor,
and Martin Wagner. Design of a component-based augmented
reality framework. In Proceedings of the International
Symposium on Augmented Reality (ISAR), pages 45–54,
October 2001.

[6] Otmar Hilliges. Interaction Management for Ubiquitous
Augmented Reality User Interfaces. Master’s thesis, Technische
Universität München, Germany, 2004.

[7] Otmar Hilliges, Christian Sandor, and Gudrun Klinker. A
lightweight approach for experimenting with tangible
interaction metaphors. In Proc. of the International Workshop
on Multi-user and Ubiquitous User Interfaces (MU3I), 2004.

[8] Asa MacWilliams, Christian Sandor, Martin Wagner, Martin
Bauer, Gudrun Klinker, and Bernd Brügge. Herding sheep:
Live system development for distributed augmented reality. In
ISMAR ’03: Proceedings of the IEEE and ACM International
Symposium on Mixed and Augmented Reality, pages 123–132,
Tokyo, Japan, 2003.

[9] Christian Sandor and Gudrun Klinker. Lessons learned in
designing ubiquitous augmented reality user interfaces. In
Michael Haller, Mark Billinghurst, and Bruce Thomas, editors,
Emerging Technologies of Augmented Reality: Interfaces &
Design. Idea group inc., 2006.

4http://campar.in.tum.de/Chair/ResearchArProjects


