
Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

2002 Society for Design and Process Science

LOOSE SEMANTICS FOR UML/OCL
Heinrich Hussmann

Fakultät für Informatik, Technische Universität Dresden, Germany
Email: hussmannh@acm.org

ABSTRACT
This paper deals with formal foundations for
a subset of the UML notation (subset of class
diagrams and constraints in OCL). There are
already various proposals for semantics of
UML and a few for OCL. Nevertheless, it is
argued that these approaches are not fully
adequate for building a conceptual bridge
between the programming artifacts produced
from UML/OCL and the formal semantics. A
different approach is suggested which builds
on one hand on the existing work on
UML/OCL semantics, and which on the other
hand re-introduces ideas, which were
discussed for abstract data types under the
term "loose semantics". The advantages of
this approach are presented and a relationship
to the meta-modeling approach is outlined.

1. INTRODUCTION
The Unified Modeling Language (UML)

[UML1.4] has quickly established itself as the
prevailing standard for software modeling in industrial
practice. There is no need to further discuss the
advantages and problems of UML here. Moreover, basic
familiarity of the reader with UML is assumed.

From the beginning, it was one of the goals of the
UML development to provide a more precise
description of the language than it was available for
other software modeling notations in the past.
Specifically, an OMG press release from 1997
[OMG97] mentions as number 4 of the seven design
goals for UML: "Provide a formal basis for
understanding the modeling language." This goal has
been reached by now only in a very limited way, that is
regarding the syntax of UML. The UML standard
contains the notation of the Object Constraint Language
(OCL), and this language is used to define well-
formedness rules on a meta-model for the UML abstract
syntax. However, until now a formal semantics is not
part of the standard. There exist several proposals for
defining such a semantics, some of which are reviewed
further below. However, the practical acceptance of
these approaches is low. The general claim of this paper
is that one reason for this is that the existing approaches
to UML/OCL semantics do not use the right abstraction
level. In particular, existing semantics are not very
helpful for people who want to define practical tool for
UML, for instance code generation.

The paper is structured as follows. First, the
variety of different possible implementations for a UML
class diagram is discussed, in order to get an idea of the

needed abstraction level. Then the existing approaches
are revisited and analyzed. This completes section 2. In
section 3, a novel approach to UML semantics based on
so-called "object algebras" is presented. It is shown that
this approach is a generalization of the various ideas for
code generation, and that it can be used to precisely
define semantics for OCL expressions as well. Finally,
it is outlined how the meta-modeling approach can be
combined with the described technique.

2. EXISTING APPROACHES TO UML
/OCL SEMANTICS REVISITED

In order to explain various ways of interpretation
of a given UML class diagram, we are using a simple
example UML class diagram, which is depicted in
Figure 1.

TeamMember

name: String
age: Integer

Meeting

title: String
numParticipants: Integer

start: Date
end: Date

move(newStart: Date)

meetings

participants

2..*

*

Figure 1: Example UML Class Diagram

2.1 PROGRAMMERS' APPROACH
As a start to the discussion of semantic models, it

is helpful to analyze how class diagrams are mapped to
programming languages in practice. First let us assume
the viewpoint of a Java programmer. A standard
mapping to Java code, which can be achieved with
CASE tools (at least in principle, ignoring some of the
weaknesses of most existing UML CASE tools) is as
follows. We assume here a user-defined type Date. The
type name java.util.Set refers to a standard library
interface for finite sets from the so-called Java
Collection Framework.

class TeamMember {
  private String name;
  private int age;
  private java.util.Set meetings;
   //element type Meeting
}

class Meeting {
  private String title;
  private int numParticipants;
  private Date start;
  private Date end;
  private java.util.Set
     participants;
   //element type TeamMember



Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

2002 Society for Design and Process Science

  public void move (Date newStart)
   {}
}

This is just one of the possible implementations of
the UML class diagram. Let us now assume that another
programmer provides a handcrafted implementation of
the same class diagram. It features a special class, which
manages the association between TeamMember and
Meeting objects.

class TeamMember {
  private String name;
  private int age;
}

class Meeting {
  private String title;
  private int numParticipants;
  private Date start;
  private Date end;
  public void move (Date newStart)
   {}
}

class MeetingManager {
  static java.util.HashMap
      participation;
    //maps Meeting objects onto
    //sets of Participant objects
...
}

Even without going into the details of the second
implementation, it should be obvious that the rather
abstract UML model is refined in rather different ways
in the two approaches. The situation becomes more
complex if one considers different target languages than
Java. For instance, in some applications the Meeting
class may be mapped onto a CORBA interface
definition, which is suitable for accessing Meeting
objects independently of their concrete implementation
language. The corresponding code in CORBA IDL
(Interface Definition Language) essentially looks as
follows.

interface Meeting {
  attribute string title;
  attribute long numParticipants;
  attribute Date start;
  attribute Date end;
  void move (in Date newStart);
}

Besides the minor syntactical differences, there is
also a semantic difference to the Java code from above.
The keyword attribute in CORBA IDL does not
explicitly prescribe the existence of a variable in the
implementation, which stores the relevant information.
Rather the attribute declaration in the interface states
the existence of two operations, which are called the
getter and setter operation of the attribute. The exact
syntactic representation of these operations is dependent

on the actual programming language used for the
implementation. It is possible, but not required, that the
implementation provides a variable corresponding to the
attribute, The key point is here that the UML class
diagram contains an attribute, e.g. numParticipants, but
that the implementation may implement this in a
different way than just by providing a variable.
A final example of a completely different mapping to
code is a translation into a database schema. For
instance, the following SQL code may be generated
from the UML class diagram in Figure 1. The attribute
numParticipants is not represented directly since it can
be derived from other information. (Of course, this
decision is too difficult for most automated translation
tools, but nevertheless it is adequate.)

create table TEAMMEMBER
(TMID integer primary key,
 NAME varchar not null,
 age integer
)

create table MEETING
(MTID integer primary key,
 TITLE varchar not null,
 START DATE,
 END DATE,
)

create table TM_MTGS
{TMID integer references
   TEAMMEMBER,
 MTID integer references MEETING,
 primary key (TMID,MTID)
)

The above database schema consists of three
tables, one for each class and one for the association.
The association is a table just holding pairs of foreign
keys to the class tables. Please note that there exist
many different strategies for mapping a UML class
diagram to a database schema.

The examples given above just cover a few of the
possible mappings of UML to target languages. There
are for instance approaches to map UML class diagrams
to sets of Web pages, to XML structures or to physical
or organizational entities.

One of the main advantages of the UML notation
is that it provides a common abstraction for all the very
different implementations, which were sketched above.
Using the OCL language of UML, semantic constraints
can be formulated, which have to be translated into the
various possible implementations in a very different
way. A simple example for the class diagram from
Figure 1 is the rule that the UML attribute
numParticipants of class Meeting has always to be
consistent with the actual number of associated
TeamMember objects. In OCL syntax, this reads as
follows. Please note that the OCL keyword "inv"
denotes an invariant.



Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

2002 Society for Design and Process Science

context Meeting inv:
numParticipants =
  participants -> size

2.2 NAIVE SET-THEORETIC SEMANTICS
Now let us contrast some of the existing

approaches to UML/OCL semantics with the wide
spectrum of implementations discussed in the previous
subsection. For instance in [RG98], it is suggested to
use a simple set-theoretic interpretation for UML class
diagrams. This basic idea has also been chosen as the
basis for the first approach to officially define the
semantics of OCL in the context of the OMG [OCL2].
In this approach, the semantics of the class diagram
from Figure 1 is described as a set of hypergraphs,
where a hypergraph corresponds to a concrete
configuration of object instances (a system state). The
nodes correspond to objects and the edges to association
links. The nodes are labeled with attribute/value
mappings and the edges with names for association
ends.

This approach has the strong advantage that it is
accessible in principle to everybody who has a decent
background in mathematics and that it is precise enough
to define formally the semantics of OCL, as it is done in
[RG98, RG01, OCL2].

There is, however, a serious drawback of this
naive approach. Objections come from two sides:
academics criticize the low abstraction level (and this
paper somehow belongs to this category), but also
practicioners are not happy with the fact that the
semantics of UML class diagrams is fixed to a particular
structure. For each one of the implementations
mentioned in section 2.1 above, a non-trivial mapping is
required to understand it as a hypergraph structure. For
instance, attribute/value mappings do not exist in all
implementations of a UML class diagram (take the
translation to CORBA interfaces). So we have the
situation that the concepts of UML itself are more
abstract than the formal semantics given to it. This
situation is common also in other areas (for instance in
operational semantics of programming languages), but it
is also considered unsatisfactory there (which is the
reason why denotational semantics for programming
languages were invented).

2.3 TRANSLATION SEMANTICS
There is a second group of approaches to the

semantics of UML, which tries to keep the right
abstraction level. These approaches define translations
from UML class diagrams to traditional specification
languages. There exist, among others, translations to Z
[FB+97], Object-Z [KC99], Larch [BG98] and CASL
[HCB00]. Also other UML diagram types have been
translated to formal notations, e.g. in [BCR00] using
Abstract State Machines. The exact abstraction level
reached in these translations differs. For instance, the Z-
based work tends to describe the structure of the

implementation more closely, according to its "model-
based" paradigma.

There are a number of serious problems, however,
with these approaches. A pragmatic, but nevertheless
vary important, issue is that the semantics is not
accessible to anybody who does not have the necessary
background in the chosen formal specification language.
Due to the low acceptance of formal specification
languages in the practically-oriented software
engineering community and due to the large variety in
formal specification languages, this reduces the
practical impact of the approach already almost to zero.
Moreover, there is the technical problem of maintaining
two versions of the same specification, one in the UML
formalism and one in the formal specification language,
which is its translation. Techniques known from code
generation can be used to keep both versions in
synchronicity. Significant overhead is required to re-
translate results of analysis tools from translated version
back to UML. And finally, there is a third source of
problems which stems from the notoriously weak
relationship of formal specification languages to real-
world programming languages. If, for instance, a CASL
specification is created from a UML specification, the
relationship to the various practical implementations, as
they were presented in section 2.1 above, remains either
unclear or at least relatively complex. So in summary,
this style of semantics provides only little value to UML
tool builders.

2.4 METAMODELING SEMANTICS
The third group of approaches for UML semantics

we discuss here is based on the application of a
"bootstrapping" principle [CEKS01]. The semantics of
UML is described using UML itself (and its constraint
language OCL). This is particularly appealing to the
UML community, since the standard document defining
UML itself relies on a meta-modeling approach, where
the syntax of UML is defined by a meta-model in UML
(in fact, in the so-called MOF framework, but this will
become a proper sublanguage of UML soon).

Since the meta-modeling principle will be
discussed in more detail below, a simple example for
meta-modeling semantics may be helpful. In principle, a
general (meta-)model for possible object configurations
(system states) is defined in UML. For instance, the
UML class diagram in Figure 2 describes on the meta-
level a class of object instances which contains so-called
slots, each of which has a name and a value (of a
universal type Any). The slots are used to define the
semantics of attributes and associations.

ObjectInstance

id: ObjectID

Slot

name: String

value: Any

*

Figure 2: Simple Semantic Meta-Model for UML
Classes



Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

2002 Society for Design and Process Science

Based on such a semantic meta-model, an object
configuration of the class diagram from Figure 1
representing one meeting with three participants will
consist of the following objects:
• Four instances of the ObjectInstance meta-class

(one for the meeting and three for the team
members)

• Ten instances of the Slot meta-class to represent
attributes (four slots for the attributes of the
meeting object, three times two slots for the
attributes of the team members)

• Depending on the actual way how semantics of
associations is defined, a certain number of
additional Slot objects and possibly further objects
to represent the association links between the
meeting and the three participants.
It is obvious that instantiations of the semantic

meta-model become extremely large. But this is not the
most serious problem, since this information can be
processed by machine. The main problem is again in the
level of abstraction. In fact, the meta-modeling
approach is not much different in its level of abstraction
from the naive approach discussed above. For instance,
in the current proposals for meta-modeling semantics,
attributes are mapped to meta-level object instances like
slots. But is this really adequate for implementations
that possibly implement attributes by pairs of operations
(as it was discussed above)? And moreover, there is a
variety of possible meta-modeling semantics for UML
class diagrams, for instance depending on the way how
association links are mapped to slots (and on the
question whether they are mapped to slots or some other
meta-class). This is also strange for an abstract
semantics, which should provide a common abstraction
for many different concrete implementations.

3. OBJECT ALGEBRAS AND LOOSE
SEMANTICS

Following the harsh criticism of existing
approaches in the previous section, it is now time to
outline a new approach which tries to overcome the
disadvantages of the existing approaches but builds on
their advantages. The difference to the other approaches
even may look small at first sight, but there are serious
advantages which will be explained below.

The problem of the first and third group of
approaches to semantics discussed above was that the
abstraction level was inadequate. In terms of software
engineering, the structure of the semantic domain is
overspecified in these approaches. A counter-measure is
to adhere to the old principles of modular design and to
apply information hiding. So we define only the
necessary access operations to the semantic domain and
their essential properties. This is very similar in spirit to
the translation approaches (second group in the
discussion above). However, we avoid the overhead of
using a formal specification language. Instead, we give

a more abstract semantics in two versions: First a direct
semantics based on plain mathematical set theory, then
a sketch of a meta-modeling approach to the same
concept.

3.1 UML CLASS DIAGRAMS AS
ALGEBRAIC SIGNATURES

Before proceeding with any formal definitions, the
information contained in a UML class diagram has to be
represented as a formal structure. In order to maintain
good compatibility with the other approaches, we use
here a definition very similar to [RG98]. In our
definition we try to stay a little bit closer to the syntactic
information given in the diagram and avoid to include
information pointing already to the intended semantics.
Moreover we extend the definition to cover non-query
operations.

Definition. A UML class model over a set P of
primitive type symbols is a structure
M = (C, <, ATT, OP, ASSOC) where

• C is a set of class names. We use below the
abbreviation T = C∪P for all type names.

• < is a partial order on C reflecting the
generalization hierarchy.

• ATT is a set of attribute symbols. An attribute
symbol is a triple (c, a, t) where c ∈ C, a is an
attribute identifier and t ∈ T is a type symbol.

• OP is a set of operation symbols. An operation
symbol is a quintuple (c, op, args, t, q) where c ∈
C, op is an operation identifier, args∈ T* is the list
of argument types, t ∈ T∪{void} is the result type
("void" indicates the non-existence of a result). q is
a Boolean value indicating whether the operation is
a "query" (which leaves the system state
unchanged).

• ASSOC is a set of association symbols. An
association symbol is a triple (c1, ass, c2) where c1
∈ C, c2 ∈ C are the two related classes, and ass is
the name of the association. '
As it was observed for instance in [RG01], the
information contained in a UML class model is
very similar to a signature in the sense of algebraic
specifications. The next subsection takes this
observation one step further and defines specific
algebras for this type of signature.

3.2 OBJECT ALGEBRAS
The following definition can be seen from two

viewpoints. From the viewpoint of universal algebra, it
defines a specific kind of heterogeneous algebra, which
is specifically adjusted to the purposes of UML models.
From the viewpoint of a person interested in the
semantics of a UML model, it constitutes an attempt to
provide an optimally abstract definition of what an
implementor of a class diagram has to provide.



Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

2002 Society for Design and Process Science

Definition. Given a UML class model
M = (C, <, ATT, OP, ASSOC)  over a set P of
primitive type symbols, an object algebra  for M
is a structure

A = (UA, IDA, PA, AA, OPA, LNKA) where
• UA is a set called the (object) universe, the elements

of which are called object configurations.
• IDA is a countably infinite set of object identifiers

such that for each identifier in a given object
configuration the class of the identifier is known,
i.e. there is a function

class:  UA × IDA → C.
• PA is a family of sets containing for each primitive

type p ∈ P a carrier set pA.

The set VA of values is defined as an abbreviation

for the rest of the definition:

VA =def 

  
IDA ∪ pA

p ∈P A

U ∪ {null}

• AA is a family of functions containing for each
attribute name a in ATT a partial function

aA: UA × IDA → VA.
• OPA is a family of functions containing for each

operation name op in OP a partial function opA: UA

× IDA × VA × … × VA → UA × VA such that for a
query operation op(u, i, x1, …, xn) = (u, v) holds
(i.e. u is unchanged) and such that only the "null"
value is returned for the "void" type.

• LNKA is a family of functions containing for each
association name ass in ASSOC a total function
assA: UA × IDA × IDA → Bool.

This definition still looks complex, but the
remaining complexity is unavoidable due to the inherent
complexity of UML class diagrams. It does not talk at
all about the structure of an object configuration (the
system state), but just says that there are some
observations which are applicable to such an object
configuration (an element of U). One can ask for the
value of an attribute, execute an operation for an object
and ask whether two objects are linked via an
association. The term object universe denotes all
possible object configurations (global system states) for
a given class diagram. Please note that an operation
always transforms a whole object configuration and not
an individual object, and therefore operations may
modify other objects than the one on which the
operation was invoked, and may for instance establish
or remove links between objects.

An example may be helpful at this stage. Assume
that object configuration u1 contains two objects, one
for each of the classes meeting and TeamMember. The
observation class(u1,1) delivers, for instance the class
TeamMember and name(u1,1) delivers for instance the
value "john", indicating that the object identifier 1
denotes an object of class TeamMember which carries
the name "john". Analoguously, other attribute values

are available, and , for instance, identifier 2 may denote
a Meeting object. Assume the objects are not yet linked,
as stated by meetings(u1, 1, 2) = false (taking meetings
as the name for the association shown in Figure 1). Now
an operation addMeeting on class TeamMember may
establish a link between the two objects. In the object
algebra this means that addMeeting(u1, 1, 2) gives a
new object configuration u2 which has exactly the same
properties as u1 but where meetings(u2, 1, 2) = true.

The above definition does not yet contain all
conditions one wants to put on a semantic structure for
UML class diagrams. It contains already a way to
determine the class of the object an identifier is intended
to refer to, but of course accesses to the attributes etc.
need to be consistent with this information. (Side
remark: We are assuming here a subset of UML, where
objects always belong to a single class. For full UML,
the function class from above needs to be slightly
generalized.)

In order to decide whether some access function is
type-correct for an object identifier, we have to deal, of
course, with the complex issues of inheritance and
dynamic binding. The following definition is also in this
respect more open than [RG98] (where a simple
inclusion semantics for subclasses is assumed). The
exact binding mechanism is kept open; just minimal
conditions are specified.

Definition. Given a UML class model
M = (C, <, ATT, OP, ASSOC) over a set P of
primitive type symbols, an object algebra
A = (UA, IDA, PA, AA, OPA, LNKA) for M is called
type-conformant if the conditions given  below
are satisfied.
For the following conditions, we use an auxiliary
predicate isKindOf which is defined as follows:

isKindOf:  UA × IDA × C → Bool
For every u ∈ UA, i ∈ IDA, c ∈ C:

isKindOf(u,i,c ) ⇔  class(u,i)  <* c
where <* denotes the transitive-reflexive
closure of the syntactic inheritance relation.

• For each attribute in ATT with name a of each class
c ∈ C with result type t ∈ T:
• aA(u, i) is defined if isKindOf(u,i,c)
• aA(u, i) is conformant to t in u, if it is defined;

• For each operation in OP with name op of each
class c ∈ C with argument types

w = < t1, …, tn > ∈ T* and result type t ∈T:
• if opA(u, i, x1, …, xn) = (u’, x) is defined, then

isKindOf(u,i,c) and for all k ∈ {1,…,n} the
value xk is conformant to tk in u and the value x
is conformant to t in u’;

• For each association in ASSOC with name ass and
starting class c1 and end class c2
• assA(u, i1, i2) = true  implies

isKindOf(u,i1,c1) and isKindOf(u,i2,c2).



Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

2002 Society for Design and Process Science

The above definition makes use of the notion of a
value being conformant to a type. We avoid here to go
into the details of this question, since this is well-known
area.

3.3 LOOSE SEMANTICS
The term loose semantics is borrowed from the

theory of algebraic specifications [BW82]. The basic
idea can be easily transferred to UML:

The semantics of a UML class diagram is
constituted by all object algebras that are type-
conformant to the class diagram.

The basic idea of the loose semantics is that all
possible implementations of the UML class diagram are
covered. There is no single definition of the structure of
the semantic domain. So for instance,
• The set theoretic semantics from [RG98]

constitutes an object algebra which is contained in
the loose semantics of the class diagram.

• All other approaches to code generation as
mentioned in section 2.1 above constitute specific
object algebras , which differ in their way how the
algebra functions are implemented.
Using the loose semantics approach, the statements

above can be verified in a formal setting. For instance,
the fact that the semantics of [RG98] provides an object
algebra can be proven mathematically (although this
proof is relatively trivial). The definition of object
algebras was chosen in such a way that standard object-
oriented programs or semantic models for database
schemas are covered as well. So it is just a matter of
checking the conditions form above whether the
implementation belongs to the semantics of the UML
class diagram or not.

At this point, it may be helpful to clarify the
relationship between the approach described here an the
approach of so-called evolving algebras [Boe95], more
recently renamed to Abstract State Machines. The
general idea is very similar, since also evolving algebras
provide a built-in global state. However, in our
approach we assume UML(+OCL) to be the language
which is used by the specifier, and do not see the need
for another language layer. Moreover, a technical
difference is that in our approach an algebra maintains
all possible states, whereas in evolving algebras the
state is identified with an algebra. This makes it easier
for us to define loose semantics with multiple models
for a specification (a single model/algebra contains all
states in a certain implementation style) whereas in
evolving algebras there is essentially one fixed model.

3.4 SEMANTICS OF OCL CONSTRAINTS
Since the information carried in plain UML class

diagrams is very much limited, it is of course necessary
to extend the discussed approach to more sophisticated
specifications involving OCL constraints. Some of the
aspects of class diagrams which were ignored above can

also be easily handled through OCL constraints (e.g.
multiplicities, see [GR01]).

Using an analogy to the classical theory of
algebraic specifications, OCL constraints play the very
important role of "axioms" which further restrict the
admissible algebras in the semantics of a syntactical
specification for a specification, starting from the type-
conformant algebras. Exactly the same approach is used
here.

The following definition gives a simple
interpretation for a significant subset of OCL
expressions in terms of object algebras.

Definition. Assume a given UML class model, a set X
of typed variables and a binding Env: X → V of
variables to values. Then for any type-
conformant object algebra A based on this class
model, the interpretation of OCL expressions is
a function
  IA : Exp × U × Env → V ∪{undefined}
The value of the interpretation function is
defined recursively for OCL expressions as
follows.

• Variable: IA (x, u, e) = e(x)
• "let": IA (let x = exp1 in exp2, u, e) =

   IA (exp2, u, e+{x  IA (exp1, u, e)})
• Attribute: IA (exp.a, u, e) = aA(u, IA (exp, u, e))
• Query: IA (exp.op(exp1, …, expn), u, e) =

  opA(u, IA (exp, u, e),
           IA (exp1, u, e), …,
           IA (expn, u, e))

• Navigation along an association ass using an
association end assi:

IA (exp.assi, u, e) =
  {j ∈ IDA | assA(IA (u, exp, u, e), j) = true}

• Primitive operations:
IA (op(exp1, …, expn), u, e) =

         opA(IA (exp1,  u, e),…,IA (expn, u, e))

In order to be practically applied, the semantics of
OCL expressions needs to be combined with a
semantics for the way how the OCL constraints are
attached to the UML model (e.g. invariant,
precondition, postcondition, guard). Since the precise
semantics of this aspect is a difficult topic in its own
(see [HHB01]) and there is the additional technicality of
providing an appropriate comparative interpretation
involving pre- and post-states for an operation (see e.g.
[RG01]), we omit the whole topic here. However, the
extension exists and works smoothly (see [Hus02]).

The main contribution of the above definition of
OCL semantics is that it is independent of the concrete
implementation chosen. So it can be taken as the basis,
for instance, to define detailed mappings from OCL
constraints to programming languages or other
frameworks (see e.g. [HDF00, DHL01]).



Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

2002 Society for Design and Process Science

3.5. LOOSE SEMANTICS AND META-
MODELING

It may appear as a disadvantage of the object
algebra approach that it is again based on plain
mathematics. The number of indices and brackets in the
formulae alone probably makes the style of presentation
inaccessible for some of the audience interested in
UML. Therefore, it is interesting to see whether the
same approach can also be formulated by using meta-
level UML notation. Fortunately, this is not difficult. In
fact, the notion of an object algebra can be encoded as a
UML interface, as shown in Figure 3.

<<interface>>
GlobalSnapshot

class (id: ID): Class
attr (a: Attribute, id: ID): Value

opn (op: Operation, id: ID, arg: Sequence(Value)): Value
links (ass: Association, i1: ID, i2: ID): Boolean

Figure 3: The GlobalSnapshot Interface

The GlobalSnapshot interface provides a high-
level view of a system state from the outside. It makes
reference to classes from the syntactic meta-model of
UML (like Class, Operation, Attribute) and to special
sorts, which are assumed to be available in the
implementation (like ID for object identifiers and Value
as a supertype of all possible values). The parameter U,
which was present in the object algebra definition, can
be omitted from the signatures here, since the interface
always works on some given snapshot (in object-
oriented style). The opn operation, which invokes a
model-level operation, may change the snapshot by side
effect, leading to new values for the internal state of the
snapshot. Of course, some more information from the
definition above have to be added, and this can be done
by using OCL constraints on meta-level (for instance to
ensure type-conformance). Due to space limitations, it is
not possible to go into further detail here. The most
important aspect is that under this viewpoint now a
meta-modeling semantics as shown in Figure 2 above
can be understood as the meta-model of a specific
implementation approach, for instance one targeting at
the implementation in an objetc-oriented programming
language. Precise constraints relating the
implementation meta-model and the GlobalSnapshot in
OCL can be given which specify the chosen semantic
variant of class diagram implementation. This approach
may provide a useful framework for the definition of
implementation mappings , as it is discussed for the 2.0
version of UML.

4. CONCLUSION AND OUTLOOK
In this paper, we have provided an analysis of

existing approaches to the semantics of UML class
diagrams and an approach, which tries to apply the right
level of abstraction for such a semantics, such that the
full intended spectrum of implementations can be

covered. We have also shown that the approach is not in
contradiction to the meta-modeling approach but can be
used as a helpful tool for relating the abstract general
semantics of class diagrams to more specific semantic
domains of individual implementations.

Of course, the work presented here provides more
a starting point than a complete result. For instance, the
practicability of the specification of implementation
mappings has to be proven. One clear drawback of the
presented approach is that is considers all classes being
passive, and avoids all issues related to concurrency.
The most challenging topic is therefore the transfer of
the idea to a more general understanding of UML,
including other diagrams than class diagrams. However,
experience from previous work, which has followed
similar ideas in a different setting [Hus97] gives some
indications that this transfer will be possible.

Another interesting direction of further research is
to consider the embedding of traditional specification
techniques, like abstract data types, into the newly
proposed approach. In fact, classical axiomatic
specifications of data types should be in some sense a
special case of the semantics as described above.
Together with proof calculi for UML/OCL (as they are
being developed at various places), there is a chance
that a sublanguage of UML/OCL may be defined which
is a full-featured formal specification language in itself.
And therefore may replace in many practical
applications the usage of traditional formal methods.
This paper has tried to contribute to this goal by giving
a direct and abstract semantics for such a sublanguage
of UML/OCL.



Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

2002 Society for Design and Process Science

REFERENCES
[Boe95] Egon Börger, Why Use Evolving Algebras for
Hardware and Software Engineering?, in M. Bartosek,
J. Staudek, J. Wiedermann (eds.). Proc. SOFSEM '95,
Springer LNCS Vol. 1012, pp.  236-271, Berlin 1995.

[BCR00] E. Börger, A. Cavarra, and E. Riccobene, An
ASM Semantics for UML Activity Diagrams, in T. Rus
(ed.), AMAST 2000 Proc., Springer LNCS Vol. 1816,
pp. 293-308, Berlin 2000.

[BG98] M. Brickford, D. Guaspari, Lightweight
Analysis of UML. Draft Technical Report, Odyssey
Research Associates, 1998.

[BW82] M. Broy, M. Wirsing, Partial abstract data
types. Acta Informatica 18(1):47--64 (1982).

[CEKS01] T. Clark, A. Evans, S. Kent, P. Sammut, The
MMF Approach to Engineering Object-Oriented Design
Languages, Proc. Worksop on Language Descriptions,
Tools and Applications (LDTA2001), 2001. (Available
via http://www.puml.org)

[DHL01] Birgit Demuth, Heinrich Hussmann, Sten
Loecher: OCL as a Specification Language for Business
Rules in Data Base Applications, in: Gogolla/Kobryn
(Eds.), <<UML>>2001 Proc., Springer, LNCS Vol.
2185, Berlin 2001.

[FB+97] R. France, J.-M. Bruel, M.M. Larrondo-Petrie,
M. Shroff, Exploring the Semantics of UML Type
Structures with Z, In: Proc. 2nd IFIP FMOODS
Conference, pp. 247-260, London 1997.

[GR01] M. Gogolla and M. Richters. Expressing UML
Class Diagrams Properties with OCL. In Clark/Warmer
(eds): Advances in Object Modelling with the OCL,
Springer LNCS Vol. 2263, pp 86-115, Berlin 2001.

[HHB01] R. Hennicker, H. Hussmann, M. Bidoit, On
the Precise Meaning of OCL Constraints. In:
Clark/Warmer (eds): Advances in Object Modelling
with the OCL, Springer LNCS Vol. 2263, pp. 70-85,
Berlin 2001.

[Hus97] H. Hussmann, Formal foundations for Software
Engineering Methods, Springer LNCS Vol. 1322, Berlin
1997.

[Hus02] H. Hussmann, Formal Specification of
Software Systems, Lecture Notes, http://www-st.inf.tu-
dresden.de/fs, 2002

[HCB00] H. Hussmann, M. Cerioli, H. Baumeister,
From UML to CASL (Static Part), Technical Report of
DISI - Università di Genova, DISI-TR-00-06, Italy,
2000.

[HDF00] Heinrich Hussmann, Birgit Demuth, Frank
Finger, Modular Architecture for a Toolset Supporting
OCL, In: Evans/Kent/Selic (eds). <<UML>>2000 Proc.,
Springer LNCS Vol. 1939, pp.278-293, Berlin 2000.

[KC99] S.-K. Kim, D. Carrington, Formalizing the
UML Class Diagram Using Object-Z. In: France/Rumpe
(eds.), Proc. <<UML>>'99, Springer LNCS Vol. 1723,
pp. 83-98, Berlin 1999.

[OMG97] OMG Press release "What is OMG-UML and
Why Is It Important?", 1997.
http://cgi.omg.org/news/pr97/umlprimer.html

[RG98] M. Richters and M. Gogolla. On Formalizing
the UML Object Constraint Language OCL.
In Tok-Wang Ling, Sudha Ram, and Mong Li Lee,
editors, Proc. 17th Int. Conf. Conceptual Modeling
(ER'98), pages 449-464. Springer LNCS Vol. 1507,
Berlin 1998.

[RG01]M. Richters and M. Gogolla. OCL - Syntax,
Semantics and Tools. In Tony Clark and Jos Warmer,
editors, Advances in Object Modelling with the OCL,
pages 43-69. Springer LNCS Vol. 2263, Berlin 2001.

[UML1.4] Unified Modeling Language Specificationb,
Version 1.4, OMG Document formal/01-09-67, 2001.

[OCL2] J. Warmer et al., Response to the UML 2.0
OCL RfP, Initial Submission, Version 1.0, OMG
Document ad/2001-08-01, 2001


