
A $3 Gesture Recognizer – Simple Gesture Recognition for
Devices Equipped with 3D Acceleration Sensors

Sven Kratz
Deutsche Telekom Laboratories

TU Berlin
Ernst-Reuter-Platz 7

10587 Berlin, Germany
sven.kratz@telekom.de

Michael Rohs
Deutsche Telekom Laboratories

TU Berlin
Ernst-Reuter-Platz 7

10587 Berlin, Germany
michael.rohs@telekom.de

ABSTRACT
We present the $3 Gesture Recognizer, a simple but ro-
bust gesture recognition system for input devices featur-
ing 3D acceleration sensors. The algorithm is designed
to be implemented quickly in prototyping environments,
is intended to be device-independent and does not re-
quire any special toolkits or frameworks. It relies solely
on simple trigonometric and geometric calculations. A
user evaluation of our system resulted in a correct ges-
ture recognition rate of 80%, when using a set of 10
unique gestures for classification. Our method requires
significantly less training data than other gesture recog-
nizers and is thus suited to be deployed and to deliver
results rapidly.

Author Keywords
Gesture recognition, recognition rates, classifier, user
interfaces, rapid prototyping, 3D gestures

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User in-
terfaces – Input devices and strategies. I5.2. [Pattern
Recognition]: Design methodology – Classifier design
and evaluation. I5.5 [Pattern Recognition]: Implemen-
tation – Interactive Systems.

General Terms
Algorithms, Measurement, Performance, Experimenta-
tion

INTRODUCTION AND RELATED WORK
An increasing number of mobile devices are equipped
with 3D accelerometers, which calls for suitable meth-
ods for 3D gesture recognition on these platforms. Ges-
ture input for mobile devices can be a way to overcome
the limitations of miniature input facilities and small
displays, since the range of movement is not restricted

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’10, February 7-10, 2010, Hong Kong, China.
Copyright 2010 ACM 978-1-60558-515-4/10/02...$10.00.

by the size of the device. An example would be to per-
form gestures on a keypad-locked mobile phone to im-
mediately start intended applications.

The Nintendo Wii [2] controller is a prominent and com-
mercially successful example for a new generation of
game consoles that use acceleration sensors for input to
allow for more natural interaction.

Our work is based on previous work by Wobbrock et
al. [8], who developed a simple “$1 Recognizer” using
basic geometry and trigonometry. The “$1 Recognizer”
is targeted at user interface prototyping for 2D touch-
screen-based gesture recognition and therefore focuses
on ease of implementation on novel hardware platforms.
(The authors provide a pseudocode implementation of
the complete recognizer in the paper.) We extend and
modify Wobbrock et al.’s algorithm to work with 3D
acceleration data. Instead of capturing exact pixel po-
sitions on a touch screen, acceleration data is of much
lower quality because it is prone to noise, and addition-
ally, drift error accumulates as the path of a gesture
entry is integrated. We extend Wobbrock’s original al-
gorithm with a scoring heuristic to lower the rate of
false positives. Using actual user input, we present an
evaluation of the performance of Wobbrock’s modified
algorithm, and show that this method is well suited to
implement 3D gesture recognition in rapid prototyping
environments.

Past contributions [5, 7] in the area adopt established,
but highly complex techniques (Hidden Markov Models,
Neural Networks) for gesture recognition. Rabiner [6]
is the standard introduction to implementing HMM-
based classifiers. The gesture recognizers of Schlömer
et al. [5] and Kratz et al. [7] feature good recognition
rates, but only use a small gesture vocabulary. More-
over, these recognizers require relatively large gesture
training sets. Producing repetitive movements can be
a nuisance for the user. In contrast, our approach pro-
duces good results with about five training examples per
gesture. Other past contributions focus on finding ap-
propriate gestures for certain application domains (e.g.,
VCR control) [4] and mostly use “flat” 2D gestures.

341



Figure 1. The reference gesture vocabulary containing
the gesture classes used for the preliminary evaluation.
(b) describes a clockwise circular motion, (c) a wrist
rolling motion (e) stands for a gesture resembling the
serve of a tennis player and (j) represents a repeated
rapid forward-backwards motion.

The major contribution of this work is the creation a
simple gesture recognizer that is designed to recognize
“true” 3D Gestures, i.e. gestures which are not limited
to shapes that can be drawn in a 2D plane. The advan-
tage of true 3D gesture recognition is that more natural
movements, such a tennis serve or boxing punches can
be input by the user.

Like the “$1 Recognizer,” our approach is quick and
cheap to implement, does not require library support,
needs only minimal parameter adjustment and minimal
training, and provides a good recognition rate. It is
therefore very valuable for user interface prototyping
and rapid application development. It can also easily be
integrated into mobile interfaces that take advantage of
other modalities, like speech, or touch-based interaction
with RFID/NFC.

THE $3 GESTURE RECOGNIZER
Extending Wobbrock’s [8] work, we present a gesture
recognizer that can recognize gestures from 3D acceler-
ation data as input. To test our algorithm we used ac-
celeration samples obtained from a Nintendo Wii Con-
troller (WiiMote). The WiiMote features an ADXL 330
Accelerometer [1] and the acceleration data can be sent,
as in our case, via a Bluetooth connection to a PC. Our
algorithm is by no means limited to the WiiMote. It can
be used in any acceleration-enabled device, for instance
modern smart-phones.

Gesture Trace
In contrast to [7], we do not modify or pre-process the
raw acceleration data in any way (filtering, smoothing,
etc.). To determine the current change in acceleration,
we subtract the current acceleration value reported by
the WiiMote from the previous one. We thus obtain an
acceleration delta. By summation of the acceleration
deltas, we obtain a gesture trace T which can be plot-
ted in 3D space (Figure 1 gestures (e),(j)), or projected
into a 2D plane (gestures (a)-(d), (f)-(i)) to obtain a
graphical representation of the gesture [3].

Gesture Class Library
The gesture class library L contains a predefined num-
ber of gesture traces for each gesture class G. We also
refer to these traces as training gestures.

Gesture Recognition Problem
The basic task of our algorithm is to find the best
matching gesture class G from the gesture class library
L, for a given input gesture I. (Example representa-
tives of gesture classes is given in Figure 1.) To find a
matching gesture class, we compare the trace ti of I to
the traces of all training gestures tGk ∈ L and generate
a score table that lists the comparison score of ti and
each tGk . A heuristic then is applied to the score table
to determine if a gesture has been recognized.

Resampling
For optimal classification, the original gesture trace T
needs to be resampled to have a number N of points
equal to that of the template gestures. This is because
the gesture input duration and movement speeds can
vary between users, even for the same intended gesture.
Resampling ensures that the points are re-distributed
to be at equal distances from each other.

In our case N = 150, which is slightly above the average
amount of acceleration deltas received while users enter
a gesture with the WiiMote. Setting N to a lower value
decreases the gesture recognition precision, while choos-
ing a higher N just increases the computation time for
gesture recognition, without a significant gain in accu-
racy.

Resampling is performed using piecewise linear interpo-
lation, in which a resampled gesture trace TN consisting
of N equidistant points tN is created. The locations of
the TN are built up by successive addition of the points
tk of the original gesture trace T to generate N equidis-
tant segments connecting the new points tN of TN .

Rotation to “Indicative Angle” and Rescaling
To correct for rotational errors during gesture entry, the
resampled gesture trace TN is rotated once along the
gesture’s indicative angle. Like Wobbrock, we define
the indicative angle as the angle between the gesture’s
first point p0 and its centroid c = (x̄, ȳ, z̄). The angle is
determined by taking the arcus cosine of the normalized
scalar product of p0 and c:

θ = acos(
p0 • c
‖p0‖ ‖c‖

)

The rotation along the indicative angle is then per-
formed using the unit vector of the vector orthogonal to
p0 and c. The orthogonal vector is obtained using the
cross product of P0 and c:

vaxis =
p0 × c
‖p0 × c‖

The trace TN is the rotated using vaxis and ϑ to obtain
the rotated trace TNϑ .

342



After rotation, TNθ is scaled to fit in a normalized cube
of 1003 units, to compensate for scaling differences be-
tween gestures. The algorithm has now finished pre-
processing the original user input and has obtained a
gesture TM , which is ready for matching with candi-
date gestures from the gesture class library.

Search for Minimum Distance at Best Angle
Like Wobbrock, we use the average MSE (Mean Square
Error) to calculate the path distance d between TM and
candidate gesture from the gesture class library. We
convert the path distance to a [0, 1] scale using a ver-
sion of Wobbrock’s scoring equation adapted to three
dimensions, where d signifies the path distance and l
the side length of the cube that TM was scaled to in the
rescaling step.

Score = 1− d

0.5
√

3l2

Following Wobbrock’s discussion of rotation invariance
of path distances, we have adapted a Golden Section
Search (GSS) using the Golden Ratio ϕ = 0.5(−1+

√
5)

to approximate the local minimum path distance within
an angular range of [−180◦ . . . 180◦], for rotation around
the three axis of the coordinate system, signified by the
angles α, β and γ. We define a minimum cutoff angle for
GSS of 2◦, in order to guarantee that the approximate
minimum is found after exactly 11 iterations of GSS.
We compared this approach to a brute-force implemen-
tation of the angle search and found that the result of
GSS lies within 5◦ of the optimal rotation angle in the
majority of cases.

The GSS-based minimum distance approximation is re-
peated for each trace of every gesture class in the library.
The result is a table sorted by matching scores with the
corresponding gesture class ID.

Scoring Heuristic
Wobbrock’s original algorithm did not feature a heuris-
tic to reduce the occurance of false positives, which is
a common problem for simple gesture recognition algo-
rithms operating on large gesture vocabularies [8]. The
matches obtained from gestures entered as 3D acceler-
ation data are not as precise as strokes entered on a
touch screen. To compensate for the weaker matches,
we have developed our own scoring heuristic, which pro-
cesses the score table described in the previous section.
Using this heuristic, we achieved a considerable reduc-
tion of false recognitions compared to Wobbrock’s orig-
inal strategy of selecting the gesture candidate with the
highest matching score to determine the recognized ges-
ture.

After sorting the score table by maximum score, our
heuristic determines the recognized gesture with the fol-
lowing rules:

Figure 2. Average correct recognition rates with stan-
dard error, sorted by gesture class (top) and by user
(bottom).

• ε is defined as the threshold score.

• Iff the highest-scoring candidate in the score table has
a score > 1.1ε, return this candidate’s gesture ID.

• Iff, within the top three candidates in the score table,
two candidates exist of the same gesture class and
have a score > 0.95ε, respectively, return the gesture
ID of these two candidates.

• Else, return “Gesture not recognized!”.

EVALUATION OF THE $3 GESTURE RECOGNIZER
To get an initial estimate of the gesture recognition per-
formance of our method, we evaluated the 3$ gesture
recognition algorithm with twelve participants, who were
compensated for their effort.

Our reference gesture vocabulary contained all of the
gestures utilized by [7] as well as a subset of Wobbrock’s
unistroke gestures [8], as displayed in Figure 1, totaling
10 unique gesture classes. We chose this particular set of
gestures to make our study comparable to the previous
work. Each user was asked to enter each gesture class in

343



the reference set 15 times using a WiiMote. The gesture
data was recorded and stored on a PC.

The actual gesture recognition was performed offline
using the stored gestures entered by the users. From
each gesture class, the first five entered gestures of a
particular gesture class were chosen as the training set
for that class. The remaining gestures were input into
our gesture recognition algorithm. Knowing the gesture
class of the tested gesture beforehand, we recorded the
number of times the gestures were correctly recognized,
incorrectly recognized or not recognized at all.

Our evaluation resulted in average (correct) recognition
rate of 80%. Between test subjects, the recognition rate
varied between 58% and 98%, with a standard deviation
of 11.4. As can be seen in Figure 2, the recognition rate
was fairly constant across all users and gestures, with
gesture class (b) having the highest average recognition
rate and gesture class (j) being the most error-prone
gesture. We speculate that the low recognition rate of
gesture class (j) is due to the ambiguity of that gesture,
as users varied the “sawing motion”, which they were
expected to perform, considerably. Notably, users com-
mented that gesture classes (h) and (i) were the most
uncomfortable gestures to perform. Furthermore, our
results indicate that our scoring heuristic functioned ac-
ceptably, as only about 8% of all detected gestures were
false positives.

Our gesture recognition algorithm yielded a lower cor-
rect recognition rate than those obtained with the sys-
tem featured in [7]. In spite of this, we deem our correct
recognition rate to be fully acceptable given that we
used substantially simpler methods, and, which is more
important, twice as many gesture classes with a signif-
icantly smaller gesture training set per class to achieve
this recognition rate.

It is likely that the nearly 20% lower recognition rate
of our method compared to [8] is influenced by the fol-
lowing factors. Gestures in 3D space are more difficult
for a human to re-produce perfectly than in 2D, even
for simple 2D shapes. More important, the equipment
which we used to capture the gesture information was
far from perfect, and may have contributed to the re-
duced recognition rate.

Limits of the $3 Gesture Recognizer
As it is a simple algorithm, the $3 Gesture Recognizer
has several limitations. For one, in contrast to more
refined methods such as those based on HMMs, it can-
not be used to detect gestures in a continuous motion
stream. Only gestures which are explicitly started and
stopped by the user can be recognized. A further lim-
itation is the size of the gesture vocabulary. Not only
does the number of false positive recognitions rise to-
gether with the size of the gesture vocabulary, but also
the computational overhead (O(N ·M), where N is the
amount of motion samples, and M is the number of

training gestures in the gesture class library). This is
due to the intensive use of trigonometric functions, in-
creases as well, which limits the maximum practicable
size of the gesture vocabulary to about 10-15 gestures.
These limitations, however do not represent an imped-
iment for the use of our recognizer in its target domain
— rapid prototyping of gesture-based interfaces.

DISCUSSION AND FUTURE WORK
We presented a simple, easy-to-implement gesture rec-
ognizer for input devices equipped with 3D acceleration
sensors. The idea behind our gesture recognition algo-
rithm is to provide a quick and cheap way to implement
gesture recognition for true 3D gestures (such as the ref-
erence gesture (e)). Our method does not require any
advanced software frameworks or toolkits. The gesture
set is not fixed but can be specified by as needed, even
at runtime. An example application area for our gesture
recognizer is user interface prototyping.

In an initial evaluation of our algorithm, we obtained
gesture recognition rates which are comparable to those
of more advanced approaches. The advantage of our
system is that it is specifically targeted for use in pro-
totype environments, in which gesture-based interfaces
(or multimodal interfaces using gestures as one of multi-
ple components), are needed that provide quick results
with little coding and minimal training data.

REFERENCES
1. Analog Devices ADXL330, http://tr.im/GTHc.

2. Nintendo inc. http://wii.nintendo.com.

3. S. Kallio, J. Kela, J. Mäntyjärvi, and J. Plomp.
Visualization of hand gestures for pervasive
computing environments. In Proc. AVI ’06, pages
480–483, New York, NY, USA, 2006. ACM.

4. J. Kela, P. Korpipää, J. Mäntyjärvi, S. Kallio,
G. Savino, L. Jozzo, and S.D. Marca.
Accelerometer-based gesture control for a design
environment. Personal Ubiquitous Computing,
10(5):285–299, 2006.

5. L. Kratz, M. Smith, and F.J. Lee. Wiizards: 3d
gesture recognition for game play input. In Proc.
Future Play ’07, pages 209–212, New York, NY,
USA, 2007. ACM.

6. LR Rabiner. A tutorial on hidden Markov models
and selected applications inspeech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989.

7. T. Schlömer, B. Poppinga, N. Henze, and S. Boll.
Gesture recognition with a wii controller. In Proc.
TEI ’08, pages 11–14, New York, NY, USA, 2008.
ACM.

8. J.O. Wobbrock, A.D. Wilson, and Y. Li. Gestures
without libraries, toolkits or training: a $1
recognizer for user interface prototypes. In Proc.
UIST ’07, pages 159–168, New York, NY, USA,
2007. ACM.

344


