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ABSTRACT
Additional input controls such as fingerprint scanners, phy-

sical buttons, and Back-of-Device (BoD) touch panels im-

prove the input capabilities on smartphones. While previous

work showed the benefits of input beyond the touchscreen,

unfavorably designed input controls force detrimental grip

changes and increase the likelihood of unintended inputs.

Researchers investigated all fingers’ comfortable areas to

avoid grip changes. However, there is no understanding of

unintended BoD inputs which frustrate users and lead to em-

barrassing mistakes. In this paper, we study the BoD areas

in which unintended inputs occur during interaction with

the touchscreen. Participants performed common tasks on

four smartphones which they held in the prevalent single-

handed grip while sitting and walking. We recorded finger

movements with a motion capture system and analyzed the

unintended inputs. We identified comfortable areas on the

back in which no unintended inputs occur and found that the

least unintended inputs occurred on 5
′′
devices. We derive

three design implications for BoD input to help designers

considering reachability and unintended input.
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Figure 1: A participant interacting with a smartphone while

the hand is being tracked by a motion capture system.
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1 INTRODUCTION
Virtually every smartphone offers input controls beyond the

touchscreen. Physical buttons provide shortcuts to change

the device volume and power state while fingerprint scanners

enable authentication and Back-of-Device (BoD) gestures.

Recent smartphones offer an increasing number of further

input controls distributed over the whole device surface in-

cluding buttons for the device assistant, silent switches, and

even secondary touchscreens (e.g., ZTENubia X). These input
controls enable a wide range of promising use cases ranging

from shortcuts [50, 53, 56, 58], increasing the thumb’s rea-

chability [29, 70], and solving the fat-finger problem [3, 68],

through adaptive interfaces [8, 10, 11, 32] and action modi-

fiers [34] based on hand grips, to even enabling finger-aware

input on the whole device surface [34]. With foldable smartp-

hones recently emerging, interacting on the whole device

surface will soon be possible even on mass-market devices.

https://doi.org/10.1145/3338286.3340145
https://doi.org/10.1145/3338286.3340145
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Additional input controls beyond the touchscreen clearly

improve mobile interaction but also pose new challenges.

When using a smartphone in the prevalent single-handed

grip [14, 26, 27, 47], the same hand is used for holding and

interacting with the device. This limits the fingers’ range

and generates unintended inputs due to the continuous con-

tact with the device [37]. The reachability problem can be

solved by placing input controls within the comfortable areas.
For individual fingers in a single-handed grip, Le et al. [33]
empirically determined their comfortable areas which can be

reached without a grip shift. Reducing grip shifts improves

the usability of BoD input and avoids that users might drop

the device. However, without avoiding unintended inputs,

users could make sensitive and detrimental mistakes while

using the device. This leads to frustration [7] and renders

all BoD input techniques ineffective. Indeed, BoD fingers

perform supportive micro-movements while the thumb moves

on the front side. These are necessary to maintain a stable

grip [14, 15], increase the thumb’s range [9, 14], and due to

the limited independence of the finger movements [18].

Avoiding unintended inputs is vital for the usability of BoD

input. An important basis to minimize unintended inputs

is an understanding of supportive micro-movements which
occur while holding and interacting with the device. Previous

work analyzed supportive micro-movements by quantifying

the amount of grip shifts on different smartphones through

video observations [13, 14] and built-in IMUs [9, 14, 15]. Ho-

wever, we have no understanding of how fingers move and

unintended inputs that they would generate on the rear. In

short, unintended inputs are touch events that are considered

as input by the device but are not intended by the user. To

help designers minimizing unintended BoD inputs, we need

to understand the areas in which supportive micro-movements
occur and the fingers’ behavior within these areas on dif-

ferent device sizes and scenarios. In conjunction with the

comfortable areas for BoD input [33], this enables designers

to design BoD input controls which consider unintended

inputs and reachability in single-handed grips.

In this paper, we use a quantitative approach to empi-

rically study supportive micro-movements during common

smartphone tasks and scenarios. While participants perform

abstract touch gestures, read, and write text in a sitting and

walking scenario on four different smartphones, we recorded

the movement of all fingers with a high-precision motion

capture system. Based on the motion captures, we identify

the grip areas which represent all on-device areas in which

supportive micro-movements occur (i.e., touches on the device

surface which could lead to unintended inputs) and analyze

them in relation to the comfortable area [33]. As a result,

we derive the safe areas which are ideal locations to place

BoD input controls. Safe areas represent areas on the device

surface which are within the comfortable areas but outside of

the grip areas. Input controls within this area are not touched
due to supportive micro-movements but are still comfortably

reachable in a single-handed grip. We further found that 5
′′

devices induce the least unintended inputs and require the

least perceived workload by users. We derive three design

implications for BoD input controls which help designers to

consider reachability and unintended inputs.

Our contribution is three-fold: For four different phones

using a single-handed grip, we (1) describe supportive micro-
movements and their properties, (2) derive three design impli-

cations for BoD input, and (3) a data set of labeled 3D finger

joint motions for common tasks while sitting and walking.

2 BACKGROUND AND RELATEDWORK
We analyze supportive micro-movements during common

smartphone use and the generated unintended input to de-

rive design implications for BoD input. Thus, we review pre-

vious work on mobile input beyond the touchscreen, finger

movements and grip shifts during smartphone interaction,

as well as approaches for rejecting unintended input.

Input beyond the Touchscreen on Mobile Devices
Recent trends in smartphone development indicate that tou-

chscreens will not be the sole input control anymore. Secon-

dary screens on the rear or foldable phones will enable a wide

range of novel use cases. For instance, BoD input can be used

to solve the fat-finger problem [59] as the touchscreen on

the front cannot be occluded [3, 68]. Similarly, Yoo et al. [70]
proposed using the index finger on the back to access targets

which are not reachable by the thumb using a single-handed

grip [4, 28, 33]. These techniques transfer input from the

rear to the front touchscreen. Thereby, unintended inputs

could lead to sensitive and detrimental errors. Even with less

critical consequences (e.g., shifting screen content [29] and

BoD pressure as action modifiers [12]), accidental activations

still frustrate users as shown in previous work [7]. This also

applies to use cases such as 3D object manipulation [2, 57]

with BoD input, as well as one-handed zooming [21] and

document navigation [60] with input on the sides.

Beyond a direct translation of rear to front input, previous

work presented approaches to interpret the hand grip for

adaptive user interfaces. With recent functional prototypes

of fully touch sensitive smartphoness (FTSPs) which comprise

capacitive sensing on the whole device surface [8, 31, 32, 34,

42, 43], researchers showcased the possibility of grip recogni-

tion for adaptive user interfaces [8, 10, 11, 17, 20], predicting

future input [42, 46] and errors [43], as well as for action

modifiers and finger-aware interactions [34]. Especially with

finger-aware input, we need to understand general as well as

finger-specific supportive micro-movements to design suitable
BoD input controls.
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Dependent Finger Movements of Mobile Touch Input
Although users intend to move only the thumb to perform

single-handed input on a front touchscreen, they uncons-

ciously perform a wide range of further “dependent” mo-

vements. These movements maintain the balance and grip

on the device, increase the reachability of the thumb on the

display (e.g., through tilting [9] and grip shifts [13, 14]), or are
unavoidable due to the limited movement independence of

fingers (e.g., moving one finger also moves other fingers [18]).

An important basis to design BoD input controls that take

unintended input into account is the analysis of supportive
micro-movements during common smartphone tasks.

Tilting the device is one type of supportivemicro-movements
which is used to increase the thumb’s reachability on the dis-

play. Previous work found that users tilt the device towards

their thumb to reach farther distanced targets (e.g., at the top
left corner) and away from their thumb to reach targets at the

bottom right corner [9, 14]. Eardley et al. [13–15] referred to
all movements which increase the reachability as “grip shifts”

and explored them for different device sizes and tasks. Based

on video recordings with manually identified key points and

accelerometer values, they quantified the number of grip

shifts during common smartphone tasks. They found that

more grip shifts occurred with increasing device sizes while

the amount of tilt and rotation varied with grip types and

phone sizes. Moreover, they showed that the body posture

(e.g., sitting and standing) affects the device movements, sug-

gesting that different device sizes and body postures need

to be considered for exploring supportive micro-movements.
While these findings explain the device movements, no pre-

vious work investigated the actual finger movements which

could generate unintended input on the device surface.

The limited independence of finger movements causes

another type of supportive micro-movements. Previous work
in biomechanics found that even when asked to move just

one finger, humans usually also produce motion in other

fingers [18]. The limited independence of the fingers is due

to biomechanical interconnections such as connected soft tis-

sues [67] and motor units [54]. Moreover, Trudeau et al. [64]
found that the thumb’s motor performance varies by the

direction and device size during single-handed smartphone

use while the motor performance is generally greater for

two-handed grips [63].

Identifying Unintended Input
Previous work investigated techniques to reject uninten-

ded inputs especially on tablets during inking scenarios (i.e.,
palm rejection). Annett et al. [1] used a motion capture sy-

stem to capture movements during inking scenarios on ta-

blets and evaluated different approaches to reject unintended

palm touches including hand models [62, 65, 66] and contact

areas [30, 44, 55]. This conforms with findings by Matero

and Colley [41] who showed that region and duration are the

most successful features to reject unintended palm touches

on smartphones. TouchShield [25] applies rejection regions

on touchscreens by ignoring all touch events around the

touched areas. With a dwell time based activation, this ap-

proach enables users to use the thumb for holding the device

while the BoD fingers perform input. Since fingers on the

back mostly move within a consistent area when holding a

smartphone due to anatomy, techniques similar to the ones

for palm rejection could reject the majority of unintended

inputs. Thus, an understanding of the grip area is vital for
designing BoD input controls.

Summary
Previous work presented promising use cases based on in-

put beyond the touchscreen. BoD and side input solve the

limitations of touch input while they noticeably extend the

input vocabulary. However, BoD is not widely adopted yet

due to two main challenges: the reachability problem and

unintended inputs. The reachability problem can be solved

by placing input controls within the comfortable areas which
previous work empirically determined [33]. However, wit-

hout minimizing unintended inputs, detrimental errors could

occur which frustrate users [7] and render all novel use ca-

ses and interaction techniques ineffective. Ideally, BoD input

controls need to be placed so that they are reachable without

a grip change but also in a way which minimizes unintended

input. This requires an investigation of supportive micro-
movements, their properties, as well as the areas in which

they occur. The results would deriving design implications

to design BoD input controls which consider both the rea-

chability (c.f. Le et al. [33]) as well as unintended inputs.

3 STUDY
We conducted a study to analyze supportive micro-movements.
We focused on the size and position of grip areas, the amount

of finger movements within, and the length of typical tra-

jectories of supportive micro-movements on different smartp-

hones to inform the design of BoD inputs. We adapted the

approach by Le et al. [33] to find comfortable areas which
are not covered by grip areas. Moreover, we assessed the

perceived workload and usability for each smartphone to

understand the effort caused by supportive micro-movements
during single-handed input from the user’s perspective. We

conducted the study in a sitting and walking scenario as pre-

vious work showed significant effects of walking (e.g. hand
oscillations) on smartphone interaction [5, 15, 48].

We used a within-subjects design with Scenario and

Phone as independent variables. Scenario consists of sitting
on a chair, and walking on a treadmill to simulate a mobile
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Figure 2: Smartphones used: Samsung Galaxy S3 Mini,

Samsung Galaxy S4, OnePlus One, and Motorola Nexus 6.

scenario with hand oscillations and motion tracking capa-

bility. For each Scenario, we used four Phone sizes. We

alternated the order of the Scenario for each participant

and counterbalanced Phone with a Latin Square. In each

condition, participants performed three tasks representing

realistic use cases and in a randomized order: reading a text,

writing messages, and performing abstract input gestures.

Apparatus
We used the same set of smartphones as Le et al. [33] which
are shown in Figure 2. These devices were selected due to

a steady increase in device width which influences the grip

the most [29, 61]. From small to large, we used a Samsung

Galaxy S3 mini (S3), Samsung Galaxy S4 (S4), OnePlus One
(OPO), and a Motorola Nexus 6 (N6).

We used an OptiTrack motion capture system with eight

cameras (OptiTrack Prime 13W, 240 fps) to record finger mo-

vements with sub-millimeter accuracy. The cameras were

firmly mounted to an aluminum profile rack as shown in

Figure 1. We attached 25 reflective markers (6.4mm spher-

ical markers) on all joints of the hand similar to previous

work [16, 33] as shown in Figure 3. In addition, we attached

four markers as a rigid body at the top of each smartphone

for tracking it with six degrees of freedom (DoF) as shown

in Figure 2. Participants were sitting on a chair without an

armrest in the sitting scenario and walked on a treadmill

in the walking scenario (see Figure 1). Participants walked

with 3 km/h which is the preferred walking speed during the

interaction with mobile devices [5].

We developed a custom application to replicate realistic

writing and reading tasks which also enables us to log all

events. Moreover, we adopted the tasks used by Le et al. [30]
to cover common touch gestures and induce grip shifts. Our

application instructs participants to perform different tasks

and logs timestamps for each touch event so that we can

synchronize them with OptiTrack’s motion data. Figure 4

shows screenshots of the respective tasks.

Tasks & Procedure
For each Phone and Scenario, participants performed three

tasks. In the writing task, participants transcribed excerpts

of MacKenzie’s phrase set [40] which simulates a text mes-

saging application (see Figure 4a). In the reading task, parti-

cipants read and scrolled through text passages for English

learners [52] (see Figure 4b) for two minutes and answe-

red three comprehension questions which motivated them

to focus on reading. With an abstract input task, we cover
common touch gestures while inducing grip shifts. The task

consists of three gestures: dragging, in which participants

dragged a tile into a target shape with both being randomly

placed within a 2 × 3 grid across the whole screen (see Fi-

gure 4c); tapping, in which they touched a target appearing

at a random location for one second; and scrolling, in which

they scrolled vertical and horizontal bars into a target shape.

Each gesture was repeated 12 times in a randomized order.

After each task, participants filled in a NASA-TLX question-

naire [19] and answered five 7-point Likert scale questions to

assess the perceived workload and usability for each smartp-

hone.

After obtaining informed consent, we collected demo-

graphic data and measured the participants’ hand size. We

attached the skin adhesive markers on their right hand to

enable motion tracking. We explained the tasks and asked

the participants to perform them on trial to ensure that ever-

ything was fully understood. While they held the devices in

a single-handed grip, we did not instruct them to use specific

grips as this would influence the generalizability of the study.

Moreover, for the writing task, we instructed them to type

as if they would text friends instead of artificially being as

precise as possible. Including briefing, optional breaks, and

attaching markers, the study took around 90 minutes.

Figure 3: Placement of the reflective markers (6.4mm sphe-

res) on the right hand for enabling motion tracking.
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(a) Writing (b) Reading (c) Dragging

Figure 4: Application screenshots: (a) writing task, (b) rea-

ding task, and (c) abstract input tasks (here: dragging).

Participants
We recruited 16 participants (9 female, 7 male) between the

ages of 18 and 27 (M = 22.9, SD = 2.4). All participants were
right-handed. The average hand size was measured from the

wrist crease to the middle fingertip and ranged from 17.5 cm
to 22.0 cm (M = 19.4 cm, SD = 1.4 cm). Our collected data

comprise samples from the 5th and 95th percentile of the

anthropometric data [51]. Thus, the sample can be considered

as representative. Participants were reimbursedwith 10 EUR.

4 DATA PREPROCESSING
We preprocessed the 3D motion data into 2D heatmaps re-

presenting movements on the front and back side of the

devices. To achieve comparability to the comfortable areas by
Le et al. [33], we re-implemented their processing pipeline.

In short, we applied the following preprocessing steps:

1. LabelingMotions: We labeledmarkers using semi-automatic

labeling as provided by OptiTrack’s Motive software. To

avoid marker swapping, we used a Max Spike of 4mm/frame
and aMax Gap of 5 frames. We did not use any reconstruction

and smoothing approaches to avoid generating artificial mar-

ker positions. In total, we labeled 17,158,404 frames (i.e., 19.9
hours of motion capturing).

2. Transforming Global to Local Coordinate System: We trans-

formed each hand marker from the global coordinate system

into the phone’s coordinate system and projected them onto

the device surfaces. The pivot point is located at the top right

corner on the front side. We validated the transformation

by sampling five random frames per participant and manu-

ally checked them for correctness. While fingers in common

grips (i.e., in which the device’s rear faces the floor) touch

the rear surface to balance and hold the device, rare cases

could occur in which the fingers hover over the device’s rear

such as when holding the phone orthogonal to the floor. In

contrast to rear touchscreens or finger painting, our appro-

ach enables to also consider finger movements which are

slightly hovering during the study.

3. Cleaning data: We removed all frames in which the rigid

body was not tracked due to occlusion or being out of the

tracking grid. To avoid erroneous rigid body tracking (e.g.,
marker swaps), we assumed that the phone was never held in

uncommon orientations (e.g., up-side-down, flipped). With

this heuristics, we removed 2.1 % of all recorded frames.

4. Generating 2D Heat Maps and Determining Grip Areas: We

generated 2D heat maps representing the grip areas with a

raster size of 1 × 1mm by projecting the markers onto the

back and front plane. To remove noise caused by potential

markers swaps, we removed all data points with a sum less

than 10 in a 5 × 5 neighborhood (i.e., all spots touched less

than 41.6ms at 240 fps). Using dilation and erosion on a

binary version of the heat map, we then filled small gaps

within the grip areas. The union of the binary heat maps of

all participants and tasks finally represent the total grip areas
per finger and device. In contrast to Le et al. [33], we did not

remove outliers (i.e., all spots not touched by at least 25%

of the participants) to cover all areas in which unintended

inputs could occur instead of common grip areas.

5. Determining Average Activity and Trajectory Lengths: We

represent the finger activity by their average movement

speed in cm/s . Thereby, we calculated the movement speed

between each subsequent frame and averaged them over all

three tasks. We represent the average trajectory length in

total travel distance (cm) of a BoD finger while the thumb

moves towards the display and performs an input gesture.

To determine start and end of single input trajectories, we

used the timestamps of the abstract input tasks which are

separated with short pauses in between. We removed noise

caused by potential marker occlusions or swaps by filtering

Scenario Finger S3 S4 OPO N6 Mean SD

sitting

Thumb (F0) 46.54 58.76 69.19 86.41 65.22 14.62
Index (F1) 14.43 17.23 23.12 26.82 20.4 4.86
Middle (F2) 12.67 15.1 19.28 22.62 17.42 3.82
Ring (F3) 7.4 13.88 15.96 20.15 14.35 4.6
Little (F4) 12.37 17.76 21.93 27.44 19.88 5.53
∪BoD (F1−4) 40.13 51.06 65.39 74.72 57.83 15.3

walking

Thumb (F0) 50.01 60.92 68.79 88.26 67.0 13.97
Index (F1) 21.48 15.25 20.8 32.94 22.62 6.43
Middle (F2) 20.81 14.27 15.19 30.19 20.11 6.33
Ring (F3) 18.35 12.26 12.62 30.51 18.43 7.38
Little (F4) 21.88 18.05 22.39 41.09 25.85 8.96
∪BoD (F1−4) 61.13 51.48 62.4 101.05 69.02 21.91

Table 1: Grip areas in cm2
for all fingers and scenarios on

four devices. ∪BoD represents the union of the grip areas

on the rear.
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Figure 5: These figures show the grip areas for all fingers on four different devices (S3, S4, OPO, N6) and in two scenarios

(sitting, walking). Dots indicate the area’s centroid with whiskers indicating the standard deviation. Black lines visualize

the areas’ shift with angle α towards the upper left corner with increasing device sizes. Triangles and lines on the right show

the average y-position of the respective finger’s MCP joint and thus describing the grip. Device sizes are indicated by dashed

lines and ticks inmm. Movements of the thumb took place on the front side while all other movements were on the back side.

the X and Y coordinates for outliers with a M ± 3SD filter.

The filter removed 0.27 % of the data.

5 RESULTS
We present the grip areas, finger movement activities, lengths

of finger trajectories, and perceived workload and usability

for each device. We abbreviate fingers with F0 to F4 (i.e.,
thumb to the little finger) and use square brackets to re-

port values for all fingers [ F0 F1 F2 F3 F4 ] and devices

[ S3 S4OPO N 6 ]. Wemapped the origin (0, 0) of all figures to
the bottom right device corner as participants used their right

hand. While we report the grip areas of the thumb for com-

parison, all ANOVAs are conducted without the thumb as a

level for Finger since we are focusing on unintended BoD

inputs. All conducted Tukey post hoc tests are Bonferroni

corrected. We corrected the DoFs using Greenhouse-Geisser

in case the assumption of sphericity had been violated.

Grip Areas
Figure 5 shows the grip areas for all fingers and devices in the

sitting and walking scenario across all three tasks. The colors
of the contours represent the device, and the dashed lines

represent the size of the respective device. In the following,

we describe the characteristics of these areas.

Area Size. Table 1 shows the size of the grip areas for each
finger, Phone, and Scenario in cm2

. A Pearson’s correlation

test revealed significant correlations between the device’s

diagonal length and the size of the grip area in the sitting
Scenario for all fingers (r = [ .971 .983 .983 .977 .986 ],

p = [ .029 .017 .017 .022 .014 ]). This correlation can be

described as a linear behavior with an average fitness of R2
=

[ .94 .97 .97 .95 .97 ]. For the walking Scenario, we could not

find significant correlations between the device’s diagonal

length and the size of the grip area for all fingers (r = [ .947

.605 .398 .445 .685 ] , p = [ .053 .395 .602 .555 .315 ]).
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Figure 6: The dark gray areas represent the union of the back fingers’ grip area (F1 − F4). The areas in light gray show the

comfortable areas for the BoD fingers as reported by Le et al. [33]. We refer to the subsets of the comfortable areas, which are

not covered by the grip area, as the safe areas. The axes denotemm starting from the bottom right corner.

A three-way RM-ANOVA revealed significant main effects

for Finger (F2.60,38.95 = 4.41, p = .012), Phone (F1.29,19.31 =
6.404, p = .015), and Scenario (F1,15 = .7.02, p = .018) on the

grip area. We found neither significant two-way interactions

nor three-way interactions between the factors (p > .05, each).

Tukey post hoc tests revealed sig. differences between OPO

and N6 (p = .036) and S4 and N6 (p = .007). A further Tukey

post hoc test did not reveal sig. differences between fingers.

Due to significant main effects of Scenario, we conducted

two further two-way RM-ANOVAs on the sitting andwalking
subset. For the sitting scenario, we found significant main

effects for Phone (F3,45 = 9.26, p < .001) but not for Finger
(F3,45 = 4.41, p = .153) and no two-way interactions between
Finger × Phone (F2.95,44.19 = .616, p < .605). A Tukey

post hoc test revealed significant differences between the

S3 and N6, between S4 and N6, and between the OPO and

N6 (p < .001, each) but not for the other combinations (p >

.05). For the walking scenario, we found main effects for

Finger (F1.89,28.30 = 3.83,p = .002), Phone (F1.16,17.37 = 3.97,
p < .001), and a two-way interaction effect between Finger

× Phone (F2.84,42.6 = 2.18, p = .003). A Tukey post hoc

test revealed significant differences between the S3 and N6,

between S4 and N6, and between the OPO and N6 (p < .001,
each) but not for the other combinations (p > .05).

Area Position. The dots in Figure 5 represent the area’s cen-

troid averaged over all participants and whiskers the SD.

For the sitting Scenario, the shift of the centroids towards
the upper side can be described by a linear function with

a fitness of R2
= [ .77 .89 .04 .66 .04 ] for all five fingers.

Pearson’s correlation test revealed no correlation between

the device’s diagonal and a gradual shift of all fingers to-

wards the top left corner (r = [ .877 −.945 −.187 .811 .194 ],
p = [ .123 .055 .813 .189 .806 ]). For walking this shift can

be described by a linear function with a fitness of R2
=

[ .88 .77 .89 .85 .71 ] for all five fingers. Pearson’s correlation
test revealed no correlation between the device’s diagonal

and a gradual shift of all fingers towards the top left corner

(r = [ .94 −.875 .942 .921 .841 ], p = [ .806 .06 .125 .058 .079 ]).

Safe Areas. The dark gray areas in Figure 6 represent the

total grip area on the back of the device. The light gray areas

represent the total comfortable area as reported by Le et
al. [33]. With both areas overlapping, the remaining light

gray areas represent the area which is comfortably reachable

while no supportive micro-movements occurred within these

areas. We refer to these areas as the safe areas. The safe areas
correspond to [ 60.3 48.4 40.9 35.9 ]% of the comfortable area
during sitting and [ 45.4 48.1 43.4 25.6 ]% during walking.
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Figure 8: Perceived workload (unweighted NASA-TLX) and subjective perceptions of the usability (7-point Likert scale, c.f. Le
et al. [30]) for each device averaged over all tasks. The colors represent the devices, attached whiskers the standard deviation.

Finger Movement Activity
Figure 7 depicts the movement activity of all fingers on all

devices. A three-way RM-ANOVA revealed sig. main effects

for Finger (F1.69,25.39 = 136.205, p < .001), Phone (F3,45 =
46.25, p < .001), Scenario (F1,15 = 412.274, p < .001), as
well as for all two-way interactions (p < .001, each) and
three-way interactions (F3.33,49.99 = 9.45, p < .001). Due
to sig. main effects in Scenario, we conducted two further

two-way RM-ANOVAs on the sitting and walking subset.

For the sitting Scenario, we found significant main effects

for Finger (F1.69,25.39 = 54.67,p < .001), Phone (F3,45 = 5.02,
p < .001), as well as a two-way interaction effect between

Finger × Phone (F3.33,49.99 = 4.14, p < .001). A Tukey post

hoc test did not reveal any significant differences between

the phones. For the walking Scenario, we found signifi-

cant main effects for Finger (F1.79,25.90 = 176.35, p < .001),
Phone (F2.13,31.99 = 38.06, p < .001), as well as a two-way in-
teraction effect between Finger × Phone (F2.73,41.02 = 17.09,
p < .001). A Tukey post hoc test revealed significant diffe-

rences between S3 and N6, S4 and N6 (p < .05, each), and
between S3 and OPO and between S3 and S4 (p < .001, each).

Length of Finger Trajectories during Grip Shifts
Figure 9 depicts the 95th percentile for the length of finger

trajectories as dots (left axis) and their means as crosses

(right axis). A Pearson’s correlation test revealed significant

correlations between the device’s diagonal length and the

length of finger trajectories in the sitting Scenario (r = [

.957 .988 .969 .974 .997 ] , p = [ .043 .012 .031 .026 .003 ] ) and

for walking (r = [ .942 .981 .840 .868 .942 ] , p = [ .058 .019

.160 .132 .058 ]). The correlations can be described as a linear

behavior with an average fitness of R2
= [ .92 .98 .94 .95 .99 ]

for sitting and R2
= [ .89 .96 .71 .75 .89 ] for walking.

Perceived Effort between Phones
To evaluate the perceived workload and usability of each

device averaged over all tasks, we used a raw TLX and 7-

point Likert scale questions from previous work [30].

Perceived Workload. Figure 8a shows the average perceived
workload measured with a raw NASA-TLX after each condi-

tion. A two-way ANOVA revealed significant main effects

for phone (F3,45 = 12.742, p < .001) on the total workload

but neither for Scenario (F1,15 = 1.71, p = .21) nor for two-
way interactions between Phone × Scenario (F3,45 = .429,
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p = .733). A Tukey post hoc test revealed sig. differences

between N6 and OPO, N6 and S3, N6 and S4 (p < .01, each).

Subjective Perceptions. Figures 8b and 8c show the average

perceived ratings when asked for easiness, speed, success,

accuracy, and comfort after using a specific Phone.

We conducted five two-way ANOVAs on the ratings on

which we applied the Aligned Rank Transform (ART) proce-

dure using the ARTool [69] to align and rank the data. For

all ratings, the two-way ANOVAs revealed significant main

effects for Phone (p < .05, each). For the ratings easiness
and accuracy, we found significant main effects for Scenario

(p < .05, each). For easiness, we found significant two-way

interactions between Phone and Scenario (p = .032). Five
corresponding Tukey post hoc tests revealed significant dif-

ferences between S4 and N6 for all ratings (p < .05), between
OPO and N6 for easiness, success, and comfort (p < .05), and
between S3 and N6 for easiness and comfort (p < .05).

6 DISCUSSION
Previous work analyzed comfortable areas and presented de-

sign implications for BoD input controls to consider single-

handed reachability. With our analysis, we identified suitable

locations for BoD input, ideal device sizes, and further pro-

perties which help to minimize unintended inputs while

maintaining reachability. We first discuss our results and

then present three design implications for BoD input.

Safe Areas: Overlaps of Grip and Comfortable Areas
Safe areas are subsets of the comfortable areas in which no

supportive micro-movements were observed. The safe areas
cover 46% (43.5 cm2

) of the comfortable areas while sitting
and 40 % (38.4 cm2

) while walking on average. The majority

of safe areas are located in the upper right quarter of the

device and thus between the fingertips (when stretched) and

the palm. Placing BoD input controls in these areas enable

users to easily reach them by subtly flexing their finger. The

fingertip of a flexed finger (see Figure 10a) provides enough

force to activate a physical button (e.g., BoD volume buttons

on the LG G-series) and suitable accuracy for touch-based

input controls due to a small contact area. While finger parts

(e.g., the intermediate phalanges) could come in contact with

an BoD input control when stretched (see Figure 10b), the

finger’s force towards the device surface is too low (due to the

force distribution) to hit the button’s activation point. Even

if users deliberately apply a force towards the back surface

with a stretched finger, the center of pressure is located at the

fingertip so that the phalanges cannot apply enough force

to unintentionally hit a flat button’s activation point.

For touch-based input, fingertips can be differentiated

from phalanges by their contact areas. This is feasible with

capacitive sensing which previous work used to identify

(a) Flexed finger (b) Stretched finger

Figure 10: Performing input on a flat BoD button (blue

square). The finger is flexed in (a) which leads to a small con-

tact area. This bundles the force to hit the button’s activation

point (red dot). In (b), the finger is stretched, which leads to a

larger contact area and thus a more distributed force which

is not enough to activate the button (light red area).

touches of palms and other body parts on commodity devi-

ces [24, 30, 35, 36]. For fully touch sensitive smartphones,

recent work presented amodel to accurately translate contact

areas on the device surface to the fingertips’ 3D locations [34]

which automatically omits touches by the phalanges.

Effect of Device Size on Grip Areas and Activities
We found the largest grip areas on the N6 in both sitting

and walking scenario. For the sitting scenario, we further

found a significant correlation between the size of the de-

vices and grip areas. In contrast to the other devices, the

unusually large size of the N6 requires additional supportive
micro-movements to maintain a firm grip. The hand spans

of our participants were not large enough to apply a firm

grip which encompasses the whole device width (i.e., with a

power grip [45]). More importantly, the 6
′′
touchscreen re-

quires an extensive thumb range which can only be achieved

with large grip shifts. An analysis of the finger trajectories

lengths confirms that the larger grip shifts were indeed per-

formed on the larger devices. This conforms with Eardley et
al. [14] who found more device movements on larger phones.

Although the S3 entails a smaller grip area than the N6 as

expected, we observed similar finger activities in a sitting

scenario and significantly higher activities than on any other

device in a walking scenario. The high finger activity on the

S3 is due to a small touchscreen which requires supportive
micro-movements for more input precision. As smaller con-

tact areas lead to a more precise input [22, 23], additional

supportive micro-movements were performed to enable the

thumb to touch with a high pitch angle (i.e., nearly perpen-

dicular to the display). Moreover, as the S3 fits well in the

hand without a firm grip, users mostly held the device in a

loose grip which provides the thumb with more flexibility.
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In contrast, we observed the smallest grip area on the

S4 while walking and on the S3 while sitting. Both the S4

and OPO are between the S3 and N6 in size and entailed

less finger activity than the S3 (while walking) and the N6.

Moreover, they do neither need additional supportive micro-
movements for a firm grip nor to enhance the touch precision.

Effect of Walking on Grip Areas and Activities
We observed larger grip areas and significantly more BoD

finger activity for walking than for sitting. Since walking

introduces hand oscillations which previous work showed

to affect mobile input [5, 49], additional supportive micro-
movements are required to compensate the vibrations and

avoid dropping the device. The hand oscillations also explain

why there is no correlation between grip area and device

size in a walking scenario as described above. The loose

grip on the S3 provides the thumb with more flexibility, but

also leads to more device movements in the hand caused by

oscillations. Moreover, an analysis of the finger trajectories

lengths reveals that the little finger moved significantly more

in thewalking condition. As the little finger stabilizes the grip

from below, its movements indicate re-adjustments of the

grips hampered by hand oscillations. These findings suggest

that suitable device sizes are required to avoid supportive
micro-movements for input precision and grip shifts. Thereby,
we found that the size of the S4 is favorable for BoD input.

Perceived Usability and Workload
The perceived usability conforms to the observed finger mo-

vement activities. Especially for walking, we found a similar

behavior to the finger movement activities in which the S4

and OPO are more favorable than other devices. Both devices

received better ratings in easiness, speed, success, accuracy,

and comfort which reflects the lower effort for holding and

interacting with the devices. For the sitting condition, the N6

received the lowest ratings while the other devices received

comparable ratings. This further highlights that the size of

an S3 might be suitable for a sitting scenario but not under

the influence of hand oscillations while users are walking.

Results of the raw TLX revealed significantly more perceived

workload on the N6 than on any other device. Again, we ar-

gue that this is due to its unusual size which even surpasses

large versions of recent devices (e.g., iPhone XS Max).

Design Implications
We derive three design implications for single-handed BoD

input. In conjunction with Le et al. [33], we inform the design

of BoD input to consider reachability and unintended inputs.

Place BoD input controls within the safe area. Le et al. sugge-
sted placing BoD input controls within the comfortable areas

to avoid grip shifts. Safe areas are a subset of the comforta-
ble areas in which no supportive micro-movements occurred.
These areas are located in the upper right quarter of the

device and are reachable by subtly flexing the index finger,

which is also the most suitable finger for BoD input [33].

To avoid unintended input by other finger parts (e.g., in-
termediate phalanges), physical flat buttons should be used.

Touch-based controls can use the contact surface or a contact

translation model [34] to omit touches by other finger parts.

Consider 5′′ devices for single-handed BoD inputs. Large devi-
ces (e.g., Nexus 6) do not enable firm grips due to their width

while small devices (e.g., Samsung Galaxy S3 mini) require a

nearly perpendicular thumb and thus additional supportive
micro-movements for input precision. We found that 5

′′
de-

vices (e.g., Samsung Galaxy S4) were perceived as the most

usable while entailing the lowest amount of supportive micro-
movements for single-handed use while sitting and walking.

Thus, we recommend 5
′′
devices for BoD inputs which repre-

sents a large fraction of current commercial devices. While

BoD interaction can be used to solve reachability challenges,

we believe that BoD input is, even more, promising for action

modifiers and mode switches. Reachability challenges can be

addressed by revising the GUI but usable efficient modifiers

and mode switching remains a fundamental challenge.

Expect longer finger trajectories on larger devices. With incre-

asing touchscreen sizes, larger grip shifts are required to pro-

vide the thumb with sufficient reachability. Thus, users per-

form a longer trajectory of supportive micro-movements (e.g.,
unintended stroke gesture) while shifting the grip. While

the input trajectory length is a common feature to filter un-

intended inputs [41, 55], we recommend considering the

device size when choosing the threshold. Figure 9 suggests

threshold values in cm observed during grip shifts.

7 LIMITATIONS
To derive safe areas from comfortable areas, we focused on

single-handed input from right-handed participants who

held smartphones in their dominant hand. Future work could

investigate the differences between left and right-handed

users. We focused on generalizable design implications for

everyday devices and thus prioritized realistic user behavior.

Since smartphones are not produced for specific hand sizes

and grips, we did not include the hand size as independent

variable or controlled for the grip. Instructing grips would

further limit the DoFs which leads to artificial behavior and

unrealistic grip areas. As smartphones can recognize different

grips with machine learning [6, 38, 39], future work could

apply hand-dependent safe areas using our shared pipeline.
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8 CONCLUSION & FUTUREWORK
We analyzed supportive micro-movements for BoD interaction

during single-handed smartphone use. Our results help to

avoid unintended inputs which frustrate users and lead to

input errors. We identified safe areas in which we observed

no unintended inputs and are reachable without grip shifts,

found that 5
′′
devices are the most suitable for BoD input,

and proposed thresholds for trajectory lengths to filter unin-

tended inputs. In conjunction with findings by Le et al. [33],
our results help designing BoD input controls to consider

reachability as well as unintended inputs.

One outcome of this work is a data set of labeled 3D finger

movements recorded while users perform common tasks on

four different smartphones while sitting and walking. We

share this data set with the community to enable future work

to investigate finger movements for specific properties such

as hand sizes or grips. Moreover, the data set enables a better

understanding of the hand while it interacts with smartp-

hones, and could be used to study the safe areas in more

detail. One interesting aspect is to compare them with the

comfortable areas in terms of input performance. This helps

to understand the trade-off between minimizing unintended

inputs as well as the effort to move fingers during BoD input.

Beyond understanding user behavior, our data set could also

be used to train a machine learning model for fully touch

sensitive smartphones that recognize unintended inputs.

9 DATASET
We release our data set (i.e., motion captures and input events

by the touchscreen) and the respective Python notebooks to

preprocess the data and replicate our results: https://github.

com/interactionlab/unintended-input-dataset.
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