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ABSTRACT

Future VR environments will sense users’ context, enabling a wide
range of intelligent interactions, thus enabling diverse applications
and improving usability through attention-aware VR systems. How-
ever, attention-aware VR systems based on EEG data suffer from
long training periods, hindering generalizability and widespread
adoption. At the same time, there remains a gap in research re-
garding which physiological features (EEG and eye tracking) are
most effective for decoding attention direction in the VR paradigm.
We addressed this issue by evaluating several classification models
using EEG and eye tracking data. We recorded that training data
simultaneously during tasks that required internal attention in an
N-Back task or external attention allocation in Visual Monitoring.
We used linear and deep learning models to compare classification
performance under several uni- and multimodal feature sets along-
side different window sizes. Our results indicate that multimodal
features improve prediction for classical and modern classification
models. We discuss approaches to assess the importance of physio-
logical features and achieve automatic, robust, and individualized
feature selection.
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1 INTRODUCTION

Recent advancements in Virtual Reality (VR) technology have ex-
panded its applications across numerous fields, such as gaming [27],
healthcare [56], and training [28]. With the evolution of VR, there’s
a growing emphasis on creating adaptive systems capable of in-
telligently responding to user states in real-time [8]. This shift
towards personalized and dynamic experiences aims to enrich VR
interactions significantly [21]. The importance of adaptive inter-
action in delivering compelling VR experiences has become in-
creasingly recognized. Unlike traditional VR, which often relied
on fixed interactions and scenarios, adaptive systems promise a
higher degree of personalization and applicability by adjusting to
users’ affective [12], attentional [16], and engagement states [19].
Physiological computing emerges as a key approach for enabling
these adaptive VR experiences [31]. It utilizes human physiological
signals as interactive inputs, providing insights into users’ cogni-
tive and affective states and allowing for the customization of the
VR experience to meet their immediate needs and objectives. In
VR environments, users encounter diverse stimuli requiring both
external attention, where attentional resources are allocated to the
outer environment (e.g., processing visual information), and in-
ternal attention, where resources are directed inward to internal
representations of information, e.g. for tasks such as memory re-
call [67] and mental arithmetic [4]. The distinction between internal
and external attention is crucial for various VR tasks [51, 60, 61],
as attention levels may vary due to internal and external factors,
impacting the quality of the interaction. Attentional mechanisms
are essential for prioritizing relevant information and filtering out
distractions. VR’s controlled settings allow for the adaptation of
content to manage and mitigate potentially distracting elements,
aligning virtual content with the user’s attentional state and the ap-
plication’s goals. In cases where users might be internally focused,
adaptations can enhance the saliency of external stimuli to help
maintain task focus.

While there is previous work in Augmented Reality (AR) [59, 71,
73] showing that attention decoding is possible and that adaptive
systems can be designed, there is a lack of evaluating detection of
attentional fluctuations in VR. A recent review from Nwagu et al.
[53] highlights the advancements in EEG-based brain—-computer
interfaces (BCI) in VR are lacking hybrid interaction based on mul-
timodal data and that most applications for BCIs are mostly limited
to biofeedback [62] and in-game difficulty adjustments rather than
user state detection [79].

To address this gap, our study explores machine learning tech-
niques to differentiate between internal and external attention


https://orcid.org/0009-0006-6459-4460
https://orcid.org/0000-0001-5462-8782
https://orcid.org/0000-0003-2987-7634
https://doi.org/10.1145/3670653.3670657
https://doi.org/10.1145/3670653.3670657

MuC '24, September 1 4, 2024, Karlsruhe, Germany

states implicitly, leveraging electroencephalographic (EEG) and eye
tracking data. Directly asking participants to identify their focus
of attention can prove di cult, given these states' often subcon-
scious or uctuating nature. Recognizing the limitations of relying
solely on participant recall, which is subject to human error and
memory lapses, we investigate the potential for automatic detec-

Long et al.

framework, such as memory retrieval or mental calculations, and
is often guided by our goals or knowledgéq. The delineation
between external and internal attention is crucial in VR, where
the visually dominant environment can either facilitate or hinder
the direction of attention, impacting user engagement and task
performance.

tion of attention states to overcome these obstacles. We chose EEG  The system sometimes negatively impacts the user's attentional

and eye tracking based on their proven capabilities in prior re-
search. EEG is particularly valued for its ability to detect alpha
and theta activity changes, which re ect shifts between internal
and external attention by showing increases during internal focus
and decreases during engagement with external task3 23. Eye
tracking complements this by providing real-time, behavioral in-
dicators of attentional direction, such as changes in gaze patterns
and eye closures associated with internal attentic#. [Together,
these modalities o er a multi-faceted view of attention, combining
the depth of EEG with the behavioral insights of eye tracking to
provide a robust framework for attention decoding in dynamic set-
tings like VR B9 69 73. Our investigation involved a dual strategy,
incorporating feature engineering based on established protocols
and automatic feature extraction with deep neural networks. Our
study went beyond merely presenting the model prediction results
by attempting to interpret the learned parameters of our machine-
learning models.

Our contribution is vefold: First, we introduce benchmark tasks
for investigating external and internal attention in VR (I). Second,
we demonstrate that combining EEG and eye tracking features
enables reliable detection and prediction of external attention levels

state. For example, it can be frustrating when a user attempts to
focus on a task (internal attention) but is interrupted by visually
stimulating content (external attention), or conversely, when peace-
fully engaged in the virtual environment, they are suddenly tasked
with mentally demanding activities. Implementing attention-aware
adaptive systems that rely on passive physiological measures, such
as EEG, could prevent such interference or leverage it to support
user experience more e ectively [15, 17].

Empirical evidence spanning multiple studies consistently sug-
gests that alpha and theta activities in the EEG can predict atten-
tional direction, with variations in these signals indicating shifts
between internal and external attention. Speci cally, Chiossi et
al. [16] implemented an EEG-based adaptive VR system by assess-
ing the relative change in parietal alpha and frontal theta power
within a xed-length time window, successfully demonstrating
that this approach could e ectively support attention allocation
by distinguishing between internal and external attention states.
This distinction is vital for adapting VR environments in real-time
to enhance user performance, engagement, and reduce perceived
workload.

Further studies, such as those by Aliakbaryhosseinabadi efhl. |

on a subject-dependent basis, achieving an accuracy exceeding 85%Alirezaei & SardouieJ], and Sharma et al g6, have expanded the

(). Third, we show that multimodal fusion of EEG signals and
eye tracking data elevates the accuracy of attention classi cation

models by 5% 15%, as compared to their unimodal counterparts,

in both subject-dependent and subject-independent settings (I11).
Fourth, we identify frontal theta power as the most signi cant
predictor for internal attention, drafting potential applications for

adaptive systems (V). Lastly, we make our analysis approach and

classi cation of attention levels and types through EEG in various
contexts, reinforcing the potential of EEG in understanding and
enhancing user interaction within VR. Vortmann et al's work]]
in AR, and subsequent studies, highlight the feasibility of classifying
internal versus external attention through EEG, though research in
VR settings remains less explored.

This subsection lays the groundwork for further investigation

preprocessed datasets openly available enabling other researchersinto EEG-based attention classi cation within VR, aiming to bridge

to replicate, extend, and innovate based on our work (V).

2 RELATED WORK

In this section, we review relevant existing literature and highlight
the relevance of investigating internal and external attentional
states for VR. Then we discuss their EEG correlates in terms of
alpha and theta frequency bands. Finally, we summarize previous
work that employed EEG as input for adaptation in VR.

2.1 Attention Classi cation using EEG

In VR environments, the immersive experience continuously stim-
ulates our senses, primarily through visual and auditory channels,
signi cantly in uencing our attentional state. This constant stim-
ulation necessitates distinguishing between external and internal
attention mechanisms to tailor adaptive VR experiences e ectively
[22. External attention is oriented towards stimuli in the environ-
ment, either voluntarily by focusing on task-relevant aspects or
involuntarily by the saliency of external event2F. Conversely, in-
ternal attention involves processing information within our mental

the gap identi ed by prior studies and exploring the application of
this technology to enhance the VR user experience across a wider
array of visual and task load settings.

2.2 Attention Classi cation using Eye Tracking

Recognizing the importance of eye gaze behavior in gaining insights
into the human mental state, researchers have long been exploring
the potential use of eye tracking data to classify attentional direc-
tions. Zarour et al. {7 utilized eye tracking in VR to monitor visual
distraction levels of learners during cognitive tasks and achieved
high performance. Benedek et alL]] reported that the direction

of cognition correlates signi cantly with eye features such as pupil
diameter. Supporting these ndings, Annerer-Walcher et &) [
con rmed the indicative role of pupil diameter in distinguishing be-
tween external and internal attention. Nonetheless, the researchers
acknowledged that, while attentional states can be e ectively classi-
ed using eye features, it is challenging to generalize this capability
across di erent tasks, as the concrete task type usually moderates
these features.
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In accordance with these observations, Vortmann & Putzg [ 3 USER STUDY

demonstrated that, within a subject-dependent framework, the  \ve aim to classify externally and internally directed attentional
incorporation of eye tracking features marginally improved the  states using automatic, individual feature selection. Thus, we com-
accuracy of predicting an individual's attentional state when com- pared threeVisual Complexity levels (No, Low, High) while per-
bined with EEG features (cf. Section 2.3). Nonetheless, this im- forming two Tasks, either allocating external attention, i.e., Visual
provement did not extend to a subject-independent setting. This - njonitoring, or internal attention, i.e., N-Back task. Based on previ-
outcome suggests the presence of signi cant variability in eye fea- o5 work by Chiossi et al.]4, 16 20, we implemented a within-
tures across individuals. It has also proven less e ective to reliably participants study where the level ofisual Complexity can be
detect attentional states based solely on these eye features, whether manipulated by adjusting the number of Non-Player Characters
in subject-dependent or subject-independent settings. (NPCs) within the virtual environment. Therefore, independent

Vortmann et al. [( then presented a novel approach for eye-  yariables were manipulated usinga 2 experimental design, see
based attention detection. The authors transformed eye tracking Figyre 1.

time series into images and trained deep models to classify those
images instead of the original time series or any explicitly extracted 31 Procedure

feature set thereof. Intuitively, this imaging can be viewed as an ] o )
initial decoding step that disperses some latent information em- Upon arrival, participants were briefed on the study protocol and

bedded in the time series, and it has a key advantage that it facil- @ddressed any questions before signing informed consent. An ex-
itates the utilization of modern deep learning models specialized Planation of tasks followed the EEG cap setup. Post EEG and VR
in image processing, which obviates the need for explicit feature headset preparation, a ve-point eye calibration was performed
engineering. The researchers achieved a high accuracy using this (¢f. Section 3.4.2), and detailed instructions were provided before
approach. Subsequently, Vortmann & PutZ&|[found that, in a each block. A ca. one-minute preliminary phase in the default,

subject-independent setting, this approach is also more robust com- neutral VR environment allowed participants to familiarize them-
pared to the explicit feature engineering. selves with the visual feeling (e.g., distance) within the VR headset

as well as the correct operation of the controller. Following this,
the experimental procedure started. The procedure commenced
with the Individual Alpha Frequency (IAF) block, entailing a 2-
minute eyes-closed session, detailed in Section 3.4.1. Subsequently,
a 6-minute resting-state block started, where participants sat mo-
2.3 Multimodal Attention Classi cation tionless in the VR setting, devoid of NPCs or tasks. The experiment

While either of EEG and eye tracking independently captures spe- progressed.then.through Six rar)domized blocks (Visua! Mon.itoring

ci ¢ facets of human attention, the true predictive power may lie - No/Low/High Visual Complexity, N-Back - No/Low/High Visual

in the synergy achieved when a model coherently integrates the COmplexity), each lasting 6 minutes. Between blocks, participants

information from both modalities. For example, Sharma et @[  €valuated their workload using the NASA-TLX questionnait&]

combined EEG with eye tracking for classifying navigational and &nd €ngagement via the Game Experience Questionnaire (GEQ)

informational search intents, and achieved high accuracy in the C€0re Module Bg. We collected Competence, Immersion, and Pos-

subject-independent setting. itive A ection subscalgs, as those subscal.es showed the highest
In the two methodologically related studie§§ 74, authors content validity, following the rgcor_nmendatlo_ns of Law et alq.

extracted 12 14 eye tracking features (cf. Section 2.2) and 160 192 We do not report results on subjective scores in this work. The total

EEG features based on power spectral densities from various chan-&xPeriment duration was one hour and thirty minutes.

nels and frequency bands. For each data instance, its associated eye

tracking features and EEG features were combined into a compre- 3.2 Tasks

hensive feature vector. Then, machine learning models were trained For each participant, the study began with #AF Blockwhere we

to classify these combined feature vectors, and the classi cation asked the participant to keep their eyes closed for two minutes,
outcomes were compared with results obtained using unimodal  qyring which their EEG signals are recorded for later computa-
feature vectors, consisting exclusively of either EEG features or tjon of individual alpha frequency (IAF)J4. Then, the experiment
eye tracking features. It was observed that EEG features and eye moved to theResting Blogkvhere we asked participants to seat
tracking features exhibited a relatively weak correlation, indicating  comfortably, relax, and stare in a neutral VR environment. In this
that they do encode di erent aspects of the same cognitive process. p|ock, we acquired EEG data from participants in a resting position
Classi ers trained with the multimodal feature set also performed  for |ater EEG normalization. Thereafter, the participants underwent

better than those trained with unimodal features. the same six experiment blocks, with the order of these blocks
The image representation techniques from{ and [72, and individually randomized. These six blocks were categorized into
the multimodal methodologies outlined ivfj and [73 were then two groups:Visual Monitoringand N-Back as summarized in Fig-

integrated by Vortmann et al. ing9. The authors evaluated two yre 1. Visual capture of the experimental conditions is presented in
data representation formats without explicit feature extraction,  Figure 2.

alongside four feature fusion strategies. The study revealed that
multimodality by image channel concatenation demonstrated infe- 3.2.1 Visual Monitorindn each of the threeVisual Monitoring
rior performance compared to simple unimodal approaches. blocks, participants were engaged in a VR task that is assumed to
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