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ABSTRACT

Future VR environments will sense users’ context, enabling a wide
range of intelligent interactions, thus enabling diverse applications
and improving usability through attention-aware VR systems. How-
ever, attention-aware VR systems based on EEG data suffer from
long training periods, hindering generalizability and widespread
adoption. At the same time, there remains a gap in research re-
garding which physiological features (EEG and eye tracking) are
most effective for decoding attention direction in the VR paradigm.
We addressed this issue by evaluating several classification models
using EEG and eye tracking data. We recorded that training data
simultaneously during tasks that required internal attention in an
N-Back task or external attention allocation in Visual Monitoring.
We used linear and deep learning models to compare classification
performance under several uni- and multimodal feature sets along-
side different window sizes. Our results indicate that multimodal
features improve prediction for classical and modern classification
models. We discuss approaches to assess the importance of physio-
logical features and achieve automatic, robust, and individualized
feature selection.

CCS CONCEPTS

• Human-centered computing→ Human computer interac-

tion (HCI).

KEYWORDS

Virtual Reality, Attention, EEG, Eye Tracking, Physiological Com-
puting, Machine Learning

ACM Reference Format:

Xingyu Long, Sven Mayer, and Francesco Chiossi. 2024. Multimodal Detec-
tion of External and Internal Attention in Virtual Reality using EEG and
Eye Tracking Features. In Proceedings of Mensch und Computer 2024 (MuC
’24), September 1–4, 2024, Karlsruhe, Germany. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3670653.3670657

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MuC ’24, September 1–4, 2024, Karlsruhe, Germany
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0998-2/24/09
https://doi.org/10.1145/3670653.3670657

1 INTRODUCTION

Recent advancements in Virtual Reality (VR) technology have ex-
panded its applications across numerous fields, such as gaming [27],
healthcare [56], and training [28]. With the evolution of VR, there’s
a growing emphasis on creating adaptive systems capable of in-
telligently responding to user states in real-time [8]. This shift
towards personalized and dynamic experiences aims to enrich VR
interactions significantly [21]. The importance of adaptive inter-
action in delivering compelling VR experiences has become in-
creasingly recognized. Unlike traditional VR, which often relied
on fixed interactions and scenarios, adaptive systems promise a
higher degree of personalization and applicability by adjusting to
users’ affective [12], attentional [16], and engagement states [19].
Physiological computing emerges as a key approach for enabling
these adaptive VR experiences [31]. It utilizes human physiological
signals as interactive inputs, providing insights into users’ cogni-
tive and affective states and allowing for the customization of the
VR experience to meet their immediate needs and objectives. In
VR environments, users encounter diverse stimuli requiring both
external attention, where attentional resources are allocated to the
outer environment (e.g., processing visual information), and in-
ternal attention, where resources are directed inward to internal
representations of information, e.g. for tasks such as memory re-
call [67] and mental arithmetic [4]. The distinction between internal
and external attention is crucial for various VR tasks [51, 60, 61],
as attention levels may vary due to internal and external factors,
impacting the quality of the interaction. Attentional mechanisms
are essential for prioritizing relevant information and filtering out
distractions. VR’s controlled settings allow for the adaptation of
content to manage and mitigate potentially distracting elements,
aligning virtual content with the user’s attentional state and the ap-
plication’s goals. In cases where users might be internally focused,
adaptations can enhance the saliency of external stimuli to help
maintain task focus.

While there is previous work in Augmented Reality (AR) [59, 71,
73] showing that attention decoding is possible and that adaptive
systems can be designed, there is a lack of evaluating detection of
attentional fluctuations in VR. A recent review from Nwagu et al.
[53] highlights the advancements in EEG-based brain–computer
interfaces (BCI) in VR are lacking hybrid interaction based on mul-
timodal data and that most applications for BCIs are mostly limited
to biofeedback [62] and in-game difficulty adjustments rather than
user state detection [79].

To address this gap, our study explores machine learning tech-
niques to differentiate between internal and external attention
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states implicitly, leveraging electroencephalographic (EEG) and eye
tracking data. Directly asking participants to identify their focus
of attention can prove difficult, given these states’ often subcon-
scious or fluctuating nature. Recognizing the limitations of relying
solely on participant recall, which is subject to human error and
memory lapses, we investigate the potential for automatic detec-
tion of attention states to overcome these obstacles. We chose EEG
and eye tracking based on their proven capabilities in prior re-
search. EEG is particularly valued for its ability to detect alpha
and theta activity changes, which reflect shifts between internal
and external attention by showing increases during internal focus
and decreases during engagement with external tasks [13, 23]. Eye
tracking complements this by providing real-time, behavioral in-
dicators of attentional direction, such as changes in gaze patterns
and eye closures associated with internal attention [5]. Together,
these modalities offer a multi-faceted view of attention, combining
the depth of EEG with the behavioral insights of eye tracking to
provide a robust framework for attention decoding in dynamic set-
tings like VR [59, 69, 73]. Our investigation involved a dual strategy,
incorporating feature engineering based on established protocols
and automatic feature extraction with deep neural networks. Our
study went beyond merely presenting the model prediction results
by attempting to interpret the learned parameters of our machine-
learning models.

Our contribution is fivefold: First, we introduce benchmark tasks
for investigating external and internal attention in VR (I). Second,
we demonstrate that combining EEG and eye tracking features
enables reliable detection and prediction of external attention levels
on a subject-dependent basis, achieving an accuracy exceeding 85%
(II). Third, we show that multimodal fusion of EEG signals and
eye tracking data elevates the accuracy of attention classification
models by 5%–15%, as compared to their unimodal counterparts,
in both subject-dependent and subject-independent settings (III).
Fourth, we identify frontal theta power as the most significant
predictor for internal attention, drafting potential applications for
adaptive systems (IV). Lastly, we make our analysis approach and
preprocessed datasets openly available enabling other researchers
to replicate, extend, and innovate based on our work (V).

2 RELATEDWORK

In this section, we review relevant existing literature and highlight
the relevance of investigating internal and external attentional
states for VR. Then we discuss their EEG correlates in terms of
alpha and theta frequency bands. Finally, we summarize previous
work that employed EEG as input for adaptation in VR.

2.1 Attention Classification using EEG

In VR environments, the immersive experience continuously stim-
ulates our senses, primarily through visual and auditory channels,
significantly influencing our attentional state. This constant stim-
ulation necessitates distinguishing between external and internal
attention mechanisms to tailor adaptive VR experiences effectively
[22]. External attention is oriented towards stimuli in the environ-
ment, either voluntarily by focusing on task-relevant aspects or
involuntarily by the saliency of external events [23]. Conversely, in-
ternal attention involves processing information within our mental

framework, such as memory retrieval or mental calculations, and
is often guided by our goals or knowledge [16]. The delineation
between external and internal attention is crucial in VR, where
the visually dominant environment can either facilitate or hinder
the direction of attention, impacting user engagement and task
performance.

The system sometimes negatively impacts the user’s attentional
state. For example, it can be frustrating when a user attempts to
focus on a task (internal attention) but is interrupted by visually
stimulating content (external attention), or conversely, when peace-
fully engaged in the virtual environment, they are suddenly tasked
with mentally demanding activities. Implementing attention-aware
adaptive systems that rely on passive physiological measures, such
as EEG, could prevent such interference or leverage it to support
user experience more effectively [15, 17].

Empirical evidence spanning multiple studies consistently sug-
gests that alpha and theta activities in the EEG can predict atten-
tional direction, with variations in these signals indicating shifts
between internal and external attention. Specifically, Chiossi et
al. [16] implemented an EEG-based adaptive VR system by assess-
ing the relative change in parietal alpha and frontal theta power
within a fixed-length time window, successfully demonstrating
that this approach could effectively support attention allocation
by distinguishing between internal and external attention states.
This distinction is vital for adapting VR environments in real-time
to enhance user performance, engagement, and reduce perceived
workload.

Further studies, such as those by Aliakbaryhosseinabadi et al. [2],
Alirezaei & Sardouie [3], and Sharma et al. [66], have expanded the
classification of attention levels and types through EEG in various
contexts, reinforcing the potential of EEG in understanding and
enhancing user interaction within VR. Vortmann et al.’s work [71]
in AR, and subsequent studies, highlight the feasibility of classifying
internal versus external attention through EEG, though research in
VR settings remains less explored.

This subsection lays the groundwork for further investigation
into EEG-based attention classification within VR, aiming to bridge
the gap identified by prior studies and exploring the application of
this technology to enhance the VR user experience across a wider
array of visual and task load settings.

2.2 Attention Classification using Eye Tracking

Recognizing the importance of eye gaze behavior in gaining insights
into the human mental state, researchers have long been exploring
the potential use of eye tracking data to classify attentional direc-
tions. Zarour et al. [77] utilized eye tracking in VR to monitor visual
distraction levels of learners during cognitive tasks and achieved
high performance. Benedek et al. [11] reported that the direction
of cognition correlates significantly with eye features such as pupil
diameter. Supporting these findings, Annerer-Walcher et al. [6]
confirmed the indicative role of pupil diameter in distinguishing be-
tween external and internal attention. Nonetheless, the researchers
acknowledged that, while attentional states can be effectively classi-
fied using eye features, it is challenging to generalize this capability
across different tasks, as the concrete task type usually moderates
these features.
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In accordance with these observations, Vortmann & Putze [73]
demonstrated that, within a subject-dependent framework, the
incorporation of eye tracking features marginally improved the
accuracy of predicting an individual’s attentional state when com-
bined with EEG features (cf. Section 2.3). Nonetheless, this im-
provement did not extend to a subject-independent setting. This
outcome suggests the presence of significant variability in eye fea-
tures across individuals. It has also proven less effective to reliably
detect attentional states based solely on these eye features, whether
in subject-dependent or subject-independent settings.

Vortmann et al. [70] then presented a novel approach for eye-
based attention detection. The authors transformed eye tracking
time series into images and trained deep models to classify those
images instead of the original time series or any explicitly extracted
feature set thereof. Intuitively, this imaging can be viewed as an
initial decoding step that “disperses” some latent information em-
bedded in the time series, and it has a key advantage that it facil-
itates the utilization of modern deep learning models specialized
in image processing, which obviates the need for explicit feature
engineering. The researchers achieved a high accuracy using this
approach. Subsequently, Vortmann & Putze [72] found that, in a
subject-independent setting, this approach is also more robust com-
pared to the explicit feature engineering.

2.3 Multimodal Attention Classification

While either of EEG and eye tracking independently captures spe-
cific facets of human attention, the true predictive power may lie
in the synergy achieved when a model coherently integrates the
information from both modalities. For example, Sharma et al. [65]
combined EEG with eye tracking for classifying navigational and
informational search intents, and achieved high accuracy in the
subject-independent setting.

In the two methodologically related studies [73, 74], authors
extracted 12–14 eye tracking features (cf. Section 2.2) and 160–192
EEG features based on power spectral densities from various chan-
nels and frequency bands. For each data instance, its associated eye
tracking features and EEG features were combined into a compre-
hensive feature vector. Then, machine learning models were trained
to classify these combined feature vectors, and the classification
outcomes were compared with results obtained using unimodal
feature vectors, consisting exclusively of either EEG features or
eye tracking features. It was observed that EEG features and eye
tracking features exhibited a relatively weak correlation, indicating
that they do encode different aspects of the same cognitive process.
Classifiers trained with the multimodal feature set also performed
better than those trained with unimodal features.

The image representation techniques from [70] and [72], and
the multimodal methodologies outlined in [74] and [73] were then
integrated by Vortmann et al. in [69]. The authors evaluated two
data representation formats without explicit feature extraction,
alongside four feature fusion strategies. The study revealed that
multimodality by image channel concatenation demonstrated infe-
rior performance compared to simple unimodal approaches.

3 USER STUDY

We aim to classify externally and internally directed attentional
states using automatic, individual feature selection. Thus, we com-
pared three Visual Complexity levels (No, Low, High) while per-
forming two Tasks, either allocating external attention, i.e., Visual
Monitoring, or internal attention, i.e., N-Back task. Based on previ-
ous work by Chiossi et al. [14, 16, 20], we implemented a within-
participants study where the level of Visual Complexity can be
manipulated by adjusting the number of Non-Player Characters
(NPCs) within the virtual environment. Therefore, independent
variables were manipulated using a 3 × 2 experimental design, see
Figure 1.

3.1 Procedure

Upon arrival, participants were briefed on the study protocol and
addressed any questions before signing informed consent. An ex-
planation of tasks followed the EEG cap setup. Post EEG and VR
headset preparation, a five-point eye calibration was performed
(cf. Section 3.4.2), and detailed instructions were provided before
each block. A ca. one-minute preliminary phase in the default,
neutral VR environment allowed participants to familiarize them-
selves with the visual feeling (e.g., distance) within the VR headset
as well as the correct operation of the controller. Following this,
the experimental procedure started. The procedure commenced
with the Individual Alpha Frequency (IAF) block, entailing a 2-
minute eyes-closed session, detailed in Section 3.4.1. Subsequently,
a 6-minute resting-state block started, where participants sat mo-
tionless in the VR setting, devoid of NPCs or tasks. The experiment
progressed then through six randomized blocks (Visual Monitoring
- No/Low/High Visual Complexity, N-Back - No/Low/High Visual
Complexity), each lasting 6 minutes. Between blocks, participants
evaluated their workload using the NASA-TLX questionnaire [36]
and engagement via the Game Experience Questionnaire (GEQ)
Core Module [38]. We collected Competence, Immersion, and Pos-
itive Affection subscales, as those subscales showed the highest
content validity, following the recommendations of Law et al. [43].
We do not report results on subjective scores in this work. The total
experiment duration was one hour and thirty minutes.

3.2 Tasks

For each participant, the study began with an IAF Block, where we
asked the participant to keep their eyes closed for two minutes,
during which their EEG signals are recorded for later computa-
tion of individual alpha frequency (IAF) [24]. Then, the experiment
moved to the Resting Block, where we asked participants to seat
comfortably, relax, and stare in a neutral VR environment. In this
block, we acquired EEG data from participants in a resting position
for later EEG normalization. Thereafter, the participants underwent
the same six “experiment blocks,” with the order of these blocks
individually randomized. These six blocks were categorized into
two groups: Visual Monitoring and N-Back, as summarized in Fig-
ure 1. Visual capture of the experimental conditions is presented in
Figure 2.

3.2.1 Visual Monitoring. In each of the three Visual Monitoring
blocks, participants were engaged in a VR task that is assumed to
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Figure 1: Experiment Procedure. The experiment encompassed eight different blocks. Participants closed their eyes for 2 minutes

in the first block, allowing us to compute the individual alpha frequency (IAF). Then, they seated comfortably and stared

in a neutral VR environment for 6 minutes, as we acquired EEG data from participants in a resting position for later EEG

normalization. Finally, the experimental blocks started, manipulating Task and Visual Complexity. Refer to Section 3.1 and

Section 3.2 for a complete description of the experimental conditions.

(a) 3: Visual Monitoring, 0 NPC (b) 4: Visual Monitoring, 50 NPCs (c) 5: Visual Monitoring, 200 NPCs

(d) 6: N-Back, 0 NPC (e) 7: N-Back, 50 NPCs (f) 8: N-Back, 200 NPCs

Figure 2: Screenshots of the experiment blocks: Two independent variables, Task (Visual Monitoring, N-Back) and Visual

Complexity (No, Low, High), were manipulated using this 2 × 3 experimental design.

evoke external attention processes with different levels of visual
complexity. Participants were presented with a stream of NPCs and
tasked with vigilantly monitoring the NPC stream. The NPCs were
spawned from the horizon and then walked roughly towards the
viewer along certain random waypoints, and passing to the left and
right of the viewer. The participants aimed to identify a deviant
NPC, notably a gorilla, and track its trajectory until it disappeared
from the VR scene. Participants remained seated throughout the
entire experiment. We implemented three different levels of visual
complexity across these Visual Monitoring blocks to systematically
manipulate the demands on external attention resources. This task
was designed based on previous cognitive tasks to recruit exter-
nal attention resources [16, 23]. In the No Visual Complexity block,
there was no NPC, and the participant only needed to identify and
visually follow the gorilla. Another block maintained a Low Visual
Complexity, limiting the NPC count to a maximum of 50 at any
given time. In the other block, the visual environment featured a

High Visual Complexity, with a maximum of 200 NPCs concurrently
present, necessitating increased external attention from partici-
pants. We expected this intentional variation to allow us to explore
the differential demands on external attention resources. We used
NPC count to manipulate visual complexity, instead of a neutral,
non-social setting, as their distracting effect is based on previous
work [18, 19]. Furthermore, our NPCs had a skeleton and were re-
alistically animated. so they are more realistic than abstact shapes
(e.g., cubes, spheres, pyramids), thus increasing the immersive prop-
erties of VR simulations.

3.2.2 N-Back. In each of the three N-Back blocks, participants
were asked to perform a visual working memory task known as
the N-Back task [52] with 𝑁 = 2. In this task, participants were re-
quired to decide whether the color of the sphere presented two steps
earlier matched the color of the currently presented sphere. The
execution involved picking up the sphere and placing it into one of
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two buckets that were positioned on the left and right sides of the
user. In cases where the colors matched, participants were directed
to deposit the sphere into the right bucket; conversely, in case of a
mismatch, participants were instructed to place the sphere in the
left bucket. Sphere colors included green, red, blue, or black. To
promote task engagement, immediate visual feedback was provided
after each decision, indicating correctness or incorrectness. Addi-
tionally, after every 20 trials, the total accuracy of these trials was
briefly displayed, allowing participants to gauge their performance.
Participants were encouraged to try to maintain an accuracy level
over 90%. This N-Back task effectively recruited internal attention
through maintaining and updating relevant information (sphere
color) in working memory for decision-making. By manipulating
the level of visual complexity and incorporating task-irrelevant
visual information (NPCs) mirroring the Visual Monitoring blocks,
we expected to realize a competition between the external and
internal attention states.

3.3 Participants

We recruited 24 participants (𝑀 = 23.54, 𝑆𝐷 = 3.55; 15 female, 9
male, none diverse) through convenience sampling and social media.
Participants provided written informed consent before their partic-
ipation. None of the participants reported a history of neurological,
psychological, or psychiatric symptoms.

3.4 Apparatus and Data Recording

The N-Back and Visual Monitoring tasks were implemented in
Unity (Version 2020.3.8 LTS). We presented the VR environment
using an HTC VIVE Eye Pro headset with a display resolution of
2880× 1600 pixels combined (Field of View: 110◦). For environment
tracking, we used two HTC Vive lighthouses 2.0. We acquired two
physiological measurements: EEG signal using two LiveAmp ampli-
fiers connected via Bluetooth (BrainProducts GmbH, Germany, 500
Hz) and eye tracking data via the VR headset (120 Hz). Physiologi-
cal data were streamed within the Unity VR environment within
the Lab Streaming Layer (LSL) framework1 to the acquisition PC
(Windows 10, Intel Core i7-11700K, 3.60 GHz, 16GB RAM). Figure 3
shows a participant wearing the experiment apparatus.

3.4.1 EEG Recording & Preprocessing. EEG data were recorded
from 64 Ag/AgCl pin-type passive electrodes mounted over a water-
based EEG cap (“64ChWet-Sponge R-Net for LiveAmp”, Brain Prod-
ucts GmbH, Germany) at the following electrode locations: Fp1, Fz,
F3, F7, F9, FC5, FC1, C3, T7, CP5, CP1, Pz, P3, P7, P9, O1, Oz, O2,
P10, P8, P4, CP2, CP6, T8, C4, Cz, FC2, FC6, F10, F8, F4, Fp2, AF7,
AF3, AFz, F1, F5, FT7, FC3, C1, C5, TP7, CP3, P1, P5, PO7, PO3, Iz,
POz, PO4, PO8, P6, P2, CPz, CP4, TP8, C6, C2, FC4, FT8, F6, F2, AF4,
AF8 according to the 10–20 system. Two wireless, Bluetooth-based
LiveAmp amplifiers acquired EEG signals with a sampling rate of
500 Hz. All electrode impedances were kept below 20 kΩ accord-
ing to the manufacturer’s prescription. During the recording, we
referenced channels to FCz and chose AFz as the ground. As the
first preprocessing step, we removed the first 6 seconds and the
last 2 seconds from each block. This was motivated by the need to
mitigate the influence of transitional artifacts that typically occur

1https://github.com/labstreaminglayer/

VR controller

EEG cap

VR headset

Figure 3: The experimental setup encompassed a desktop

computer while the VR scene was deployed using an HTC

Vive Pro Eye to collect eye tracking data (90 Hz). EEG data

were collected using a 64-channel R-Net with two wire-

less amplifiers (500 Hz). The experiment took place in a

distraction-free and soundproof laboratory.

when a participant is either adjusting to the start of a new task block
or transitioning away from it at the end [46]. We then implemented
our further preprocessing pipeline in MNE Python [33]. A band-
pass FIR filtering was performed from 1 Hz to 70 Hz to remove low-
and high-frequency noise. Then, the signal was notch-filtered at
50 Hz to remove power-line interference and finally re-referenced
to the common average reference. We then applied Independent
Component Analysis (ICA) with extended InfoMax [9, 44]. To fa-
cilitate automatic classification and correction of ICA components,
we employed the MNE plugin MNE-ICALabel [45].

Regions of Interest (ROI). We selected our ROIs guided by prior
research and literature based on alpha and theta Power Spectral
Density (PSD) computation [10, 16, 51]. Their studies employed
parieto-occipital channels for computing alpha oscillations, while
fronto-central channels were chosen for theta analysis. To stream-
line our ROIs further, we have excluded four channels susceptible
to artifacts from VR headsets (Fp1, Fp2, AF3, AF4) while incorpo-
rating four additional channels (P1, P2, P4, Oz) for compactness
and symmetry. Following Putman et al. [58], we chose our ROI for
beta to be the same as that for theta. Finally, for delta and gamma,
we oriented ourselves based on further related work on attention
[26, 35] and its detection [71, 73]. We used all five ROIs for our
first classification approach (see Section 4.1.3), while for another
classification approach we only considered the ROIs for alpha and
theta (see Section 4.2.4). This resulted in following ROIs: Fz, F3, F4,
F7, F8, Cz, C3, C4, Pz, P3, P4, Oz, O1, O2 for delta; Fz, F1, F2, F3, F4,
FC1, FC2 for theta and beta; Pz, P1, P2, P3, P4, POz, PO3, PO4, Oz,
O1, O2 for alpha; Fz, F1, F2, F3, F4, FC1, FC2 for beta; Fz, F3, F4, FT7,
FT8, Cz, C3, C4, Pz, P3, P4, PO7, PO8, Oz for gamma.

IAF computation. We adopted the methodology from Corcoran
et al. [24] and Klimesch [42] for calculating IAF, allowing for alpha
band determination on a personal level by accounting for inter-
individual differences. IAF was computed using electrodes of the
alpha ROI, resulting in an average lower alpha range of 7.28 Hz
(𝑆𝐷 = 0.98) and an upper range of 11.89 Hz (𝑆𝐷 = 0.71). Utilizing

https://github.com/labstreaminglayer/
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the individual alpha lower bound as a point of reference, we delin-
eated the individual theta frequency range. The alpha lower bound
functions as the theta upper bound, while the theta lower bound is
established by subtracting 4 Hz from the alpha lower bound.

3.4.2 Eye Tracking Recording & Preprocessing. For eye tracking
data, we utilized the integrated eye tracker of the VR headset, cou-
pledwith the SRanipal eye tracking SDK2. For this study, we focused
on the pupil diameter. To calculate features related to pupil diam-
eter, as outlined in prior studies [40, 54], we first interpolated the
recorded time series of pupil diameter linearly to maintain a uni-
form sampling rate of 120 Hz, and then determined the average
of the normalized sizes of both the left and right pupils, termed
combined pupil diameter. These preprocessed pupillary time series
serve as the foundation for subsequent analysis.

4 CLASSIFICATION APPROACHES

In this section, we delineate our dual classification strategy, which
juxtaposes the precision of classical linear models with the adapt-
ability of contemporary deep learning techniques. The choice of
Linear Discriminant Analysis (LDA) is grounded in its established
efficacy for datasets of limited size, as noted by Lotte et al. [50]
offering a robust baseline for feature-based classification includ-
ing PSDs. On the other hand, the deployment of neural networks,
particularly convolutional neural networks, is inspired by their
superior performance in complex pattern recognition tasks within
EEG data, as supported by findings from Appriou et al. [7]. This
approach enables the direct processing of raw time-series data,
capturing intricate temporal and spatial dependencies without the
prerequisite of manual feature extraction. The integration of these
methodologies allows us to harness both the interpretability of tra-
ditional statistical models and the comprehensive feature extraction
capabilities of deep learning, aiming for the most effective detection
of attention states in VR.

4.1 LDA Classification

Our goal is to explore the subject-independent case, focusing on
models that can reliably detect attentional states across different
individuals. This approach seeks to obviate the need for training
a separate model for each person, thereby providing a scalable
solution. While the overarching objective is a subject-independent
analysis, we also conducted subject-dependent studies to facilitate
comparative feature selection and model performance analyses.

We considered three different window sizes: 4 seconds, 8 seconds,
and 11 seconds. In each setting, the signals were segmented based
on the window size, yielding three distinct datasets with 88, 44,
and 32 non-overlapping data samples per block per participant,
respectively. In all three settings, we conducted the same feature
extraction steps and classification experiments, as described below.

4.1.1 EEG Feature Engineering. For each EEG data segment, we cal-
culated the PSDs using Welch’s periodogram method [76] for delta
(1 Hz to IAF .lower − 4), theta (IAF .lower − 4 to IAF .lower), alpha
(IAF .lower to IAF .upper), beta (IAF .upper to 30 Hz), and gamma (30
to 45 Hz) frequencies based on our predefined ROIs and computed

2https://developer.vive.com/resources/vive-sense/

IAF ranges (see Section 3.4.1). In addition, we incorporated nor-
malized versions of these values by subtracting the segment’s PSD
from the corresponding PSD value computed based on the entire
Resting Block.

4.1.2 Eye Tracking Feature Engineering. For each eye tracking data
segment, we computed the average pupil diameter, standard devia-
tion of pupil diameter, and the index of pupillary activity (IPA) [30]
using the combined time series of left and right pupil diameters.

4.1.3 LDA Feature Sets. This led to the identification of five distinct
feature groups in the subject-independent case:

(1) EEG only: PSDs of Alpha, Theta, Delta, Beta, and Gamma
(2) Normalized EEG only: Normalized versions of the five PSDs
(3) Pupil only: Pupil Diameter Average, Pupil Diameter Standard

Deviation, IPA
(4) Pupil + EEG: 3 Pupil only features plus 5 EEG only features
(5) Pupil + normalized EEG: 3 Pupil only features plus 5 Normal-

ized EEG only features
In the subject-dependent case, the individual normalization of

EEG based on the Resting Block does not yield significant differ-
ences in principle. This is attributed to the fact that each person
is analyzed individually in this scenario, where StandardScaler
from the Python data science library scikit-learn [57] was con-
sistently applied to standardize both the training and validation
data, and then transforming the test data accordingly. As a result,
in the subject-dependent case, there are only three distinct feature
groups instead of five.

4.1.4 LDA Classification Setup. The classification analysis aimed
to differentiate physiological data recorded in the Visual Monitor-
ing blocks from those recorded in the N-Back blocks. In this context,
LDA has demonstrated good performance in classifying EEG and/or
eye tracking features in various previous studies [16, 71, 73]. We
used the scikit-learn implementation of LDA [57]. For subject-
dependent and subject-independent analyses, we applied two dif-
ferent procedures as follows.

Subject-Dependent Classification. In this case, each participant’s
data was analyzed separately. For each person, the data was initially
segmented into windows, with 1/6 of these segments randomly
selected and set aside as a test set. Then, a 5-fold stratified ran-
dom permutation cross-validator StratifiedShuffleSplit with
a training size of 80% was employed to further partition the remain-
ing 5/6 of the data into training and validation sets. This resulted
in approximately 2/3 of the total data for training, 1/6 for valida-
tion, and a fixed 1/6 for testing. Combining the 5-fold shuffle split
and GridSearchCV for hyperparameter optimization, the model
achieving the best cross-validation performance was then scored
on the test set. This entire process was repeated 20 times for each
person, involving 20 random splits into 1/6 data for testing and 5/6
for training and validation. Consequently, each individual yielded
20 cross-validation scores and 20 test scores. This procedure was
replicated for three different window sizes (4 seconds, 8 seconds,
and 11 seconds) and three feature groups (Pupil only, EEG only,
Pupil + EEG), i.e., 9 configurations in total. Altogether, each config-
uration of feature group and window size produced 24 × 20 = 480
cross-validation scores and test scores, respectively. For scoring, the

https://developer.vive.com/resources/vive-sense/
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balanced accuracy metric was employed. We did not use 𝐹1 score,
because the two classes, internal and external attention, carry equal
weight in our case. Alongside the scores, the optimal hyperparame-
ter combination found, and the refitted feature coefficients of the
LDA model were recorded. The overall number of evaluable score
points is given as:

3 window sizes × 3 feature groups × 24 subjects × 20 iterations

Subject-Independent Classification. In this case, we aggregated
participants’ data and analyzed them collectively. In each itera-
tion, 4 participants were randomly selected as the test set, while
the data from the remaining 20 participants were standard-scaled,
and the LDA model was then trained and cross-validated using
GridSearchCV and 5-fold StratifiedGroupKFold (16 participants
for training and 4 participants for cross-validation) on the standard-
ized data. Next, the optimized model was scored on the test set,
which consisted of the 4 persons randomly chosen beforehand.
The data of these four individuals were also transformed using the
standard scaler fitted on the other 20 persons. This iteration was
repeated 480 times, yielding the same number of cross-validation
scores, test scores, hyperparameters, and vectors of feature coef-
ficients as in the subject-dependent experiment. Note that in the
subject-independent case, there are five feature groups instead of
three, since in a cross-individual analysis, the normalization of indi-
vidual EEG based on the Resting Block becomes relevant. Thus, the
total number of score points can be calculated using the formula:

3 window sizes × 5 feature groups × 480 iterations

4.2 Deep Classification

We then addressed the attention detection problem using deep
learning. In this study, we worked with EEG signals and eye track-
ing data, both of which can be essentially regarded as multivariate
non-stationary time series. Despite these time series fully encoding
all information about the respective signals, many interesting char-
acteristics remain hidden inside their temporal dynamics. To exploit
the benefits of various well-established deep learning techniques
prevalent in the rapidly advancing fields of computer vision and
image recognition, we first transformed these one-dimensional time
series into two-dimensional images. In this context, we utilized an
approach to transform physiological time series into images [69, 70]
based on two algorithms from Wang and Oates [75].

4.2.1 Markov Transition Field. The first technique for imaging time
series is Markov Transition Field (MTF), which transforms a time
series into a matrix using transition probabilities, as illustrated in
Figure 4. The main diagonal represents the self-transition proba-
bility at each timestamp. The MTF representation manifests larger
squares in regions where the time series exhibit minimal magni-
tude variations over time. Conversely, thin lines are indicative of
segments in the time series that share similar temporal dynamics.

4.2.2 Gramian Angular Field. The second technique for imaging
time series is Gramian Angular Field (GAF), including two variants:
Gramian Angular Difference Field (GADF) and Gramian Angular
Summation Field (GASF), as shown in Figure 5. Each cell [𝑖, 𝑗]
represents the trigonometric difference or trigonometric sum of
the points 𝑥𝑖 and 𝑥 𝑗 with respect to the time interval. On the main

(i) (ii)

(iii)(iv)

Figure 4: Markov Transition Fields: The values of time se-

ries 𝑋 with 𝑇 time points (i) are partitioned into 𝑄 quantiles

𝑞1, 𝑞2, . . ., and each data point 𝑥𝑡 ∈ 𝑋 is assigned to a quantile

(ii). Then, we count the transitions from 𝑥𝑡 to 𝑥𝑡+1 between

quantiles along the time axis and construct a normalized

(𝑄 ×𝑄) weighed adjacency matrix𝑊 , termed Markov tran-

sition matrix (iii). Finally, 𝑊 is “broadcasted“ among the

magnitude axis considering the temporal positions, produc-

ing the (𝑇 × 𝑇 )-image 𝑀 , using the formula 𝑀[𝑖, 𝑗 ] := 𝑊[𝑎,𝑏 ]
where 𝑞𝑎 ∋ 𝑥𝑖 and 𝑞𝑏 ∋ 𝑥 𝑗 (iv).

(i) (ii)

(iii)(iv)

Figure 5: Gramian Angular Fields: The values of the time

series 𝑋 with 𝑇 time points (i) are first rescaled to [−1, 1]
and then represented in polar coordinates by encoding the

magnitudes 𝑥𝑡 as the angular cosine 𝜙𝑡 = arccos(𝑥𝑡 ) ∈ [0, 𝜋]
and with radius 𝑟𝑡 = (𝑡 − 1)/(𝑇 − 1) ∈ [0, 1] (ii). Then, we

identify the temporal correlation within time intervals by

sin(𝜙𝑖 −𝜙 𝑗 ) pairwise between the points, resulting in a (𝑇 ×𝑇 )-
image GADF (iii), or calculating cos(𝜙𝑖 +𝜙 𝑗 ) pairwise between

the points, resulting in a (𝑇 ×𝑇 )-image GASF (iv).

diagonal, each cell contains the original angular information and
could be used to reconstruct the original time series. In this work,
we only worked with the GASF images.
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Figure 6: Each 4-second segment consists of𝑀 signal sources

(e.g., “left pupil diameter”, “Pz”, etc.). Each is transformed in

two (224×224)-images,MTF andGASF. Then, these 2𝑀 images

are concatenated along the channel dimension. Therefore,

each data instance is a tensor of shape 2𝑀 × 224 × 224.

4.2.3 Channel Concatenation. Assume we have𝑀 time series from
each subject, either from one or different modalities, e.g., they can
be a pupillary time series, a Pz time series, a P3 time series, etc.
and we have established temporal synchronization between them,
and segmented each of these time-synchronized time series into 𝑁

short intervals based on timestamps. For each segment and each
source of time series, we used MTF and GAF to transform it into 2
images, resulting in 2×𝑀 images per segment. Across all segments,
this yields a total of 2 ×𝑀 × 𝑁 images per subject. The images are
arranged as illustrated in Figure 6.

4.2.4 Deep Classification Datasets. We examined three modalities:
(1) Pupil only feature set consists of 3 time series: Left Pupil

Diameter, Right Pupil Diameter, Average Pupil Diameter.
(2) EEG only feature set consists of a variable set of EEG time

series (see below).
(3) Pupil + EEG: Multimodal feature set consists of 3 Pupil only

time series plus EEG only time series.
For EEG, we additionally differentiated between three options:
• FC: 7 frontal and central channels (ROI for theta and beta).
• PO: 11 parietal and occipital channels (ROI for alpha).
• FCPO: 18 channels from FC and PO.

For each configuration, relevant features’ time series were ex-
tracted from all participants across all blocks. The signals were then
segmented into 4-second non-overlapping intervals. This process
resulted in 352/4 = 88 signal segments per signal source per block.
In total, 24 subjects × 6 blocks × 88 = 12672 tensors were gener-
ated for each configuration. The sizes of datasets and numbers of
channels per tensor are detailed in Table 1.

4.2.5 Deep Classification Model. For image classification, we used
ResNet-18 [37] whose residual connections enable robust feature ex-
traction, potentially facilitating superior classification performance
even in complex non-natural image datasets. PyTorch (torch) [55]

Table 1: Overview of deep classification experiments.

Feature Group # Instances # Tensor Channels
Pupil only

12672
(= 24 · 6 · 88)

6
EEG only (FC) 14
EEG only (PO) 22
EEG only (FCPO) 36
Pupil + EEG (FC) 20
Pupil + EEG (PO) 28
Pupil + EEG (FCPO) 42
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Figure 7: ResNet-18 architecture used for deep classification.

offers an implementation of ResNet-18. We then modified its first
convolutional layer to adjust the number of channels from 3 to
our specified number of channels (see Table 1). We also modified
the last fully-connected layer to have 2 output features, standing
for internal and external attention. The overall architecture of our
ResNet-18 model is depicted in Figure 7. We did not use pre-trained
weights because MTFs and GAFs are not natural images.

PyTorch automatically resizes input tensors for ResNet-18 to
a fixed shape of 224 × 224 × #Channels. To prevent information
loss caused by an additional scaling process, we generated images
directly in this resolution. Each 4-second signal segment was first
linearly interpolated to a length of 224 and then transformed using
the pyts toolbox [32] into two images: one MTF (with 16 bins) and
one GASF, both sized at 224 × 224.

4.2.6 Deep Classification Setup. For each of the 7 feature groups,
the following procedure was repeated 20 times independently: A
ResNet-18 model was initialized and trained on a random subset
totaling 70% of the images, to classify image tensors from blocks 3-5
against image tensors from blocks 6-8. Validation was performed
on the remaining 30% of images. The train-validation split was
consistently stratified based on the block number, resulting in 6
strata. Throughout all experiments, we used the Cross-Entropy
Loss function, the Adam optimizer [41] with a constant learning
rate of 1e-4, and maintained a batch size of 32. Early stopping was
triggered if the validation loss continuously increased over the last
three epochs. In total, we trained 7×20 = 140 models for evaluation.

5 RESULTS

In this section, we present the results produced from our extensive
classification experiments.

5.1 Subject-Dependent LDA Classification

5.1.1 Accuracy. Table 2 shows the LDA classification accuracy
within a subject-dependent setting. When combining pupil and
EEG features and using 11-second windows, the median accuracy
on the test set reached 86.7% . In particular, there are two interesting
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Figure 8: Overview of subject-dependent LDA classifier weights: Each row stands for one modality, and each column for one

window size. Each subplot shows the feature weights (.coef_) of fitted LDA models from the respective configuration. In each

subplot, the dotted vertical line indicates 0, the left area with light blue background indicates < 0, and the light pink area

indicates > 0. In our particular setting, features that have predominantly negative weights are supposed to correlate more with

external attention (e.g., beta, alpha, delta), and predominantly positive weights are indicative of correlation with internal

attention (e.g., gamma, theta, pupil_avg). Furthermore, the larger the magnitude, the stronger the correlation. The modality

with best overall classification accuracy [Pupil + EEG] is additionally highlighted with a yellow background.

Table 2: Overview of subject-dependent LDA classification

accuracy: Regardless of window size, the multimodal fea-

ture sets [Pupil + EEG] generally resulted in higher accuracy

scores than the unimodal counterparts [EEG only] & [Pupil

only]. The pupil-only modality achieved the weakest perfor-

mance. Underlined numbers denote the three top median

accuracy scores. The best result is additionally highlighted

in bold. The 95% confidence intervals were computed using

the bootstrap method with 10,000 resamples.

EEG Pupil Pupil + EEG

Med CI95 Med CI95 Med CI95

CV

4s 76.3 [75.7–77.0] 70.8 [69.6–71.9] 83.5 [82.3–84.8]
8s 78.6 [77.3–80.5] 70.2 [69.1–71.2] 85.3 [83.2–87.0]

11s 80.3 [78.9–81.2] 70.0 [68.8–70.6] 86.2 [83.8–87.7]

Test

4s 77.1 [75.7–78.1] 69.8 [68.9–71.2] 84.1 [82.8–85.1]
8s 79.5 [77.8–81.2] 70.4 [68.9–71.3] 84.6 [83.1–86.3]

11s 81.0 [79.0–81.6] 68.8 [67.1–69.8] 86.7 [85.3–87.5]

patterns: First, regardless of the window size employed, multimodal-
ity consistently outperforms the EEG-only approach, which again
consistently outperforms the pupil-only approach. Second, with
EEG features, performance improves with a longer window size or
fewer data points. However, when only pupil features are utilized,
the performance remains relatively stable or even deteriorates with
this trend.

5.1.2 Weights. The training data was consistently standard-scaled,
allowing for meaningful comparisons of weight coefficients. Larger
magnitudes indicate a higher influence of the respective feature
on the overall outcome of the LDA model. In our classification
setup, we labeled data from Blocks 3, 4, and 5 as 0, while Blocks
6, 7, and 8 were labeled as 1. Consequently, any higher weight
from the classifier is indicative of internal, while any lower weight
points toward external attention. In each of the 9 configurations,
we collected 24 subjects × 20 iterations = 480 weight vectors (cf.
Section 4.1.4), which are visualized in Figure 8.

In the most performative case of Pupil + EEG (see Section 5.1.1),
i.e., the last row in Figure 8, the most informative feature is theta,
which is positively associated with internal attention. This aligns
with our assumption that theta power increases during internal
tasks (see Section 2.1). Other features are also significant to a certain
extent, including average pupil diameter and gamma, whose
increase indicates internal attention, and delta, alpha, as well as
beta, whose increase directs more towards external attention.

5.2 Subject-Independent LDA Classification

5.2.1 Accuracy. We now transition to the subject-independent
analyses. Table 3 presents the classification outcomes in a subject-
independent setting.

Among all feature combinations, the multimodal approaches that
combine pupil and EEG features almost always outperform their
unimodal counterparts. The only outlier is using pupil-only fea-
tures with a 4-second window length. Irrespective, all multimodal
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Figure 9: Overview of subject-independent LDA classifier weights: For explanation, please refer to the caption of Figure 8. The

modality with the best overall classification accuracy is [Pupil + normalized EEG].

Table 3: Overview of subject-independent LDA classification accuracy: Normalized EEG is indicated by an asterisk. On the

test sets, the multimodal feature sets with normalized EEG generally outperformed the other variants, with (4s, Pupil-only)

being the only exception. Irrespective of that, the general trend of [Pupil + normalized EEG] > [Pupil + EEG] > [Pupil only] >

[normalized EEG only] > [EEG only] can be observed on the test sets. Underlined numbers denote the five top median accuracy

scores. The best result is additionally highlighted in bold. The 95% confidence intervals were computed using the bootstrap

method with 10,000 resamples.

EEG EEG* Pupil Pupil + EEG Pupil + EEG*

Med CI95 Med CI95 Med CI95 Med CI95 Med CI95

CV

4s 56.8 [56.7–57.0] 58.7 [58.6–58.8] 60.7 [60.6–60.8] 61.7 [61.5–61.9] 62.9 [62.7–63.0]
8s 56.8 [56.7–57.0] 59.1 [59.0–59.2] 58.8 [58.7–59.0] 60.7 [60.6–60.9] 62.5 [62.4–62.7]

11s 56.4 [56.2–56.6] 59.1 [59.0–59.2] 58.3 [58.1–58.4] 60.8 [60.5–60.9] 62.8 [62.7–63.1]

Test

4s 55.6 [55.0–55.9] 55.8 [55.3–56.2] 60.4 [59.8–61.0] 59.4 [58.8–59.9] 60.1 [59.5–60.6]
8s 55.2 [54.6–55.7] 55.8 [55.3–56.3] 58.1 [57.5–58.5] 58.6 [58.0–59.4] 60.2 [59.6–60.7]

11s 55.1 [54.6–55.7] 55.9 [55.3–56.2] 57.4 [56.8–57.9] 59.0 [58.2–59.9] 61.2 [60.2–61.6]

approaches incorporating normalized EEG achieved a median accu-
racy of greater than 60% on the test set, surpassing the performance

of all other modalities.We can draw several interesting observations
from the results. First, the combination of EEG and pupil features
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consistently outperformed approaches using only pupil features,
which, in turn, is better than relying solely on EEG features, that is,
Multimodal > Pupil > EEG. However, in the subject-dependent
(see Section 5.1.1) classification, the ranking isMultimodal > EEG >

Pupil. Second, normalized EEG consistently outperformed their un-
normalized counterparts, demonstrating the individual variability
inherent in EEG characteristics and the necessity of normalization
prior to further analysis.

5.2.2 Weights. The weights of the optimized subject-independent
LDA models are displayed in Figure 9. As before, we consider only
the most performative case of Pupil + normalized EEG, i.e., the
last row in Figure 9: In general, EEG features play a more significant
role than pupil features. Among the EEG features, theta stands
out as the most prominent, with its increase strongly indicating
internally directed attentional state. Also gamma plays a similar
role. Conversely, increased alpha, delta, and beta power suggests
tendencies in the externally directed attentional state. Regarding
pupil features, the average pupil diameter appears to be a positive
indicator for internal attention.

5.3 Subject-Independent Deep Classification

Building upon the insights gained from the feature engineering ap-
proach, we proceeded to explore deep learningmethodologies. Here,
we focused on subject-independent classification and a window
size of 4 seconds. The results are presented in Figure 10. Overall,
combining EEG features with pupil features consistently leads to
higher median classification accuracy, surpassing the results ob-
tained from using EEG or pupil features alone. In particular, the
best unimodal result is still inferior to the worst multimodal one.
Furthermore, utilizing a larger number of EEG channels or regions
(combining FC and PO channels) also leads to improved outcomes
compared to using either FC or PO channels alone, both in uni- and
multimodal cases.

6 DISCUSSION

We have examined different configurations and methods for detect-
ing internal and external attention within VR environments. We
aimed to advance the development of a real-time, user-agnostic
brain-computer interface that integrates seamlessly with VR tech-
nology. We evaluated the effectiveness of EEG and eye tracking
as input methods, analyzed the performance of two distinct clas-
sification algorithms, and tested the classification performance of
various data collection windows, modalities and feature sets.

6.1 Summary of Results

In our study, we investigated attention states decoding in VR us-
ing both subject-dependent and -independent LDA classifications,
complemented by subject-independent deep learning analysis. The
integration of EEG and pupil data consistently emerged as the
most accurate method for classifying attention states, surpassing
singular modality approaches across all models. This multimodal
strategy achieved a peak accuracy of 86.7% in subject-dependent
scenarios and demonstrated significant generalizability in subject-
independent contexts, with median accuracies exceeding 60%. No-
tably, theta and gamma EEG frequencies were identified as robust
indicators of internal attention across analyses, underscoring their
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Figure 10: ResNet-18 validation accuracy. For each of the 7

feature groups (cf. Table 1), we trained 20 models indepen-

dently (cf. Section 4.2.6). For each iteration, we selected the

epoch with the lowest observed validation loss, and extracted

validation accuracy from that epoch. The corresponding 20

validation accuracies from these selected epochs for every

feature group are depicted here. For example, the median ac-

curacy of [Pupil + EEG (FCPO)] is 66.8%, considerably higher

than that of [EEG only (PO)], which is 59.6%. In general, we

observe elevated accuracy in all multimodal cases as com-

pared to their unimodal “constituents”.

potential as reliable markers for attention allocation detection. Fur-
thermore, our deep learning exploration revealed that extending
EEG channel selection enhances classification performance, affirm-
ing the value of comprehensive physiological data in attention
research. Our results highlight the effectiveness of combining mul-
tiple physiological signals and advancing the understanding of
attention mechanisms in immersive environments, offering mod-
eling approaches for developing intelligent and context-aware VR
systems.

6.2 Enhanced Classification with Multimodality

Our analysis confirms and extends the understanding that multi-
modal classifiers exhibit superior performance over their unimodal
counterparts, a notion consistent with the broader findings in the
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field. This superiority is evident across subject-dependent and -
independent settings, underscoring the robustness of integrating
EEG and eye tracking data for attention state classification. In-
terestingly, we observed a reversal in the relative importance of
pupil diameter and EEG features between subject-dependent and
-independent classifications, with EEG features showing greater
discriminatory power in the former.

6.2.1 Differential Sensitivity of Pupil Diameter and EEG Features.
The observation that pupil diameter is a more sensitive indicator in
subject-independent classification, while EEG features take prece-
dence in subject-dependent scenarios, underscores the complexity
of physiological responses to attentional states. This discrepancy
raises important considerations for designing attention-aware sys-
tems, particularly in selecting the most appropriate physiological
markers based on the use context. For instance, applications requir-
ing user-specific customization might benefit more from EEG-based
indicators. At the same time, those aimed at a broader audience
could leverage pupil diameter as a more universally applicable
marker.

6.2.2 EEG Power Correlations with Internal Attention. We con-
ducted binary classification of external and internal attentional
states. Our analysis of the LDA feature weights reveals that in
both subject-dependent and subject-independent settings, the coef-
ficients associated with theta and gamma PSD features are predom-
inantly positive. In contrast, the coefficients of alpha, delta, and
beta features are predominantly negative. This indicates that inter-
nal attention correlates with increased power in theta and gamma
bands and decreased power in alpha, delta, and beta bands, while
external attention shows the opposite pattern. This association of
internal attention with specific EEG power bands indicates that
attention allocation can differentially impact EEG frequencies.

The significant increase in theta and gamma power observed in
our study aligns with their known roles in cognitive control [68],
working memory [47]. Theta power’s increase replicates previous
results as an EEG correlate in internal tasks such as problem-solving
[25] or memory recall [17] within VR environments. This increase
in theta activity suggests its utility as a neural marker, potentially
guiding the development of VR systems that dynamically respond
to the user’s cognitive engagement. Similarly, the association of
gamma power with internal attention underscores its role in inte-
grating cognitive processes across various brain regions, indicating
the intricate nature of internal focus maintenance. Contrary to
traditional perspectives linking alpha power decrease primarily
to external attentional shifts [23, 42], our findings suggest a more
intricate role. The observed decrease in alpha power during internal
attention states implies its function as a sensory gating mechanism,
modulating the balance between internal and external focuses by
filtering out irrelevant sensory information. The reductions in delta
and beta powers replicate previous work on their role when disen-
gaging from external stimuli and facilitating transitions towards
internally directed cognitive states [34, 39].

6.2.3 Tailoring Adaptive Systems to Individual Differences. The
distinct roles of EEG and pupil data in subject-dependent and -
independent classifications reveal the variability in attentional pro-
cesses among individuals. For instance, the pronounced discrimina-
tory power of EEG features in a subject-dependent context suggests
that individuals’ not-stationary and highly variable EEG patterns
persist as robust markers of attention allocation. Our results repli-
cate previous work in AR settings [73], demonstrating substantial
success with person-dependent models, reinforcing the potential
for such personalized approaches to accommodate the EEG signal
not-stationarity and individual differences during attention fluctua-
tions. Here, person-dependent classification enables the creation of
adaptive systems finely tuned to an individual’s physiological and
cognitive responses. This user-tailored approach ensures a higher
degree of precision in detecting and adapting to shifts in attention,
potentially leading to a more responsive VR interaction for the
single user [1, 29, 64].

6.3 Real-time Adaptation using Attention States

Attention detection using linear and non-linear modeling must
consider how such approaches are feasible for real-time adaptation
based on attention states in online VR systems.

6.3.1 Real-time Data Segmentation and Processing. Our methodol-
ogy involves segmenting EEG and eye tracking data into windows
of 4, 8, and 11 seconds, yielding distinct datasets. For real-time
applications, this segmentation must occur on the fly, necessitating
efficient algorithms that can quickly partition and process incom-
ing data without significant latency, which could disrupt the VR
experience.

6.3.2 Computational Complexity. Both our subject-dependent and
-independent LDA classification approaches involve complex com-
putations, including stratified random permutation cross-validation
and grid search for hyperparameter optimization. These processes
are computationally intensive, especially considering the need
for real-time feedback in VR. The deep learning approach fur-
ther compounds this complexity by transforming time series into
two-dimensional images for classification, demanding substantial
computational power for real-time analysis. LDA models and deep
learning architectures should be simplified to reduce computational
load without significantly sacrificing accuracy. Techniques such as
model pruning [63], quantization [48], and knowledge distillation
[78] may offer a solution.

6.4 Limitations and Future Work

Our study on attention states in virtual reality offers new insights
but encounters limitations, highlighting areas for further research.
These include refining EEG electrode placement, standardizing
experimental design, and exploring advanced imaging techniques
for data analysis. Addressing these challenges will enhance our
comprehension of VR attention mechanisms and the practicality of
BCIs.

6.4.1 Electrode Detection. Our study raises important questions
about the optimal placement and number of EEG electrodes for
detecting attention states, balancing BCI usability with accuracy.
Liu and Sourina [49] showed that recognizing emotions could be
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achieved with just four electrodes, highlighting a trade-off between
system simplicity and detection precision. This balance is crucial,
especially when considering real-time processing demands against
the need for accurate attention detection. The decision to use a
minimal or comprehensive electrode setup depends largely on the
application context: research settings might tolerate more complex
setups for greater accuracy, while consumer applications favor ease
of use and quick responses. Moreover, their approach is based on a
person-dependent approach, which might not replicate effective-
ness in a person-independent manner. This discussion points to
further exploring electrode configurations and alternative brain
imaging techniques to enhance BCI effectiveness across different
uses.

6.4.2 Design of Experiments. Our experimental design necessitated
executing two distinct types of tasks during the external and in-
ternal blocks. The inherent differences between these two types
of tasks may have introduced uncontrolled, confounding variables
into our experiments. For example, eye measures might have been
moderated by the task type. We advocate for using twomore similar
tasks in future studies to eliminate uncontrolled variables.

Another limitations of our study design was the randomiza-
tion of blocks for each participant using a simple shuffle method
without manually imposed counterbalancing. While a sufficiently
large sample size could potentially mitigate the noise introduced by
this approach, our sample size of 24 participants may not be large
enough to nullify these effects. Consequently, our results may suffer
from uncontrolled order effects. Also, the prolonged duration of the
experiment session and VR exposure (1.5 hours, which is relatively
long for a VR study) may have led to participant exhaustion. Future
studies should implement proper counterbalancing techniques (e.g.,
Latin square) to control for these effects, and we recommend careful
consideration of experiment duration and participant workload in
future studies.

6.4.3 Time Series Imaging. In our deep classification approach, we
only worked with Markov Transition Fields and Gramian Angular
Summation Fields (GASF). Whether adding GADF could yield im-
proved results remains still open. Further, it is worth investigating
whether different imaging techniques are better suited for specific
modalities.

7 CONCLUSION

In this study, we explored attention detection within virtual real-
ity environments using modern machine learning techniques. By
classifying attention into external and internal states, our objective
was to identify the user’s cognitive state based on passive EEG
and eye tracking measurements. Overall, our findings confirm the
predictive power of specific EEG and eye features proposed by ex-
isting research, while we also present discrepancies and introduce
new perspectives. Our observations reveal that by combining multi-
modal features from pupillometric and EEG sensors, our classifica-
tion models consistently outperform the variants that consider only
unimodal data. This aligns with our understanding of multimodal
learning and encourages further research in this direction. With the
vision of achieving subject-independent attention detection inmind,
which is critical for the promotion and commercialization of future

training-free brain–computer interfaces, we conducted extensive
studies on that matter. As expected, we found that multimodality
consistently yielded superior results compared to unimodalities.
This result contributes to the expanding body of knowledge in
the field of physiological computing and brain–computer interfac-
ing and holds practical implications for the future development of
user-adaptive systems.
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We encourage readers to reproduce and extend our results and anal-
ysis methods. Therefore, our experimental setup, collected datasets,
and analysis scripts are available at https://osf.io/jsk37/.
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