
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Department “Institut für Informatik”
Lehr- und Forschungseinheit Medieninformatik

Prof. Dr. Heinrich Hußmann

Diploma Thesis

SeCuUI: Secure and Fast Data Submission to Public
Terminals Using an Auto-Complete Mechanism

Max-Emanuel Maurer
max@max-maurer.de

Bearbeitungszeitraum: 1. 2. 2009 bis 30. 6. 2009
Betreuer: Dipl. Medieninf. Alexander De Luca
Verantw. Hochschullehrer: Prof. Dr. Heinrich Hußmann

mailto:max@max-maurer.de


Abstract

Security at public terminals is an often discussed issue today. Many different ways exists to steal
private data from someone using such a terminal. This thesis tries to present a new approach to this
problem, using the mobile device of the user to enhance input security. SeCuUI – Secure Custom
User Interface – is a software suite consisting of a client software and a framework to develop
server applications. The client can be used with any public terminal running a software based on
the SeCuUI framework. Using a device protected from modifications in the close proximity of
the user makes it much harder to spy on any data she enters. To speed up the process the client
remembers previously entered values and proposes them in future sessions. The framework and
the client have both been evaluated in a user study using a demo-server based on the framework.
This thesis contains explanations to all work done on the software as well as information on the
planning, conduct and outcome of the user study.

Zusammenfassung

Die Sicherheit an öffentlichen Displays ist heutzutage ein oft diskutiertes Thema. Es gibt eine
Vielzahl von Wegen an die privaten Daten der Nutzer eines solchen Gerätes zu gelangen. Die
Diplomarbeit präsentiert einen neuen Ansatz die Sicherheit der Benutzer bei der Eingabe mit Hil-
fe des eigenen mobilen Endgeräts zu verbessern. SeCuUI – Secure Custom User Interface – ist
ein Softwarepaket, bestehend aus einem Client für mobile Endgeräte und einem Framework zur
Entwicklung von Serveranwendungen. Die Clientanwendung kann an jedem öffentlichen Display
genutzt werden, welches unter Zuhilfenahme des Frameworks entstand. Das mobile Gerät bietet
durch seinen Schutz vor Modifikationen und seiner räumlichen Nähe zum Benutzer eine bedeu-
tend größere Sicherheit vor eventuellen Angreifern. Die Clientanwendung merkt sich dabei zuvor
eingegebene Werte und präsentiert diese dem Benutzer bei zukünftigten Eingaben. Sowohl Frame-
work als auch Client wurden in einer Benutzerstudie mit Hilfe eines zuvor erstellen Demoservers
evaluiert. Diese Arbeit befasst sich mit Erklärungen zur gesamten Arbeit an den Softwarekompo-
nenten, sowie mit der Planung, der Durchführung und den Ergebnissen der Benutzerstudie.



Thesis Topic

LMU München 
Institut für Informatik 
LFE Medieninformatik 
 

Topic for a Diploma Thesis in Media Informatics 
 
 
Student: Max-Emanuel Maurer 
Matriculation-Nr.: 2113273 
 
 
 
Title: SeCuUI: Secure and fast data submission to public terminals using an auto-
complete mechanism 
 
When interacting with public terminals, users are exposed to several privacy threats. Private 
data can be lost or stolen by passersby, onlookers or any kind of attackers. 
In this thesis, this problem is handled by moving input from the public terminal to the users’ 
mobile device. To deal with the problem of reduced input speed, the system includes an 
automatic form filling functionality that assists the user in filling out forms. Based on previous 
work, the student will implement a system (including the appropriate APIs) that enables 
service providers to easily create and deploy such privacy enhanced services. An exemplary 
service will be implemented and evaluated in an user study. 
 
 
 
 
Responsible Professor:  Prof. Dr. Heinrich Hußmann 
Supervisor: Dipl. Medieninf. Alexander De Luca 
  
Start: February 01 2009 
End: June 30 2009 

 

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig angefertigt, alle Zitate als solche
kenntlich gemacht sowie alle benutzten Quellen und Hilfsmittel angegeben habe.

München, 25. Juni 2009

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Structure of this Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work 3
2.1 Password Entry Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Black and White PIN Pad . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Spy-Resistant Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Pressure-Based Graphical Password . . . . . . . . . . . . . . . . . . . . 4
2.1.4 Shoulder-Surfing Resistant Password Scheme . . . . . . . . . . . . . . . 4
2.1.5 VibraPass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.6 Tactile PIN Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.7 Undercover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Mobile User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Secure Mobile Computing . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Biometric Verification at ATM Interfaces . . . . . . . . . . . . . . . . . 8
2.3.2 Gaze-Based Password Entry . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Eye-Gaze Interaction for PIN-Entry . . . . . . . . . . . . . . . . . . . . 8

2.4 Connection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1 SyncTap Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 QR-Code Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Separation of SeCuUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 SeCuUI 13
3.1 What is SeCuUI? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 The three Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 XML User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Auto-Complete Using the Mobile Device . . . . . . . . . . . . . . . . . . . . . 15

4 Utilized Hardware and Software 17
4.1 BlueCove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 SwiXml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Xparse-J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 JDOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 BouncyCastle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.6 Google ZXing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.7 Nokia N80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 SeCuUI Framework 21
5.1 Working with the Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 XUL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.1 Modifications Made to XUL . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Auto-Complete Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Framework Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.4.1 framework-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.2 ui-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4.3 qrCode-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4.4 connection-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

I



5.4.5 components-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Building an application with the SeCuUI framework . . . . . . . . . . . . . . . 38

6 Client Application 41
6.1 Auto-Complete Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 QR-Code Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Java ME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3.1 Java ME Record Store . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4 Client Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.4.1 client-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4.2 connection-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4.3 methods-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.4.4 qrCode-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.5 Using the Client-Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.5.1 Connection and Entering Data . . . . . . . . . . . . . . . . . . . . . . . 53
6.5.2 Removing an Auto-Complete Entry . . . . . . . . . . . . . . . . . . . . 53

7 Evaluation 55
7.1 The Application Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2 Deutsche Bahn and Kinomaxx . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 The Different Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.4 Test Setup and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.5 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.6 The Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.7.1 Demographic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.7.2 Technical Abilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.7.3 Usage of Mobile Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.7.4 Usage of Vending Machines . . . . . . . . . . . . . . . . . . . . . . . . 62
7.7.5 Task Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.7.6 Different Connection Methods . . . . . . . . . . . . . . . . . . . . . . . 65
7.7.7 Security and Asterisk-Mode . . . . . . . . . . . . . . . . . . . . . . . . 66
7.7.8 Participant Overall-Rating . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.7.9 Suggestions for Improvement . . . . . . . . . . . . . . . . . . . . . . . 68

8 Conclusion 71
8.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A Appendix 73

II



1 INTRODUCTION

1 Introduction

1.1 Motivation

Over the last years the number and variety of vending machines has increased. When the first
automatic teller machine (ATM) was installed in 1939 in front of a New Yorker bank, it was
dismounted six months later because nobody used it [21]. But with the first electronic ATM
installed in London in 1967 [22] the ATM concept finally took off on its triumphal course.

Until today the number of ATMs worldwide increased to over 1.7 million. But it is not only
automated teller machines people use these days. Nearly everything that was once offered by
someone behind a counter, is also available today at a certain machine.

This gives rise to frauds or misuse such as stealing money or private data. The most common
concept to protect people using ATM machines today is a secret 4-digit number called PIN (per-
sonal identification number) that has already been introduced together with the first ATM in 1967.
Today a large number of attacks exists to get hold of the card data and the according PIN number
[14].

Over the last years many different methods have been proposed to make the input at those
machines safer. This related work is covered in chapter 2.

Especially the variety of different modifications that can be made unnoticed at such a machine
is a problem. This is why SeCuUI tries to move user input closer to the user’s proximity by using a
mobile device most people carry with them today. These days nearly everyone possesses a mobile
device, like a mobile phone or anything similar that can be used for external data entry. The
number of mobile phones worldwide breached the 4 billion mark at the end of 2008 [13]. In 2008,
60.1 million mobile devices were in possession in Germany [36].

1.2 Goals

The main goal of this thesis was to find a method to increase input security at public terminals
by using a mobile device many people carry with them today. To fulfill that goal a client soft-
ware running on a customers mobile device and a framework helping software developers to build
applications for mobile terminals, was developed. A special focus of the thesis was placed on
optimizing non-functional requirements like speed, security and simplicity. To test the software a
user study was conducted to find out how people would react to such a system. When building the
applications, modularity was very important. Modularizing the system made it possible to enhance
it in the future. In general one can break down the goals of this work to a list of nine items:

1. Review other systems and research work that has been done so far and find out about benefits
and disadvantages of those.

2. Create a client application capable of running on most mobile devices and being able to
allow the user to connect to possibly any public terminal she wants to use.

3. Create a corresponding application framework for developers and enable them to develop
applications for this certain client application most easily.

4. To be able to maintain the biggest flexibility throughout the development process, important
parts of the program should be created in a modular way. Especially thinking of possible
hardware components involved. The possibility for connection modules and connection
types should be given.

5. When developing a server application using the framework users normally should not be
forced to use the mobile device. Anyone not having a mobile device or anyone who does
not want to use the system in a secure way should still be able to do so even if having less
security through this.

1



1.3 Structure of this Document 1 INTRODUCTION

6. Develop a test server that demonstrates how to use the framework and create an application
with it. This application should also be used to evaluate the whole concept.

7. Try to bring the idea of an auto-completion concept, used with most internet browsers today,
to the mobile device application, to make it a personal data safe. While this should increase
input speed a lot, it is important to not let the client application give out any security relevant
data to a server application without the user’s knowledge.

8. Conduct a user study evaluating different aspects of the test-server application and the mo-
bile client. Finally the study should try to prove the acceptance and relevance of such a
system.

9. Finally analyze the results of the study and insights gained during development of the ap-
plications and give a conclusion and a future outlook to this field of research.

1.3 Structure of this Document

In this chapter the introduction and motivation to the topic was explained. The rest of the docu-
ment is structured as follows: Chapter 2 gives an overview over different technologies that have
been proposed to make input on public terminals more secure. Chapter 4 gives an insight on the
different hardware and software components that have been used to create SeCuUI. The applica-
tion itself consists of two big parts: First a framework that can be used by programmers to build
their own server applications, which is explained in chapter 5. Second a client application featured
in chapter 6 that is used on the mobile device to connect to the different servers. The complete
system has been evaluated in a user study that is explained in chapter 7. Finally a conclusion can
be found in chapter 8.

2



2 RELATED WORK

2 Related Work

In this section the different related work is described that has been published in the field of data
submission on public terminals. One can distinguish three different groups of work. Much of
the work done in the field just focuses on the most important part of data entry, namely entering
passwords or PINs. Some of this work is described in section 2.1. Another group of work tries
to delegate some part of the user interface and input to a mobile device (see section 2.2). A third
group of related work tries not to rely on common input and output mechanism and uses other
means like biometrics for legitimation. This group is discussed in section 2.3. Since SeCuUI
needs to establish a connection between a mobile device and a public terminal some possible
connection methods are presented in 2.4. At the end of this chapter – in section 2.5 – it is stated in
how far SeCuUI differs from the work done so far.

2.1 Password Entry Methods

The most primitive attack on a password or PIN is the so called “shoulder surfing”. This means
that someone is just standing beside the person, who is entering her password and tries to spot the
different letters – or digits – she is entering.

Two of the following principles try to make the password entry process more complex by
using a cognitive trapdoor game. Although such a method makes entering a password a little bit
more complicated, it gets nearly impossible for someone watching the scene to guess the right
password. In fact someone who places a camera somewhere near the PIN-pad to record what was
entered, will still be able to reconstruct the password. Like this it would be possible to play back
every second of the entry process over and over again. As two examples the Black and White PIN
Pad (see section 2.1.1) and the Spy-Resistant Keyboard (see section 2.1.2) are presented below.

Another way of changing the password entry process is to use graphical passwords instead
of passwords consisting of letters and digits. One form of graphical password techniques present
the user with a set of images from which she has to pick the ones she previously selected. Other
approaches require the user to reproduce something that was specified earlier (e.g. a sketch). A
good example for the recognition approach is the Shoulder-Surfing Resistant Password Scheme
described in section 2.1.4. As an example for the recall-based approach the pressure-based graph-
ical password is explained in section 2.1.3. Suo et al. present a good survey on all the different
methods in their paper [40].

A last group of password entry methods uses the tactile channel to submit additional informa-
tion to the user without others getting to know it. VibraPass – described in section 2.1.5 – uses
mobile phone vibrations to signal the user she should tell a lie. The authentication via tactile PIN
entry uses pins raising out of a surface. This approach is described in section 2.1.6. A similar
approach uses a mixture of image recognition and a rotating trackball to permute the order of the
answers (see section 2.1.7).

2.1.1 Black and White PIN Pad

Volker Roth et al.[32] developed a virtual PIN pad on a touch screen that uses a kind of indirect
input for numbers. The displayed keys from 0 to 9 are randomly colored half of them black the
other half white. To enter a PIN the user just tells the machine whether the current digit is colored
black or white. After multiple inputs for the same number the ATM machine can determine the
right digit by intersecting the different colored sets. An example for one state of the PIN pad can
be found in figure 2.1.

To make it even harder for attackers, the system is able to display several rounds in a row
before giving the user the possibility to enter something. She then has to remember the sequence
of colors in the background of the digit.

3



2.1 Password Entry Methods 2 RELATED WORK

To create a certain resilience against recording with a camera, Roth et al. propose to play all
but one round of the trapdoor game. With this the ATM as well as a possible attacker are left with
two different possibilities per digit. Now someone recording the whole scene gets 16 possible
PINs in case of a 4-digit PIN for example. On one hand this makes it harder to enter the right
PIN out of the possible PINs on the other hand it gets easier to guess a PIN that will be accepted
though it is incorrect.

Figure 2.1: An example of the Black and White PIN Pad [32].

2.1.2 Spy-Resistant Keyboard

Another similar approach presented by Tan et. al. is the Spy-Resistant Keyboard [41]. They
present an on-screen method that is suitable for entering full passwords. The system works by
similar means than the black and white PIN pad (see section 2.1.1). On-screen the spy-resistant
keyboard is represented by multiple lines of buttons. Each button randomly has several characters
on it. One of them is highlighted by an underscore. This is called the “shift state”. To enter a
character the user first looks for the button the character has been randomly placed on. Then she
changes the shift state of all buttons until the respective character is underlined. Now the user
can pick and drag an “interactor” towards the correct character tile. When she starts dragging, all
characters are removed from the screen and nothing is shown on the tiles. Only the user now still
nows where to drop the interactor. For an example of the spy-resistant keyboard see figure 2.2.

2.1.3 Pressure-Based Graphical Password

Malek et al. [20] presented the Pressure-Based Graphical Password. Instead of entering informa-
tion via a keyboard the user’s password is a certain drawing on a grid with eight rows and eight
columns. On a touch screen the user connects some of the dots to lines and draws his password
shape to the screen. Additionally to shape the pressure that is used, while drawing the lines, is
measured. This information cannot be seen by someone watching the process. Figure 2.3 shows
an example of such a “passgraph”. When the drawing is displayed on the screen the different
pressure is not shown.

2.1.4 Shoulder-Surfing Resistant Password Scheme

Sobrado and Birget created a system based on recognition rather than on recall [44]. They call
it a “convex hull click scheme”. The system is safe against shoulder surfing or filming the input

4



2 RELATED WORK 2.1 Password Entry Methods

Figure 2.2: The Spy-Resistant Keyboard by Tan et. al. [41].

Figure 2.3: Example of a passgraph used by the Pressure-Based Graphical Password [20].

since users never point directly to the tokens that form their password. When entering a password
with their system it displays several image-icons. Some of those icons have a special meaning
to the user as they have been preselected by her. Those icons are called “pass-icons”. To enter
a password the computer randomly lays out a large number of image-icons. Between them three
or more pass-icons are hidden. The user now simply needs to click somewhere inside the area
defined by her pass-icons. An example for such a convex hull created by three pass-icons is shown
in figure 2.4.

2.1.5 VibraPass

In 2009 De Luca et al. presented a password input method that uses the user’s mobile phone to
provide her with secret hints using the phones vibration alert [8]. The user connects his mobile
phone to the terminal before entering the PIN. Before entering a digit the phone either vibrates or
not. On vibration of the phone the user is not meant to enter the current correct digit of his PIN.
Instead, she should enter a lie that is then discarded by the system. Someone filming the entry
process does not know which digit belongs to the real password and which one was a lie.

5



2.1 Password Entry Methods 2 RELATED WORK

Figure 2.4: A convex hull created by three pass-icons [44].

2.1.6 Tactile PIN Entry

The tactile PIN entry concept presented by Roth and Deyle [10] works with eight pins mounted
beneath a board. The pins can be raised by an electromagnet. They are arranged in a way that
it is possible to put a finger on each of the pins. The thumbs are used to trigger two different
buttons. A password now consists of a specific sequence of the fingers lying on the pins. To enter
this sequence the computer raises a set of pins and the user has to tell whether the pin below the
current “password finger” is raised. She does this by using one of the buttons she has beneath
her thumbs – one of them meaning “yes” the other “no” –. The computer can calculate which
PIN is meant by comparing the raised or lowered sets of pins. For an example of the system see
figure 2.5.

Figure 2.5: The tactile PIN entry system [10].

2.1.7 Undercover

The “Undercover” prototype by Sasamoto et al. [33] uses a combination of an image based recog-
nition approach and an additional trackball system installed in front of the system. On a computer
display a row of images is displayed and the user has to say which of those images belongs to an
image portfolio she has selected as her password. Entering this immediately on a keyboard would
show an attacker which of the images was selected and he could reproduce this in the future. To
make it safer to enter the choice Sasamoto et al. built a device that has a trackball that is able to
rotate in one of four directions. As a fifth state it can also vibrate. The user covers this trackball
with her hand – hence the name “Undercover” – and depending on the direction of rotation she
changes the input order when pressing one of five buttons to indicate which picture belongs to his
portfolio. A picture of the device is shown in figure 2.6.

6



2 RELATED WORK 2.2 Mobile User Interfaces

Figure 2.6: Undercover: Depending on the trackball, the user has to press different buttons [33].

2.2 Mobile User Interfaces

Ever since mobile devices were able to access networks, researchers tried to use them to interact
with bigger terminals. Such connections can also be used to enhance the security for people
using those terminals in public. One solution for this has been presented by Sharp et al. and is
described in section 2.2.1. Other researchers not always presented a specific software solution
with their work but thought about general problems. Hutchings and Pierce [18] conducted a study
on how to divide interfaces best onto several devices. Together with Mahaney, Pierce even created
another paper that shows several strategies in this field [30]. They describe possible methods to
annex devices, divide interfaces, grant access and finally present a possible software architecture.
Claycomb and Shin [4] focus on the security of such systems. For example, how to establish a
secure connection between a mobile device and a public terminal via a colored two-dimensional
barcode. Berger et al. [1] built a demonstration with a device called WatchPad that is more or less
a display worn on the user’s wrist. This display is used to display specific security related words or
names that have earlier been blurred on a bigger screen. Myers [25] uses a Palm handheld device
to extend the computers functionality to it. Like keyboard and mouse, the handheld is used as a
third device controlling application specific behavior. As applications he presents a “slideshow
commander”, an application displaying the screen contents, or an application called “shortcutter”
that displays different sets of buttons to control system applications.

2.2.1 Secure Mobile Computing

Sharp et al. [34] present a working system based on thin-client technology. First the mobile de-
vice is connected to the public terminal. After that several security related modifications can be
enabled. The screen contents on the terminal screen can be blurred or modified in a different way
using image processing filters. The part around the mouse cursor is then displayed unmodified on
the mobile device. The input controls can also be deactivated or restricted on the terminal. Like
this it is still possible to point using the mouse to reach a location on the screen but mouse clicks
can only be done with the mobile device. Figure 2.7 shows an example of a blurred screen content
being revealed on the mobile device.

2.3 Other Approaches

One can differ between three different kinds of authentication techniques [41].

1. Token-based authentication requires the user to own a special token. This could be a card
with a magnetic stripe, a key or something else.

7



2.3 Other Approaches 2 RELATED WORK

Figure 2.7: Secure Mobile Computing: Blurred screen contents only visible on the mobile de-
vice [34].

2. Knowledge-based approaches ask the user for a secret that only she knows. Normally this
is a password or PIN.

3. The last group of authentication techniques relies on the uniqueness of the human body.
With biometric authentication the user’s finger or retina is scanned to proof his eligibility.

This section contains three different biometric approaches: Coventry et al. focussed especially on
the biometric verification at ATM interfaces. Their work is summarized in section 2.3.1. Kumar
et al. tried to use eye-gaze to operate an on-screen keyboard (see section 2.3.2). Gazing was also
researched in several cases by Drewes et al. (see section 2.3.3).

2.3.1 Biometric Verification at ATM Interfaces

In 2003 Coventry et al. published the results of a big study they conducted to understand the
usability of biometric authentication systems [5]. They conducted focus groups and surveys and
found out that users perceive no need for biometrics at an ATM interface. They are even scared
about eventual health risks of such devices. Finally they did a 6-month field trial and established
an ATM with iris verification at a mayor bank in the UK. Over ninety percent of the participants
were satisfied with the system after they used it for some time.

2.3.2 Gaze-Based Password Entry

Kumar et al. tried to attend to the problem of shoulder surfing by creating an on-screen keyboard
that is controlled with the user’s eye-movement [19]. A screenshot of the system can be found
in figure 2.8. They calculated that the size of a target on a 1280x1024 pixels screen with 96 dpi
should be at least 66 pixels and chose buttons with 84 pixel size for their experiment. They also
tried different trigger methods. For a dwell-based method the user had to stare for some time on a
point until it was “clicked”. With a “point-and-shoot” method the user triggers the click manually
with a special key (e.g. the spacebar). They found out that a dwell-based approach produces
significantly less errors.

2.3.3 Eye-Gaze Interaction for PIN-Entry

A group of researches around Drewes did some research work on using eye-gaze for several things
including PIN-entry. Two studies dealt with using gaze-gestures to control terminals or mobile
phones [11] [12]. Another approach used gestures denoting digits to enter numeric PINs (see
figure 2.9). For gestures like this, a cheap eye tracker build out of a normal webcam and an
infrared LED was already enough [7].

8



2 RELATED WORK 2.4 Connection Methods

Figure 2.8: A gaze-pattern produced with the Gaze-Based Keyboard [34].

Figure 2.9: Entering a numeric PIN using gaze-gestures [7].

2.4 Connection Methods

When thinking about connecting a mobile device to a public terminal it is also important to think
about how to establish that connection. For SeCuUI five different possibilities have been consid-
ered:

• Usually when connecting bluetooth devices today the user performs a scan of the bluetooth
environment and is presented with a list of the available bluetooth devices in her neighbor-
hood. From this she has to select the desired device and perform a handshake procedure.
For SeCuUI such a procedure would have been to complicated and would have taken too
long.

• Another possible method would have been to replace the standard names or network entries
in such a discovery list by images representing the device. A terminal could constantly
acquire those ID-images automatically and then display them whenever a user wants to
connect.

• A third idea would be to read out the bluetooth address of an NFC-tag. Such a near field
communication tag can store small amounts of data. With this the user would touch the tag
with his mobile device and the connection procedure would start. A problem with this is,
that most mobile devices produced today are unable to read those NFC-tags. And a tag like
this would increase the possibility for fraud since it could be exchanged with another one
that would then redirect the connection to a malicious device.

• The idea of a button press connection called SyncTap is explained in section 2.4.1 below.

9



2.4 Connection Methods 2 RELATED WORK

• The last idea that was finally adopted for the prototype application, is the idea of using
two-dimensional barcodes. This is explained in more detail in section 2.4.2.

• A connection technique presented by Holmquist et al. [16] was quickly discarded because
it involved shaking the respective devices together.

2.4.1 SyncTap Connection

SyncTap is a connection method introduced by Rekimoto et al. [31]. Its basic idea is to quickly
create a network connection between two devices in physical proximity. To perform the connection
the users just needs to press a “SyncTap”-button simultaneously on both devices. The press-
release time is broadcasted to all devices in range and the two intended devices find themselves
automatically by comparing those values. Collisions of multiple devices with the same parameters
would need to be discarded. This method is very easy but for the use in SeCuUI it has two
disadvantages: None of the currently sold devices has a “SyncTap” button. So another button on
the devices would have to be used. Another problem with this connection method is, that a button
mounted to the public terminal could again be modified by an attacker to redirect the connection
process to a malicious device.

2.4.2 QR-Code Connection

The connection method chosen for the prototype of SeCuUI is a connection method based on
QR-Codes by DensoWave [9]. QR-Codes are two-dimensional codes that consist of a matrix of
black or white dots. “QR” stands for “quick response” because the codes have been designed to
be quickly decoded. Depending on how much information needs to be stored, QR-Codes can be
produced for nearly any data capacity. When creating a QR-Code different levels of error correc-
tion can be applied. Figure 2.10 shows a QR-Code with its different sections used to recognize the
code correctly [47].

When establishing a connection via a QR-Code the network address of the public terminal is
encoded in the barcode and then displayed on the public terminal. The user takes a picture of this
barcode which is decoded on her mobile device. After that the connection can be established.

Claycomb et al. used a colored two-dimensional tag called UbiColor to transfer connection
information [4]. A colored tag on the one hand can store more data on one single pixel but on the
other hand reading it out from different monitors with different types of cameras gets harder due
to the variety of different devices that exist.

Figure 2.10: Example of a QR-Code [47].

10



2 RELATED WORK 2.5 Separation of SeCuUI

2.5 Separation of SeCuUI

The research in the field of public terminals that has been done so far follows either a macroscopic
or microscopic approach. The different password entry methods described in section 2.1 try to
make the entry of a single password or PIN safer. In some cases it is possible to make the password
entry process complex enough that shoulder surfers are unable to recognize what was entered. In
other cases the password entry process can even be filmed without getting to know the password.
All those approaches raise the complexity of the input but can only serve one single purpose.
SeCuUI offers a more secure input alternative for every kind of input but serves also as an input
method for passwords and PINs while reducing the possibility for shoulder surfing or camera
recording of the password to a minimum.

A macroscopic approach like the secure mobile computing described in section 2.2.1 is able
to make controlling of complete terminals more securely. SeCuUI in contrast focusses just on the
possibility to fill out forms on public terminals and to control their behavior. Like this it is possible
to show all functional elements of the server while still rearranging them in a manner suited for
the mobile device.

Also research on biometrics tried to make entering password or controlling terminals more
securely. Though this is a promising field of research additional hardware is needed to use such
systems in public. SeCuUI just relies on hardware that most devices already have or that can be
easily and cheaply refitted.

What makes SeCuUI so promising is that it is a happy medium between the macroscopic and
the microscopic approaches. SeCuUI is based on an approach called PocketPIN that has been
researched at the department [6]. PocketPIN already followed the idea of entering passwords with
a mobile device. A small sample application had been built and a user study with this application
was conducted. A major difference of this prototype was that it was less modular and that partic-
ipants where offered the possibility to preselect the values they wanted to enter in a secure way.
The study showed that this preselection phase costs the user a lot of time.

11



2.5 Separation of SeCuUI 2 RELATED WORK

12



3 SECUUI

3 SeCuUI

This section gives a general overview about SeCuUI and what it is. Section 3.1 demonstrates how
easily a user can use the system to make her input on public terminals safer. SeCuUI is made out of
two big parts, a framework and a client application. Each system is explained in an extra chapter.
For details on the framework refer to chapter 5. The client application is covered in chapter 6.

This chapter itself covers a non-technical introduction to the overall concept of SeCuUI. Sec-
tion 3.1 is concerned with the question “What is SeCuUI?”. It provides an overview on the concept
of the application suite. Section 3.2 shows the three easy steps a user needs to perform when using
SeCuUI for terminal input. Section 3.3 introduces the XML user interface concept, which is essen-
tial using the SeCuUI framework and section 3.4 gives a first glance on the special auto-complete
feature used to speed up the user’s input actions.

3.1 What is SeCuUI?

SeCuUI stands for Secure Custom User Interface. The idea behind SeCuUI basically is to make
input at public terminals more secure using the user’s mobile device. A public terminal in this case
could be any type of vending machine, an ATM or another machine the user needs to input data
to. Normally at least some of this data is privacy related. This means the user either has to enter
a password, PIN or some credit card information that could be valuable to someone else. Using
a mobile device like the user’s phone to do this would reduce the possibility for fraud. Most of
the attacks on public terminals rely either on the idea to modify the terminal somehow to capture
what the user enters or simply on watching the user from nearby. Modifications to the terminal
can be done with additional key-pads that log what is entered or a miniature camera placed above
the keypad to record what is typed.

Using the mobile device of the user to enter data removes the necessity of using the integrated
input method of such a public terminal. Hence cameras or additionally mounted keyboards would
record nothing valuable. This kind of attacks also relies on the fact that the public terminal nor-
mally is unattended for some time, an attacker can use to install his equipment. The mobile device
of the user is carried always with him and therefore it is nearly impossible to modify this device.

Another important advantage of using a mobile device is that its properties make it ideal for
the input of secure data. Mobile devices are always hold in close proximity to the user with their
display and input facing to her. The usually small display size – compared to a public terminal’s
screen – even makes it harder to spot any information intended for the user.

Like this, one can see quickly that a mobile device offers many advantages when it comes
to entering secure data. Besides the possibility of input the phone also offers the possibility for
a more secure output of information. Most ATM machines for example offer the possibility to
display the user’s bank account balance. This data displayed on the public screen is clearly visible
for anyone standing beside the user. With SeCuUI this data can be hidden on the public terminal
and instead be displayed at the user’s device screen.

To achieve all those advantages this thesis presents the SeCuUI software suite consisting of two
parts. An application the user can install at his mobile device to input data (the client-application)
and a matching developer framework. This framework makes is possible to write applications for
public terminals that can handle the mobile phone’s input.

A possible refutation for this system could be the fact that there are still people using public
terminals that do not want to deal with a new kind of technology, do not own a mobile device
or even do not worry about their privacy at those systems. To avoid those problems building an
application with the SeCuUI framework normally results in an application that does not force the
user to use a mobile device. She can connect one every time she worries about her security, or use
the old-fashioned way when she does not want to. In certain cases the programmer is able to force
the usage of a mobile device when thinking this is absolutely necessary.

13



3.2 The three Steps 3 SECUUI

Figure 3.1: Schematic overview of SeCuUI

Looking at figure 3.1 the idea of SeCuUI is depicted. To connect a mobile device SeCuUI
offers a very modular way of different methods. Like this the connection procedure can adapt to
eventual hardware requirements of the mobile device or the public terminal. In addition to the type
of connection the way data is transferred – e.g. using bluetooth or a socket connection – and the
encryption can be chosen. For example an optional two way encryption can be used in case the
user’s device has the necessary computing power.

Two other things make SeCuUI special. User interfaces displayed on the public terminal are
not only sent to the mobile device in a way to better fit on the small screen, they are also dynami-
cally created out of XML files on the server. Like this, additional parameters, like where to show
which value, can be directly incorporated during the creation of the user interface. Section 3.3
gives a first introduction to this.

The second thing making SeCuUI not only more secure but also faster is the fact that SeCuUI
reuses previously entered data. This data is stored on the mobile device and accessed every time
the user connects to a public terminal. To reduce the number of displayed items for each user
interface component a data type is specified, which has to match one of the values stored on the
device. A first introduction to this is found in section 3.4.

How easily a server application for SeCuUI can be developed using the framework and how
the framework works on the whole is explained further down this document in chapter 5. For the
user of the client application – described in chapter 6 – it is even easier to use SeCuUI. She just
has to follow thre easy steps.

3.2 The three Steps

For a user the basic process on a SeCuUI capable public terminal consists of three steps:

1. The user launches a specific application on her mobile device she previously installed. This
application is a simple and small Java ME application an thus runs on nearly every of today’s
mobile devices. The user then selects an adequate connection method from a list. If his
mobile device is equipped with a camera she can for example use the QR-Code connection
(see section 6.2). Using that connection method the user simply takes a photo of a two-
dimensional barcode displayed on the public display. The mobile device analyzes the picture
and establishes a connection to the public terminal.

2. After the connection has been established successfully. The user interface elements of the

14



3 SECUUI 3.3 XML User Interfaces

public terminal are synchronized with the device. Doing this the client does not show visu-
ally the same as the public terminal by transferring image data. Instead it displays device
specific elements with the same functionality. Not necessarily all elements are synchro-
nized. After the connection was established the public terminal decides, which elements are
synchronized and how they should behave on the user’s client.

3. Once the first synchronization finishes the user may control the user interface with his mo-
bile device, changing values of the different fields or pressing one of the buttons on the
remote device. Furthermore the user is not forced to do everything using his mobile device
once connected. For some of the fields he can stick to the public terminal itself to enter
those values. Every change is immediately synchronized with the other device what makes
it possible to switch the input device at any time. Again the public terminal is in control
how much freedom the user has. It may block some of the fields on the public terminal after
a mobile device was connected or at least hide the contents of those fields by replacing them
with asterisks.

3.3 XML User Interfaces

Separating user interface and data functionality has always been a good principle when program-
ming applications. Not only the Model-View-Controller as an architectural pattern [46] proposes
the separation of application logic and user interface, also many development APIs do so today.
To perform this separation the SeCuUI framework relies on XUL. XUL is called the XML User
Interface Language and was developed by the Mozilla Foundation [23]. With XUL it is not only
possible to specify user intefaces using an XML language it is even possible to describe certain
functionality. Another point why XUL is that well suited for the use with SeCuUI is the fact
that as an XML language it is easily expandable. Like this it is possible to even control and not
only define the user interface components that will be used on the public terminal and that can be
possibly synchronized with the mobile device. It is also possible to define the behavior of those
components in the system together with the component description itself.

This is achieved by introducing three different XML attributes that extend the normal XUL
language. One to define where the content can be input called security. One defining where
the content is visible called asterisk and a last one defining the type of content used with the
auto-complete function. This attribute is called dataType. The technical side and further details
on XUL are described in section 5.2.

3.4 Auto-Complete Using the Mobile Device

Entering data with a mobile device makes input to public terminals safer. But using a small keypad
to enter text costs time. So does the connection process one has to go through before being able to
use it. To reduce this additionally needed time to a minimum SeCuUI makes use of another concept
called auto-complete. Today this is mostly used with internet browsers where people have to fill
in the same terms over and over again. Since the HTML-standard does not officially mention this
feature it is usually performed using the names that are assigned to input components in HTML.
Sometimes it is even possible to produce a website-spanning effect in case website-authors used
the same “name”-attributes for the same type of field.

To make this more effective SeCuUI uses a special dataType-attribute – just mentioned
above – that defines the type of data for a certain field independently of its name. A catalog
of predefined data types can be used by any programmer to conform to the standards. But as in
HTML the attribute basically can be assigned any value making it possible to create also company
specific behavior.

Another important thing is to keep the user’s secret data still as private as possible when it is
saved on the mobile device. One important thing is that the public terminal is never able to read

15



3.4 Auto-Complete Using the Mobile Device 3 SECUUI

the stored values by itself. Whenever the user has stored matching auto-complete entries on her
phone they are only displayed to her and she has to decide whether they are used as an input value
or not. To protect the saved values from theft it would be possible to save them encrypted by a
user password and only load them whenever the correct user password was entered. Like this the
mobile device of the user becomes her personal data safe.

Technically the auto-complete function of SeCuUI is partially implemented in the framework,
which is described in section 5.3. The bigger part of the implementation is done on the client side.
How this works is explained in section 6.1.

16



4 UTILIZED HARDWARE AND SOFTWARE

4 Utilized Hardware and Software

This chapter covers details on the different hardware and software technology used for the proto-
types of SeCuUI. SeCuUI consists of a framework which allows to build server applications (see
section 5) and a client application identical for all created server applications (see section 6). The
framework and the prototype server application have been programmed in Java SE. The client ap-
plication has been programmed in Java ME using the MIDP 2.0 profile. Some parts of the code use
third-party software. To communicate with the bluetooth stack of the server systems the BlueCove
2.1.0 library has been used (see section 4.1). The user interfaces used inside the framework are cre-
ated reading out XUL files. The XUL standard and the modifications made to it are described later
on in section 5.2. In this chaper the library SwiXml used to parse the XUL files is explained (see
section 4.2). Section 4.3 describes XParse-J an XML lightweight-library that was used to parse
the small XML files on the mobile device. For the framework the more sophisticated JDOM was
used (see section 4.4). When developing SeCuUI an encrypted connection method was created
too and can be optionally used. To encrypt and decrypt the network messages the BouncyCastle
API was used. See section 4.5 for an explanation on this. For the decoding of the pictures taken
of the two-dimensional barcodes the Google ZXing library was used (details in section 4.6).

All the tests of the mobile client were performed with a Nokia N80 device that is briefly
illustrated in section 4.7.

4.1 BlueCove

BlueCove is a Java library that helps to communicate with different bluetooth stacks. It sup-
ports the most important platforms as there are implementations for Mac OS X, WIDCOMM,
BlueSoleil, Microsoft Windows and Linux [2]. BlueCove is an implementation of the JSR 82
specification that has been developed under the Java community process [45]. With BlueCove it is
possible to get access to the operating systems bluetooth stack and perform several actions: After
acquiring the local device it is possible to start a remote device discovery, a services search or to
act as an OBEX Put Client/Server.

The most important Classes of BlueCove are:

• The LocalDevice-class allows to get an instance of the local bluetooth device with its static
method getLocalDevice.

• The Connector-class offers a static method to a StreamConnectionNotifier from which
it is possible to get the next incoming connection with the method acceptAndOpen.

• To create a client side connection on a mobile device – communicating with BlueCove on the
server side – with Java ME, the Connector-class in the javax.microedition.io-package
is used.

4.2 SwiXml

SwiXml is a GUI generator for Java applications. The GUI is created during runtime, generating
it out of XML code. XML documents can be created on runtime or previously created GUIs can
be loaded dynamically depending on which type of GUI is needed [28].

For SeCuUI SwiXML was used to parse the XUL-XML-GUI files in a first run to render the
server side GUI elements. To incorporate the additional SeCuUI specific XUL language parame-
ters a second run on the same XML file is needed. More about this is explained in section 5.2.

17



4.3 Xparse-J 4 UTILIZED HARDWARE AND SOFTWARE

4.3 Xparse-J

Xparse-J is a Java-port of Xparse itself. This is a very small JavaScript library to parse XML
documents. After parsing a document with Xparse-J there are only two important Classes that
are needed to explore the complete XML tree. The Node-class represents a node in the XML tree
storing the attributes in a Hashtable. A JSArray named contents holds the children of a node.
JSArray is a helper-class that behaves like the normal Array-class in JavaScript. Xparse-J is also
capable of interpreting XPath expressions [3].

For SeCuUI all messages exchanged between client and server are small XML documents.
Xparse-J is used to parse these on the mobile device to retain best performance while having only
little code.

4.4 JDOM

For parsing the XML documents on the server side the well-known JDOM-API has been used.
Due to Sun’s trademark policies JDOM is not an acronym, so one has to guess what was meant
with those four letters. To work with an XML document using JDOM the SAXBuilder-classes
build-method parses a complete file and returns an instance of a Document-class. The document
itself has a getRootElement-method that returns an instance of an Element-class. The elements
represent the nodes in the XML tree. Children of the elements are accessed using the List-
interface [17].

4.5 BouncyCastle

The BouncyCastle Crypto APIs offer cryptographic APIs for many different cases. Their
lightweight cryptography API for Java not only works with Java SE but also works with Java
ME, which had been important for this thesis. It is also available for C#. BouncyCastle is ca-
pable of many different and well-known cryptographic algorithms. Examples are the Advanced
Encryption Standard (AES), the Data Encryption Standard (DES) or the asymmetric crypto system
RSA [42].

SeCuUI offers the possibility to encrypt the complete data transferred between the mobile
device and the public terminal. Two RSAEngine-instances are used to get a complete two-way
asymmetric encryption.

4.6 Google ZXing

The ZXing or Zebra Crossing library is intended to process images showing different types of
barcodes. The library can be used for different Java versions as well as for Android or iPhone de-
velopment. The library is able to decode the following barcode systems: UPC-A, UPC-E, EAN-8,
EAN-13, Code 39, Code 128, QR-Code, Data Matrix and ITF. For each of those barcode systems
a decoding-class exists that implements the decode-function defined in the Reader-interface. The
decode function is passed a MonochromeBitmapSouce and the decode function returns an instance
of a Result-class [15].

Since SeCuUI uses QR-Codes (see section 2.4.2) the QRCodeReader-class coming with Zebra
Crossing has been used to decode the displayed information.

4.7 Nokia N80

For the development of SeCuUI the Nokia N80 phone was used. An image of the phone can be
seen in figure 4.1. Due to its technical specifications the phone was suitable for the tests with the
mobile device client software. The phone is capable of Java, which made it possible to run the Java
ME application on it. It has an integrated 3 megapixel camera with close-up mode. As operating

18



4 UTILIZED HARDWARE AND SOFTWARE 4.7 Nokia N80

Figure 4.1: Picture of the Nokia phone N80 [26].

system the phone uses Symbian OS. It comes with a 352x416 pixel color display. To control our
application the 4-way scroll key with center select, the two softkeys and the keypad that can be
slid open [27] were used.

19



4.7 Nokia N80 4 UTILIZED HARDWARE AND SOFTWARE

20



5 SECUUI FRAMEWORK

5 SeCuUI Framework

Applications running on public terminals always are very specific. But in most cases they need to
acquire some data of a customer. After processing this data the client receives something in return.
This can be money, a train ticket or some kind of information. To give programmers the largest
degree of freedom when developing such an application SeCuUI offers programmers a framework
they can use to develop own applications conforming to the SeCuUI standard. Applications created
with this framework are automatically able to be connected by mobile devices. This section shows
the structure of the framework and how to use it. First – in section 5.1 – it is explained how
a programmer would use the framework in general. The XML User Interface Language XUL
is important to the framework as well. All user interface elements of an application need to be
modeled in this language to work properly with SeCuUI. Details on XUL are given in section 5.2.
Section 5.3 explains the auto-complete function that is used with SeCuUI from the framework
perspective. Section 5.4 explains the different parts of the framework in detail. A simple server
application that is already able to communicate with the client would just take a few lines of code.
Such an example can be found in section 5.5.

5.1 Working with the Framework

When working with the framework developers build a normal Java application as they would do
without SeCuUI. When designing user interface elements of the application that shall be control-
lable with the help of a mobile device the programmers need to design them using XUL. The
SeCuUI framework is able to render those files and passes a rendered component back to the ap-
plication. The user interface can be placed anywhere the programmer wants. When rendering the
components the framework keeps track of the different items making it possible to sync them at
anytime to a mobile device.

To make it possible to block the user from filling in some fields at the public terminal additional
attributes have been added to the XUL tags. One to control on which device the user may fill in
text, another to control if the value of a label or textfield is visible and a third one controlling
the behaviour of the auto-complete feature. This feature is described in section 5.3. The three
attributes and their possible values are explained in section 5.2.1.

To instantiate a connection the programmer can either create an own interface element or
he just places a predefined connection button that comes with the framework somewhere in his
application. This button is offered by the framework, too. When clicking on the connection button
a separate window opens and shows different connection methods. The programmer can select
and configure all those connection methods but he does not need to take care of programming
those features by himself.

While being connected the framework takes care of all synchronization issues. With the use
of different listeners the programmer can keep track of what is happening inside the framework. If
he does not want to use those listeners he can still refer to the classic listeners of the user interface
components displayed on the public terminal.

5.2 XUL

Normally Java user interfaces are created by assembling instances of objects onto a form by code.
Doing this is not very flexible and the classes used to do this do not allow to specify additional
parameters needed for the SeCuUI behavior. The three special parameters used for the SeCuUI
functionality are explained in section 5.2.1. To make the user interface creation more flexible and
more expandable SeCuUI uses the XUL language to describe user interfaces.

XUL stands for XML User Interface Language and it was invented by the Mozilla Founda-
tion [23]. Mozilla uses this language for their own platform. With XUL it is possible to design

21



5.2 XUL 5 SECUUI FRAMEWORK

whole applications. XUL is based on XML and like most XML languages it is platform neutral
not specifying an operating system specific design. XUL separates the presentation from the ap-
plication layer (similar to the Model-View-Controller pattern). Also different text for different
languages is possible. Like this, one can easily localize applications??. A simple example for a
XUL file is shown in figure 5.1.

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 <?xml−s t y l e s h e e t h r e f =" chrome: / / g l o b a l / s k i n / " t y p e =" t e x t / c s s " ?>
3 <window i d =" f i n d f i l e −window "
4 t i t l e =" Find F i l e s "
5 o r i e n t =" h o r i z o n t a l "
6 xmlns=" h t t p : / /www. m o z i l l a . o rg / k e y m a s t e r / g a t e k e e p e r / t h e r e . i s . on ly . x u l ">
7

8 < b u t t o n i d =" f i n d−b u t t o n " l a b e l =" Find " / >
9 < b u t t o n i d =" c a n c e l−b u t t o n " l a b e l =" Cance l " / >

10

11 < / window>

Figure 5.1: A simple example for a XUL file [24].

The example creates a window with two buttons. Each XML tag represents a component.
The nesting of the tags shows, which component is placed inside which other container. The
window-tag in this example creates a window with the title “Find files”. Inside the windows two
buttons are placed. One button showing “Find” and another showing “Cancel” as its label. Using
the id-attribute each component is assigned a distinctive name that can be used later to access its
properties.

SeCuUI does not use XUL to build whole applications. But since XUL is able to model all
kinds of user interface components and their layout on the screen it is possible to specify Java
interfaces with it, too. SwiXml is a Java API that is able to read those XML files and create the
according Java user interface. SwiXml has already been introduced in section 4.2. Since XUL
is able to model a lot more things than needed for user interfaces in Java the SwiXml developers
maintain a list of the tags that can be processed [29].

5.2.1 Modifications Made to XUL

To control the security-specific behavior of the different input components SeCuUI extends the
XUL language with three new attributes.

1. The asterisk-attribute: This attribute can be added to labels, textfields or buttons and
controls in which case the text of those components is visible. A typical use case for this
attribute would be that someone checking his bank account balance does not want to see
this information showing up on the big screen of the public terminal. But certainly it should
show up if the user has not connected his mobile device to the terminal. This behavior can
not be created by using any standard Java component. Because of this wrapper components
have been created. They are part of the ui-package of the framework that is described in
section 5.4.2. The asterisk-attribute therefore can have four different values:

• ASTERISK_NEVER: Asterisks are never displayed. Neither on the public terminal nor
on the mobile device.

• ASTERISK_LOCAL: On the terminal side the fields content is never visible regardless
whether the mobile device is connected or not. When a device gets connected the
contents are shown on the display of the mobile device.

• ASTERISK_OPTIONAL: Using this option would result in the behavior spoken of in
the example above. The value of this component is displayed as long as there is no

22



5 SECUUI FRAMEWORK 5.2 XUL

mobile device connected. Connecting a mobile device hides this value. When a user
connected in an earlier stage of the application the contents are certainly hidden before
ever displaying anything personal.

• ASTERISK_BOTH: This option simply shows asterisks on both devices, such that the
value can not be read anywhere.

2. The security-attribute: When the user connects her mobile device to a public terminal
she can by default choose for herself where to fill out the different fields. Even the connec-
tion to the public terminal itself is not mandatory by default. But perhaps a programmer
wants to force someone, who has established a connection with the public terminal, to en-
ter his PIN with his mobile phone. This is what the security-attribute is used for. This
attribute works on any input components or any components that can be modified by the
user. Examples for such components are textfields, checkboxes and buttons. To use the
security-attribute on labels makes no sense. To hide the contents of a label the asterisk-
attribute is used. Just like the asterisk-attribute the security-attribute can also be set to
four possible values:

• SECURITY_INSECURE: Insecure components are shown only at the public terminal.
They are not sent to the mobile device and can not be filled in there because they do
not even appear.

• SECURITY_BOTH: Components with this security-attribute are displayed on both de-
vices. The user can selected where to fill in the text for this field or where to use the
button with this attribute value.

• SECURITY_SECURE_OPTIONAL: A secure-optional field behaves the same way the in-
secure or both field would do as long as no device is connected to the terminal. The
user can always modify the value of those components. As soon as the user connects
her mobile device to the terminal all SECURE_OPTIONAL fields are disabled at the ter-
minal. This makes it possible to enhance the security for users that have a mobile
device with them by forcing them to use it for the input while users carrying no device
with them still are able to use the more insecure solution.

• SECURITY_SECURE_FORCED: Whenever one field on a screen is assigned this value, it
will affect the whole application. This option forces the user to fill in this field with
his mobile phone. Without having one, the user will not be able to complete the form.
Because of this, as soon as one component has this security-attribute all fields are
blocked until a connection to a mobile device has been established. After the user
connects to the terminal this field will remain disabled on the terminal but he can fill
out the field using the connected mobile phone. All other fields are set to the state
according to their own security-attribute.

3. The dataType-attribute: SeCuUI remembers previously made entries of the user and of-
fers a list of those when connecting the same device somewhere else. Due to security-
reasons this auto-complete feature is implemented on the client side and is explained in
section 6.1. A short introduction to this feature from the programmers point of view is given
in section 5.3. Most important for this feature to function properly is that the client knows
which type of value the user is asked to enter in which field. This is what the dataType-
attribute is meant for. The dataType-attribute holds a value denoting which type of content
should be entered in the field. SeCuUI gives a standardized list of possible types that is in-
cluded in the appendix as figure A.3. Two examples of such values would be TYPE_ADDRESS
or TYPE_VISA_CARD_NUMBER. These values can be used by any programmer that develops
a SeCuUI-based application and they ensure that even applications of different companies
can bring up the same auto-complete values on the user’s device. In fact such a list can

23



5.3 Auto-Complete Feature 5 SECUUI FRAMEWORK

never be complete, this is why any value given to this attribute that is not part of the list
is also accepted and then denotes a company specific value. For future changes all values
beginning with “TYPE_” are reserved for future use.

5.3 Auto-Complete Feature

When working with the framework the programmers do not have to care much about the auto-
complete feature. When designing the front-end using XUL (see section 5.2.1) it is just necessary
to provide the correct dataType-attribute values in the XML file. This attribute is parsed and
transferred to the client application. To enhance privacy and security for the user, the framework
itself offers no possibility to get access to the saved values stored on the user’s phone. Only if
a user selects a specific value, she wants to enter into the form, it will be synchronized with the
server application. Programmers do have one possibility to modify the auto-complete behavior
of the client: When creating a new instance of the framework they can disable the auto-complete
function. When a connection to a mobile device is established with auto-complete disabled the
user will be forced to enter everything manually even when auto-complete values for the according
type of data are stored on her phone. A more detailed look on the auto-complete function and how
it works on the client side is given in section 6.1.

Figure 5.2: A UML package diagram showing the framework structure.

5.4 Framework Components

This section explains the different framework components the SeCuUI framework consists of.
Figure 5.2 shows the package diagram of the framework. For programmers working with it, only
the classes of the framework-package (the “main” package) itself matter. All other classes in sub-
packages are used by the framework-classes for different reasons. In the following, the different
packages and their classes are explained. A complete UML diagram containing all classes with
respective methods and variables is located at the end of this document (see figure A.1).

24



5 SECUUI FRAMEWORK 5.4 Framework Components

5.4.1 framework-package

The framework-package contains the classes programmers need to bring SeCuUI-functionality to
their software. To create a SeCuUI server-application using the framework is quite easy. Every-
thing starts with an instance of the SecureServer-class. A UML diagram of this class is shown
in figure 5.3.

Figure 5.3: The SecureServer-class.

The SecureServer-class (see figure 5.3) uses three different constructors. When creating a new
SecureServer instance the programmer can specify if this secure server uses the auto-complete
feature or not. With the second value he can define, which connection method the server uses
as the primary connection method. Available connection methods are denoted by public strings
contained in the SecureServer-class. The connection-method-system works with modules. So
far only one working module is included in the framework. The “QR-Code connection” denoted by
CONNECTION_QR_CODE. To test the module system another dummy connection is included named
CONNECTION_SYNC_TAP. When the user later initiates a connection a dialog-window appears. This
window can contain multiple connection methods at once. To add more than one connection-type
the method addConnectionMethod can be used.

The next step after creating the server is to parse a XUL file containing XML code of a user in-
terface. XUL has been explained in section 5.2. To do that different methods exist. The parseXul-
method accepts a simple String denoting a file name, a File-object referring to a specific file or
an XML document parsed into an org.jdom.Document-class. Passing one of those three pa-
rameters to the method makes SeCuUI parse this XML structure and create the corresponding
Swing-architecture. This architecture is then returned as one component. In case the XUL doc-
ument specifies a complete frame instead of a plain set of components, only the inner portion of
the frame is returned. The set of components that has been parsed last can be always accessed

25



5.4 Framework Components 5 SECUUI FRAMEWORK

by using the getCurrentComponent-method. This component can be placed anywhere inside an
existing window of the programmers application. New XUL files can be parsed at any time even
when the user is connected. The parsed contents will then be resynchronized with what the user
just entered.

To control the behavior of the different single components included in the XUL file they can
be referenced by their XML ID assigned to them. The method getIds returns a Vector con-
taining all IDs that have been successfully parsed. To get a container according to one of those
IDs the getContainerById method is used. Like this it is possible for the programmer to add
EventListeners to buttons or other components, they just added with XUL.

A more advanced method is to use the getSecureComponentById-method. All Containers
are enclosed in a SecureComponent-class that stores additional parameters like dataType and
security-attributes. More about this class is explained in section 5.4.5.

To initiate a connection with a mobile device the programmer has two possibilities. One of
them is to use a predefined connection button coming with the SeCuUI framework. Using the
getToggleButton-method the programmer can place a JButton-component anywhere in his
own user interface. This button already provides all functionality needed for SeCuUI. It changes
state text and icon, depending on the current connection state and displays a connection manager
whenever the button is pressed. When a connection is established the same button is used to termi-
nate that connection again. In case the programmer does not want to use the prefab-button he can
design the functionality using his own button. The method getConnectionEstablished can be
used to determine whether a connection is currently established. To establish a connection and dis-
play the connection manager the blocking method getConnection is used. This method returns
either true or false whether a connection has been established successfully or not. The methods
addConnectionStateListener and removeConnectionStateListener can be used to be in-
formed whenever the connection state changes. When acting as a ConnectionStateListener
the application is also informed whenever an update to a SecureComponent happens. There-
fore the componentUpdated-method is used. To disconnect an existing connection manually, the
programmer has to use the disconnect-method.

The ConnectionStateListener-interface defines three methods. A class implementing this
interface can be registered with a SecureServer using the addConnectionStateListener-
method. After the registration the class will be notified about state changes via
connectionLost or connectionEstablished and about changes to a SecureComponent via
the componentChanged-method.

Figure 5.4: The FieldTypes-class.

The FieldTypes-class (see figure 5.4) in the framework package represents the different pos-
sible types the dataType-attribute can have. This class is never instantiated.

The Helpers-class (see figure 5.5) contains different static methods that can be used by any of
the framework classes.

26



5 SECUUI FRAMEWORK 5.4 Framework Components

Figure 5.5: The Helpers-class.

Figure 5.6: The SecureCommand-class.

The SecureCommand-class (see figure 5.6) is so far not necessary for anyone programming
a SeCuUI server application using the framework. It is a representation of commands that can be
sent between the client and the server application. A command consists of a command name and
a list of parameters. The parameters always have a name and a value. When sending a command
it is converted to an XML structure, which is then transformed into a simple byte-array. The
methods getData returns the byte-array for a command. To decode an incoming byte-array back
into a valid SecureCommand a class-constructor is available. A second constructor takes a string as
parameter. This method creates a SecureCommand having the parameter value as command-name
and an empty list of parameters.

Figure 5.7: The ServerProtocol-class.

The ServerProtocol-class (see figure 5.7) handles the communication between the server and
the client. This process cannot be influenced from outside the framework and works automati-
cally. The ServerProtocol-class is not responsible for the handshake procedure between the
two devices. This handshake procedure is done by the connection method used. The server uses
a MessageTransmitter-class (see section 5.4.4) to send and receive messages. Messages are
not sent in a blocking synchronous way. They are appended to a message queue that is processed
by an extra thread. Like this, sending a message does not block the complete framework until it
has been delivered. When adding new messages to the queue this is done in an intelligent way.
For example: Whenever a new update message for a specific component arrives while another up-
date message for this component is still pending only the newer one will be delivered. This saves
bandwidth and ensures that always the newest status is shown on the mobile device. Every time a
new character is typed into a text field a new update message is generated. Sending each of those
changes to the mobile device would take much too long and block the rest of the application. This
is why the message queue needs to be managed in a more intelligent way. Whenever a command is

27



5.4 Framework Components 5 SECUUI FRAMEWORK

received by the protocol its contents are analyzed by the handleCommand method and depending
on the command and its contents the according action on the server side is performed.

Figure 5.8: The SwiXmlParser-class.

The last class inside the framework-package is the SwiXmlParser-class (see figure 5.8).
It is used by the SecureServer-class to parse XUL files and to manage the different
SecureComponents – explained in section 5.4.5 – resulting out of these files. The most im-
portant method of this class is the parseXul-method. It processes the XUL code in three steps.
In the first step the contents of the XUL file are rendered using the SwiXml-API (section 4.2),
hence the name SwiXmlParser. The second step parses the document again looking for the three
extended attributes dataType, security and asterisk. Together with the component belonging
to this tag everything is stored inside a SecureComponent-object. The third step is used to filter
the label-components that belong to a textfield-component. Those labels are not stored as a sepa-
rate SecureComponent, instead they are linked to their corresponding SecureComponent. This is
done to keep the textfield and its according label semantically together whenever the components
are synched.

The SwiXmlParser-class maintains the IDs of the different components parsed in a list ac-
cording to their appearance in the XML file. For each key an entry in a hash-map points to
the according SecureComponent. A small boolean value named securityForced informs the
framework whether there is at least one component in this set of components that forces the use of
a mobile device.

5.4.2 ui-package

The ui-package (user interface-package) contains only two classes. These classes are additional
user interface elements that are not part of the standard Java SE distribution.

Figure 5.9: The JQRCode-class.

The first of those two classes is the JQRcode-class (see figure 5.9). This class is used to display
a message-string as a 2D-barcode or QR-Code. When an instance of the class is created it shows

28



5 SECUUI FRAMEWORK 5.4 Framework Components

a barcode displaying the message “dummy message”. The complete barcode is marked by a red
cross to indicate that this is not a correct barcode. Whenever the setMessage-method is called
the component is updated with the new message and the red cross is disabled.

Figure 5.10: The JSecretLabel-class.

The other user interface class needed for SeCuUI is the JSecretLabel-class (see figure 5.10).
SeCuUI offers the possibility to hide text on the public terminal and to replace it with a certain
echo-character. For text-fields this behavior can be achieved by using a JPasswordField in-
stead of a normal JTextField. The JPasswordField does not necessarily show what contents
the field has. So basically it handles two strings of data. One containing the correct word and
another displaying a certain password character for each char contained in the text string. The
JSecretLabel-class models the same behavior for a JLabel. It also stores a different text value
than the one that is displayed. By setting an echo-char the text is made invisible and replaced with
a number of echo-chars according to the content’s length. Setting the echo-char to null causes
the text to get visible again.

5.4.3 qrCode-package

The qrCode-package contains classes that are related to the QR-Code connection or the drawing
of QR-Codes. Those classes are based on the .NET QR-Code library found at [43] and have been
ported to Java from Bernhard Frauendienst for the use in [6]. Since those classes are used more or
less like a library they are not explained in detail. The package itself consists of three classes:

• The QRCodeException is a special exception that can be thrown by the classes of this
package.

• QR-Codes have different error correction values or modes. An alpha-numeric QR-Code
reduces the bits used to store one character. The QRCodeEncoder-class basically is used to
convert data to a byte-array that is afterwards converted to a two-dimensional boolean-Array
representing the image. The most important method to do this is the calQrcode-method.

• A boolean-array with two dimensions, as it is produced by the QRCodeEncoder-class, is
passed to the QRCodeImage-class. This class has static methods to draw a black-and-white
pattern in a specific size on a given JComponent.

5.4.4 connection-package

The SeCuUI framework does not only allow one specific connection possibility. The whole con-
nection process is modular. This means that the method how the two devices perform their hand-
shake and transfer data may be chosen (e.g. connection by using a QR-Code). Additionally the
type of connection can be chosen (e.g. bluetooth connection) and the way data is transferred on
this connection may be chosen, too (encrypted or plain). To realize all this, a bunch of classes and
interfaces is needed. The connection methods contained in the package connection.methods
are explained at the end of this section. The rest of this package contains classes to make the
connection process a modular as possible.

29



5.4 Framework Components 5 SECUUI FRAMEWORK

To get a better understanding of how connections in SeCuUI work, one can have a look of two
connection stacks. The connection stack shown in figure 5.11 shows a hirachy of classes that are
used to initiate a connection. After a successful initiation this stack is completely discarded and a
MesssageTransmitter-object is used no matter in which way the device connection was chosen.
This stack is called the communication stack and can be found in figure 5.12.

Figure 5.11: The SeCuUI connection-stack.

During a connection process the connection stack starts at the main class the SecureServer-
class. This class initiates a modal dialog called the ConnectionManager. The connection man-
ager creates a visual instance of an arbitrary number of ConnectionMethods. Currently SeCuUI
supports a working QrCodeConnection and a dummy SyncTapConnection. The connection
method can either use an unencrypted NormalConnection or an encrypted SecureConnection.
Those classes handle the handshake process independently from the way data takes. To reg-
ister a port at the local terminal first a ServerConnection is initialized. This can be ei-
ther a BluetoothServerConnection using bluetooth or a normal socket connection called
SocketServer-connection. They finally wait for an incoming connection and if a user connects a
ClientConnection-object, according to the type of server connection, is created and passed back
up to the connection-class. After a successful handshake the connection manager is closed and all
that lasts is a MessageTransmitter-object encapsulated in a ConnectionInformation-object.

Figure 5.12: The SeCuUI communication-stack.

For the normal communication process (see the communication stack in figure 5.12) the secure
server manages an extra ServerProtocol. This protocol takes a MessageTransmitter and uses
it to communicate with the client. The message transmitter contains methods to send and receive

30



5 SECUUI FRAMEWORK 5.4 Framework Components

messages to the client that has been selected using the connection stack. For secure connections a
SecureMessageTransmitter exists that is additionally able to encrypt and decrypt the messages
using the public keys shared during handshake. As a basis the MessageTransmitter uses a
LineDataInputStream and LineDataOutputStream-class, that is able to send packages or lines
instead of single bytes over the network. All of the classes used for both stacks are explained in
the following:

Figure 5.13: The ConnectionInformation-class.

The first important class here is the ConnectionInformation-class (see figure 5.13). What-
ever connection method or type is chosen for a connection at the end of the handshake phase a
ConnectionInformation-instance is passed to the framework. The class basically serves as a
container for two elements. A MessageTransmitter and a NormalConnection. Both classes
and their functions are described later in this section.

Figure 5.14: The ConnectionManager-class.

The ConnectionManager (see figure 5.14) is the visual interface that is used to establish any
connection. The class is a subclass of JDialog and therefore blocks the program-execution while
it is visible. Like this a ConnectionManager-instance is shown and when the window disap-
pears a connection has been either established or not. The constructor-method of the connection
manager accepts a JFrame, which will be the dialogs owner, and a list of so called “connection op-
tions”. When the dialog window shows up it can contain multiple different connection methods for
the user. Each of those connection options is a subclass of the abstract class ConnectionMethod
explained below. Each of those connection options offers the connection manager, a visual compo-
nent it can place inside its dialog window. A third boolean parameter to the constructor indicates
whether the connection should be encrypted or not. When the dialog is dismissed it returns its
status similar as Java’s JFileDialog via the getResult-method. The dialog result can either
be OK, OPEN or CANCELLED. When the dialog returned an OK-result the connection information
for the established connection can be retrieved as a ConnectionInformation-object using the
getConnectionInformation-miethod.

Figure 5.15: The ConnectionMethod-class.

31



5.4 Framework Components 5 SECUUI FRAMEWORK

Each different connection method is based on the abstract class ConnectionMethod (see fig-
ure 5.15), which already contains methods to manage a list of ConnectionListeners and is able
to notify those as soon as a connection has been established. So far the ConnectionManager is
the only class that is registered as a listener to those methods. It also defines four abstract methods
that need to be implemented by subclasses. getConnectionContainer returns a visual instance
of the connection method that can be placed inside the connection manager window. close is
used to free up connections and memory that has been used before when dismissing the dialog.
getSecureConnection returns the connection instance after the listeners have been notified that
the connection has just been established. Optionally it is possible to set the encryption of the
connection by calling the setEncryption-method. For this work, two different subclasses of this
interface have been created. The QrCodeConnection displays a two-dimensional barcode based
on the bluetooth address of a socket that is created on the server side. The SyncTapConnection
is a dummy connection. It just gives and idea of how a second connection could look but it does
not implement any functionality.

Figure 5.16: The QrCodeConnection-class.

The QrCodeConnection (see figure 5.16) implements the four abstract functions defined
by the ConnectionMethod-class. Depending on the encryption-state set when creating the dis-
play component with the getConnectionContainer-method either a NormalConnection or a
SecureConnection is instantiated and the corresponding URL to the server is displayed as a
barcode. The process now waits for an incoming connection and then notifies the connection
manager.

Figure 5.17: The SyncTapConnection-class.

The SyncTypConnection (see figure 5.17) is a dummy-class representing another connection
method. Its getConnectionContainer method returns a simple button showing the text “Sync-
Tap!” but the button has no effect.

The NormalConnection (see figure 5.18) is used to create a server socket and to wait for an
incoming connection on that socket. In contrast to the SecureConnection the normal connection
uses no handshake procedure except the normal handshaking done by the socket itself. As a socket
this connection uses the BluetoothServerConnection but it would be also possible to use the
SocketServerConnection, which uses a normal TCP socket, instead of a bluetooth device. Both
connections are based on the interface ServerConnection so one could imagine other types of
server connections. The interface declares a method named getNextConnection, which returns
an incoming connection based on the ClientConnection interface. According to the server
connections, there is also a BluetoothClientConnection and a SocketClientConnection.
When the server connection returns the client connection, an input- and an output-stream for this
connection is created. Those streams are then put together in a MessageTransmitter-object.

32



5 SECUUI FRAMEWORK 5.4 Framework Components

Figure 5.18: The NormalConnection-class.

Having those two streams, normally the handshake procedure would begin. As mentioned above
the NormalConnection does not perform an additional handshake so all listeners of this connec-
tion are notified immediately.

Figure 5.19: The SecureConnection-class.

The SecureConnection (see figure 5.19) works similar to the NormalConnection.
Instead of the MessageTransmitter used with the NormalConnection a special
SecureMessageTransmitter encrypts and decrypts the incoming and outgoing messages.
To be able to encrypt data the class is provided with an asymmetric encryption engine based
on RSA. The SecureConnection uses the same BluetoothServerConnection and the same
input- and output-streams are passed to the message transmitter. This type of connection does
perform a handshake which is done as follows: The client receives the public key of the server
unencrypted. Together with the connection method – could be the 2D barcode – the client
application is provided with a challenge and a hash value of the public key. With this hash value
the client is now able to check if the public key sent is correct by calculating the same hash
value out of the sent key again. The challenge is now encoded by the client with the public key
he just checked. At the server the encrypted challenge is decrypted and compared with the real
challenge that was displayed. If it does not match a SecureConnectionException is thrown.
In case it matches the public key of the client is received – again encrypted. Now the server
creates an encrypter for this public key and hands it over to the message transmitter, which is now
able to encrypt and decrypt in both directions. After that procedure the handshake has finished
and the message transmitter class can be used exactly the same way it would be used without an
encryption.

The MessageTransmitter-class (see figure 5.20) is used together with the
NormalConnection. It stores two streams, one to read incoming data and one to write

33



5.4 Framework Components 5 SECUUI FRAMEWORK

Figure 5.20: The MessageTransmitter-class.

outgoing data to. Additionally the two methods sendCommand and receiveCommand allow to
send and receive SecureCommand-instances out of the streams. A close-method is used to
dismiss the two streams.

Figure 5.21: The SecureMessageTransmitter-class.

The SecureMessageTransmitter-class (see figure 5.21) is a subclass of
MessageTransmitter in addition to the two streams, it can carry two
AsymmetricBlockCiphers, which are part of the BouncyCastle Crypto-API explained in
section 4.5. One of them is used to encrypt outgoing messages, one is used to decrypt incoming
messages. Due to the type of encryption used – RSA in this case – the byte-stream is divided into
packages before encryption and reassembled afterwards. For a class using one of both transmitters
it makes no difference which one it is using.

Figure 5.22: The LineDataInputStream-class.

The LineDataInputStream (see figure 5.22) and LineDataOutputStream (see figure 5.23)
both extend the DataInput- respectively the DataOutputStream-class. Like this, the message
length or the length of a “line” is sent to or received from the stream before the rest of the bytes.
The LineData-classes make sure the right portion of data is received. This makes it possible to
send messages with different lengths.

The SecureConnectionException (see figure 5.24) is part of the SecureConnection and is
thrown when an error during the handshake-phase occurs.

On the lowest layer of this connection stack the actual connection-classes, contained in the
connection.types-package, are situated. First a ServerConnection-class is needed. Each one
of the connections is based on the ServerConnection-interfaces that specifies three methods:

• The getExternalUrl-method returns an URL on which the server-connection is waiting
for an incoming connection. Usually this URL consists of protocol, adress and port.

34



5 SECUUI FRAMEWORK 5.4 Framework Components

Figure 5.23: The LineDataOutputStream-class.

Figure 5.24: The SecureConnectionException-class.

• The close-method is used to free up sockets and objects that have been created before
unlinking the object.

• To acquire a new client-connection the blocking method getNextConnection is used. This
method returns a ClientConnection-object after a connection has been established.

Figure 5.25: The BluetoothServerConnection-class.

Momentarily the BluetoothServerConnection-class (see figure 5.25) is used all over the
framework. The SocketServerConnection – explained in the next section – was used dur-
ing the testing phase. The framework itself so far offers no method to configure which type
of connection shall be used. One possibility would be to pass the connection-type with the
constructor of the SecureServer-class (see section 5.4.1). Another possibility would be to
just create different connection methods and indicate the connection use inside their name.
Instead of QR_CODE_CONNECTION there could be a QR_CODE_BLUETOOTH_CONNECTION and a
QR_CODE_SOCKET_CONNECTION. The implementation of the BluetoothServerConnection is
as follows: The constructor opens the local bluetooth device and determines its local address. It
also creates a listener object for incoming connections. An example for such a bluetooth-address
is: btspp://00236CA0E9E9:1. This address is now available by calling the getExternalUrl-
method. Calling the getNextConnection-method tells the listener to return the next incoming
connection. After this happened the input- and output-stream of the connection are passed to a new
BluetoothClientConnection-object that is returned. Whenever the close-method is called the
listener for incoming connection is terminated and the resources are freed up.

The SocketServerConnection (see figure 5.26) works similar to the
BluetoothServerConnection but it just uses the normal ServerSocket-class of the java.net-
package. This is why a connection URL is something like socket://192.168.0.5:1024. The
close-method closes the socket and the getNextConnection-method accepts a new connection
from the socket and returns a SocketClientConnection with the two streams of this connection.

Both client connections returned by each of the server connections are based on the Client-
Connection interface. It defines that a ClientConnection needs to return an input stream and
an output-stream to communicate with the client. A close-method is called before releasing the
client connection.

For the client connection there is no difference between the BluetoothClientConnection
(see figure 5.27) and the SocketClientConnection (see figure 5.28). Both take the nor-
mal input- and output-streams and use them to instantiate a LineDataInputStream or a
LineDataOutputStream. Calling the close-method, both streams are closed.

35



5.4 Framework Components 5 SECUUI FRAMEWORK

Figure 5.26: The SocketServerConnection-class.

Figure 5.27: The BluetoothClientConnection-class.

5.4.5 components-package

The components-package contains different classes that each represent one component that can
be synchronized with a connected mobile device. All those components are based on the abstract
SecureComponent-class. A SecureComponentListener-interface exists for changes that hap-
pen to these components. In addition, for the component types button, label, text-field and radio
button an extra SecureComponent-subclass exists.

The abstract class SecureComponent (see figure 5.29) serves as a draft for all the different
secure components. A SecureComponent is the representation of an interface element having
additional SeCuUI specific parameters. Basically this class already offers a big number of func-
tions. The most important method in this class is the static method createSecureComponent.
It returns, depending on a given component, a correct instance of one of the subclasses of
SecureComponent. Other methods are setters and getters to the following security related val-
ues used by SeCuUI. The asterisk-value states where the text of this element will be visible,
the dataType-value says which type of value is contained in this secure component and finally
the security-value defines where the element can be used. More about these three properties is
explained in section 5.2.1. To get notified whenever a SecureComponent changes the class main-
tains a list of listeners. A pointer to the server-side graphical representation of this component is
stored and can be retrieved using the getContainer-method. Three methods have to be specified
according to which component-type the class represents. Those three abstract methods are:

• getCommandAdd returns a SecureCommand that is used to add this component to the remote
interfaces on the mobile device.

• getCommandUpdate returns the SecureCommand needed in case of an update of the com-
ponent to re-sync the two components on either side.

• getValue forces the component to return a string representation of this component that can
be used for different things but mainly for debugging.

In the following each of the subclasses of SecureComponent is described.
The SecureButton (see figure 5.30) represent a button component on the user interface usually

represented as a JButton swing-component. The class defines the three abstract methods needed,
to add and update the remote component, as well as it returns the button’s caption as a string for
the getValue-method. When this class is instantiated, it is registered as a listener for this button
to receive changes of the button’s properties. Clicking this button is not transferred to the client
because all computational logic of a framework-application is done on the server side.

The SecureLabel-class (see figure 5.31) replaces an incoming label component on initializa-
tion of the class. This is needed to be able to apply the different asterisk-options. The new label

36



5 SECUUI FRAMEWORK 5.4 Framework Components

Figure 5.28: The SocketClientConnection-class.

Figure 5.29: The SecureComponent-class.

class JSecretLabel is explained in section 5.4.2. Whenever the contents of the label change, all
component listeners are notified. The getValue-function of this component always returns the
plain text of the label even if the text is currently invisible due to the asterisk-setting.

Figure 5.32: The SecureRadioButton-class.

The SecureRadioButton (see figure 5.32) represents one radio button as a member of a group.
In Java SE radio buttons are managed putting them into an extra ButtonGroup-instance. For
SeCuUI grouping is done as in HTML by assigning a group name to each button. Buttons having
the same group name belong together. This group name is sent together with the add command.
Updates contain not only the caption of the radio button, but also its state.

Figure 5.33: The SecureTextField-class.

Whenever a SecureTextField (see figure 5.33) is created, the according TextField-component
is replaced by a JPassword component. This component allows it to set an echo-char that hides
the text on the screen. Having all TextFields replaced with JPassword-fields makes it possible
to apply the asterisk-value. Changes to the text are synchronized using an update command. A

37



5.5 Building an application with the SeCuUI framework 5 SECUUI FRAMEWORK

Figure 5.30: The SecureButton-class.

Figure 5.31: The SecureLabel-class.

SecureTextField can optionally carry a pointer to another JLabel-component. The text of such
a label would then be shown together with the text field on the mobile device.

5.5 Building an application with the SeCuUI framework

This section shows a basic example of a minimum Java application that uses the SeCuUI frame-
work. The whole complexity of the framework is more or less transparent to any programmer
working with it. Basically the SecureServer-class is all the programmer needs.

1 JFrame frame = new JFrame ( " SeCuUI Example " ) ;
2 J P a n e l a p p P a n e l = new J P a n e l ( ) ;
3 a p p P a n e l . s e t L a y o u t ( new Borde rLayou t ( ) ) ;
4 S e c u r e S e r v e r s e r v e r = new S e c u r e S e r v e r ( t r u e , S e c u r e S e r v e r .

CONNECTION_QR_CODE) ;
5 s e r v e r . p a r s e X u l ( " x u l F i l e . xml " ) ;
6 a p p P a n e l . add ( s e r v e r . ge tCur r en tComponen t ( ) , Borde rLayou t . CENTER) ;
7 a p p P a n e l . add ( s e r v e r . g e t T o g g l e B u t t o n ( ) , Borde rLayou t .SOUTH) ;
8 f rame . s e t C o n t e n t P a n e ( a p p P a n e l ) ;
9 f rame . pack ( ) ;

10 f rame . s e t V i s i b l e ( t r u e ) ;

Figure 5.34: Simple example code for a working SeCuUI server.

Figure 5.34 shows a simple example. This code placed inside a main method of a Java ap-
plication would already create a working server application. The code creates a JFrame window
and a JPanel to put the components in. After that a SecureServer-instance is created. The first
parameter activates autoComplete for this server, the second parameter defines the QR-Code
connection as a standard connection. After the object has been created a XUL-XML-file is parsed
that contains a simple set of components. The contents of the XUL file are shown in figure 5.35.
After the code has been parsed, the parsed component is placed inside the panels center region. To
toggle the connection the button provided by the framework is used and added to the lower region
of the panel. After that, the panel is added to the frame and the frame is displayed. The running
server would look something like the image shown in figure 5.36.

38



5 SECUUI FRAMEWORK 5.5 Building an application with the SeCuUI framework

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
2 < p a n e l >
3 <vbox>
4 <hbox Border =" EmptyBorder ( 5 , 0 , 5 , 0 ) ">
5 < l a b e l i d =" l b l _ t e s t " L a b e l F o r =" t f _ t e s t " t e x t =" T e s t e i n g a b e : "

H o r i z o n t a l A l i g n m e n t ="RIGHT" P r e f e r r e d S i z e =" 150 ,30 " Border ="
EmptyBorder ( 5 , 5 , 5 , 5 ) " Font =" A r i a l−BOLD−16" / >

6 < t e x t f i e l d i d =" t f _ t e s t " columns=" 20 " t e x t =" " s e c u r i t y ="
SECURITY_BOTH" da taType ="TYPE_TEST" a s t e r i s k ="
ASTERISK_NEVER" Font =" A r i a l−BOLD−16" / >

7 < / hbox>
8 <hbox Border =" EmptyBorder ( 1 0 , 0 , 1 0 , 0 ) ">
9 < b u t t o n t e x t =" We i t e r " a c t i o n =" s ubm i t " i d =" b t n _ n e x t _ 2 " / >

10 < / hbox>
11 < / vbox>
12 < / p a n e l >

Figure 5.35: Example XUL file that can be used inside the server Example.

Figure 5.36: A picture of a simple SeCuUI server running.

39



5.5 Building an application with the SeCuUI framework 5 SECUUI FRAMEWORK

40



6 CLIENT APPLICATION

6 Client Application

This section describes the client application of SeCuUI. In contrast to the different server appli-
cations that are built using the framework described in section 5, there is only one single client
application for SeCuUI. This client application is able to communicate with all different server
applications that can be possibly created. Like this a user needs to install just one client applica-
tion and after that she is able to communicate with all different kinds of servers based on SeCuUI.
Another advantage of this method is that the application has a single data storage for the auto-
complete feature for all of the servers. More details on the auto-complete feature are explained in
section 6.1. The client itself thus has to be able to connect using all different connection methods.
For this work the QR-Code connection is the only connection fully implemented. A client-side
look on this connection method is explained in section 6.2. The different classes and their packages
are explained in section 6.4. The client application is coded using Java ME. To better understand
the explanation of the code, section 6.3 features a short introduction to Java ME and explains how
the storage of data used for the auto-completion works. Afterwards a typical usage scenario of the
client application is shown in section 6.5.

The SeCuUI client application is a little less modular than the framework. It must be able to
communicate with all different servers that can be created using the framework. For this reason
all possible connection methods and types must be supported by this application even if they are
not needed for one specific server. Looking on one special case this means that someone installing
the SeCuUI client on his mobile phone produces some overhead first, but as soon as the user uses
more than one SeCuUI-based system the advantages of this architecture become visible. For all
different kinds of public terminals it now suffices to start one single application and because all the
public terminals share a common code-base even the stored auto-complete data is shared among
different terminals and companies. A big advantage for the user.

6.1 Auto-Complete Feature

As mentioned in section 5.3, the auto-complete feature is nearly completely part of the client
application. This is done to ensure security of the saved data on the mobile device. All the auto-
complete values are stored in the mobile device’s memory. Any server application is not able to
access this memory or the entries stored in there. When the client application starts, the memory
is parsed and the different auto-complete values are loaded. Whenever a form is transferred to the
mobile device, the server sends the type of data required in the different fields. This is done by a
parameter denoting the semantic type of the content. Whilst certain types of standard parameters
exist (see figure A.3) the servers can extend this list by using not documented types.

Receiving the type of data, the client looks for data entries of this type of data that have
been entered anytime before. A list with the matching entries is automatically displayed below
the standard entry field. The server application is not informed of the existence of any matching
entries. Only when the user selects a value out of this list of values it is entered in the form field
and synchronized with the server application. Every time the connection is closed or a new form
is sent to the device, the current list of auto-complete values is saved.

In case the programmer of a server application does not want that the user is able to use the
values stored on his phone or if he does not want the entered values to saved permanently he can
disable the auto-complete feature on the server side. This decision is broadcasted with each form
to the mobile device and any eventually matching auto-complete values are hidden. The actual
implementation of the auto-complete feature is explained in detail in section 6.4.

The user of the client application has the possibility to manage the elements stored on his
device. This is necessary in case he entered a wrong value or a stored value is not needed anymore
(e.g. an old address). In the main menu of the client application the user can choose between
the options “Show record store” or “Delete record store”. With the second option all entries are

41



6.2 QR-Code Connection 6 CLIENT APPLICATION

deleted at once. The first option first displays a list of groups. Each group contains the auto-
complete values for one specific data type. Selecting a group shows the different entries saved for
this group. The user is then able to delete a certain entry from the mobile device’s memory.

6.2 QR-Code Connection

The QR-Code connection is used to easily connect the public terminal and the mobile device in a
secure way. Therefore a server application displays a two-dimensional barcode. How this barcode
is created has already been explained in the framework section. On the client side the process
is a little bit more complex. The first thing is, each device that should be able to use the QR-
Code connection needs an integrated camera to take a photo of the barcode. During the user study
conducted with this work it turned out that 71 percent of the participants already have a camera
integrated in their mobile devices (see section 7.7.3). When using the QR-Code connection the
camera is used inside the SeCuUI client application to take a photo of a potential barcode. This
picture is then processed and in case a barcode is found the contents are checked. To process the
image and find any containing barcodes the Google “Zebra Crossing” library for Java ME is used
(see section 4.6).

The barcode displayed contains the network address of the server together with a port number
at which the client may connect to the server. In case of a secure connection additionally a hash-
value of the server’s public key and a challenge are included in the barcode. The hash-value is used
to check the incoming public key of the server during the handshake-phase and the server expects
the client to send the challenge-value back encrypted. After the according handshake-procedure a
normal network connection is established and is used for data transfer.

6.3 Java ME

The SeCuUI client application has been developed completely using Java ME. Java ME stands for
“Java Micro Edition” and offers a reduced set of classes for the development on mobile devices.
Applications developed with Java ME run on most of today’s mobile devices though they all have
different operating systems. The Java Virtual Machine exists for nearly any platform. This is the
main reason why the SeCuUI client was made using this programming language. Another point is
that Java ME offers easy and reliable network access, which is crucial for an application like this.

For Java ME different configurations and profiles are defined. A configuration defines a set
of requirements devices have to fulfill to run an application according to this configuration. For
SeCuUI the “Connected Limited Device Configuration” (CLDC) was used. Together with this
configuration a profile defines the API or the set of classes the programmer can use to build his
application. The SeCuUI client is a MIDlet and hence uses the most common “Mobile Information
Device Profile” (MIDP) [37].

Looking at the MIDP-API [38] one can see that every MIDP-application extends the MIDlet-
class. Since this class is abstract the programmer is forced to write some methods to get the
application running. The most important one here is: startApp. This method is the equivalent to
the main-method in a basic Java Standard Edition-application. To produce visible output a MIDlet
has to acquire a Display-object. This can be retrieved using the static-method getDisplay-
contained in the Display-class. This method takes the MIDlet instance as a parameter. All objects
that can be displayed on a display are based on the Displayable-class. They can be made visible
using the setCurrent-method of the Display-class. In most cases the element that is attached to
the display is a Form- or an Alert-element. Forms can then have different elements inside their
form body. To load and save data the MIDP-API does not allow a direct access to the device’s
storage memory, instead RecordStore-objects can be used. They are managed by the Java Virtual
Machine running on the device. A direct memory access is impossible. More about the record
stores is explained in section 6.3.1.

42



6 CLIENT APPLICATION 6.4 Client Components

6.3.1 Java ME Record Store

In Java ME file access is done using a record store. The RecordStore-class is part of the MIDP-
Profile-API [39]. A record store is used to save data permanently between different sessions of
a MIDlet and as its name says it is able to store multiple records. RecordStores can be shared
among different MIDlets. A static method openRecordStore inside the RecordStore-class is
able to open a record store with a given name. The different records are all stored with an ID
determined by the operating system and contain a byte-array each. Changes to a record store entry
are immediately persistent throughout the mobile device.

Figure 6.1: The package structure of the SeCuUI client.

6.4 Client Components

In this section the different classes the client application consists of are described. For most of
the classes explained in the framework chapter of this document (see chapter 5) the client offers a
matching counterpart. The client is divided into different packages, too. The client-package (see
section 6.4.1) itself contains the main classes such as SecureClient-class that is launched when
the client starts. It also contains the globally used Helpers-class. The following packages are
sub-packages of the client-package. The connection-package contains classes handling incoming
connections and messages. These classes are described in section 6.4.2. The methods-package,
explained in section 6.4.3, contains classes handling the different connection methods. As in the
framework, this package contains an abstract class all connection methods are based on. So far,
this is a working QR-Code class as well as a dummy implementation of a SyncTap connection.
Finally, in section 6.4.4, the different classes of the qrCode-package that are used together with
the QR-Code connection are explained. Figure 6.1 shows how the different classes of the client
application are arranged in their packages. A fully expanded UML diagram can be found in the
appendix (see figure A.2).

43



6.4 Client Components 6 CLIENT APPLICATION

6.4.1 client-package

The client-package is the main package of the SeCuUI client. It contains the most important
classes used during execution. Especially the main MIDlet-class SecureClient is included in
this package. This and the other classes contained in this package are described here.

Figure 6.2: The SecureClient-class.

The most important class of the whole client application is the main class SecureClient
(see figure 6.2). Since this class is executed on the mobile device it extends the MIDlet-class
coming with Java ME. The class also implements the Showable-interface. How this interface
works and why it was introduced is explained further down this section. When the applica-
tion is initialized the startApp-method is called. This method initializes a vector to store the
incoming secure components. The auto-completion feature is handled by another class called
SecureSwingCompletion. This class is also initialized at start. As a last step the display is
allocated and a new ConnectionManager-instance is displayed on the screen.

The SecureClient-class is then notified when a connection is established and creates a new
ClientProtocol-instance. The protocol then waits for incoming events. The class also has
several methods to access the secure items that are stored using this class. addSecureItem,
removeAllSecureItems, getSecureItemWithId are only some of the methods this class of-
fers to affect those items. Another task of this class is to access the phone’s memory. With Java
ME access to the phone’s memory is done via so called RecordStores. More about this was
explained in section 6.3.1.

Figure 6.3: The ConnectionManager-class.

The ConnectionManager-class (see figure 6.3) of the SeCuUI client does not only handle the
different connections. It also is sort of the main menu to the application. The connection manager

44



6 CLIENT APPLICATION 6.4 Client Components

is the first thing that is displayed after the start of the application and it also contains the option
to access the management of the auto-complete entries. The ConnectionManager extends the
Form class of Java ME. Its constructor is called with a list of different connection methods that
shall be displayed. For the tests of the prototype, this list consisted just of a link to the QR-Code
connection. The second parameter passed to the ConnectionManager-class on instantiation is a
pointer to the SecureClient application. Similar to framework the connection manager creates
an instance of each connection method and adds their names to a list. The last two entries of this
list are always fixed denoting: “Show record store” and “Delete record store”. Choosing one of
those entries calls the appropriate method of the client-class. Any other choice results in showing
a displayable object of the selected connection-method. With each instantiated connection method
the connection manager is registered as a listener. After the class is notified that a connection has
been established, the event is passed to the client application.

Figure 6.4: The ClientProtocol-class.

The complete communication between a server and the client – besides the handshake pro-
cedure of the connection method – is handled in the ClientProtocol-class (see figure 6.4). The
ClientProtocol again is the counter instance to the ServerProtocol-class in the framework.
To simplify things a little bit on the client side, there is no ConnectionInformation-class here.
Instead a MessageTransmitter is passed to the ClientProtocol on instantiation. The pub-
lic method startListening creates a thread that waits for incoming commands of the message
transmitter. Those commands are then handled by the handleCommand-method. Depending on
the current protocol state, different commands are accepted. Those commands are:

• CLEAR_FORM: This command resets the complete form that is currently shown. De-
pending on the setting of the auto-complete value the current values of the fields are stored
to the phones memory or discarded. All secure items that have been transferred to the client
are also removed from memory.

• ADD_-commands: Depending on the type of component different add-commands can be
transferred. Most important is that each of the add commands sends an ID as a parameter.
This ID is used to determine the right component whenever future commands like update
commands arrive. ADD_LABEL adds a simple text string to the form showing a text that
comes with this add command. The ADD_RADIO_BUTTON command adds a radio button
with text to the form. Each radio button is interconnected with other radio buttons of the
same group using a groupName-parameter. The ADD_TEXTFIELD-command adds an input
text field to the form. Optionally this text field can have a label in front of it hinting on what
has to be entered in this field. In case the auto-complete feature is turned on, the application
now searches for any previously stored values for the type of data submitted with this add-
command. If there are any, an additional drop-down-component is just placed below this
text-field and the different possibilities are added to this list. In case an entry of the list is
selected the text-field is updated with that value. The ADD_BUTTON command creates a new
entry in the list of different menu-options that can usually be accessed by a soft-key near

45



6.4 Client Components 6 CLIENT APPLICATION

the display. Pressing this menu-option results in programmatically pressing the according
button on the server side.

• UPDATE: The update-command is identical for all components on the client side. It carries
the ID of the component that should be updated and the new value for this component. De-
pending on the type the component according to the ID, either the label-text, the text-fields
value, the caption of the entry in the hot-key-area or the selected radio button is changed.

• SAVE_VALUES: This command may be issued by the framework to make the client write
the currently entered values to the mobile device’s memory.

Another important method of the ClientProtocol-class is the itemStateChanged-method. It
is called whenever the forms contents change together with the item that just changed. After that
an update command for this item is created and sent to the server using the message transmitter.

Figure 6.5: The Helpers-class.

The Helpers-class (see figure 6.5) contains some static functions that are used throughout the
client application. For example a function comparing two byte-arrays or a function to clone a
vector.

Figure 6.6: The SecureItem-class.

The SecureItem-class (see figure 6.6) represents one form component that has been trans-
ferred from the server to the client. On the server side this class is called SecureComponent. The
clients class name to this functionality differs because the client has only this one class for all the
different types of components. The server framework uses different classes for each display com-
ponent. To distinguish the different component types anyway, the class contains different static
integer values, one for each component type. This value is passed to the constructor together with
an ID for this component, a data-type and the object that has been added to the form and that be-
longs to this item. The getUpdateCommand-method returns a different SecureCommand instance
depending on which type this item currently represents.

The complete management of the auto-complete values is done by the SecureCompletion-
class (see figure 6.7). This class is a subclass of Form because it does not only load and save the
auto-complete values but it serves also as an interface to modify the values. The auto-complete
values are stored in the system memory of the device in an XML structure. When the class is
instantiated the RecordStore containing this XML document is opened. More information about

46



6 CLIENT APPLICATION 6.4 Client Components

Figure 6.7: The SecureCompletion-class.

the record store principle is given in section 6.3.1. The XML is then parsed and each key-value
pair is changed into a java object structure based on vector objects. The saveRecordStore reverts
this process and saves the currently stored values to the memory. The record store may also be
deleted from the phone’s memory by using the deleteRecordStore-method. When the form
is shown on the phone’s display it first displays a list of all keys that are currently stored on the
phone. The user can select one of those keys and a list of entries for this key is displayed. Selecting
one of those keywords, she may delete it. When the last value of a certain key is deleted the key
disappears from the list, too.

Java ME attaches everything that should be currently visible to the the display. But in contrast
to the normal window environment one is accustomed with, only one element can be displayed at
a time. Since the display object is given to the main class of the MIDlet it is hard to show forms
coming from other classes. To make this easier the Showable interface was introduced for this
client application. Any class implementing the Showable-interface can be made visible by call-
ing a showOnDisplay-method. This is a far more convenient way of displaying different compo-
nents. This interface is implemented by the classes: ConnectionManager, SecureSwingClient,
ConnectionMethod, QrConnectionMethod, SyncTapConnection and CameraForm.

6.4.2 connection-package

The connection-package contains the different classes that handle the data during the connec-
tion process. Due to the fact that the client software is able to use different connection meth-
ods different types of classes exist in this package doing more or less the same work. The
NormalConnection and the NormalMessageTransmitter are used for an unencrypted connec-
tion. The SecureConnection and SecureMessageTransmitter-classes instead encrypt and
decrypt the data passed between the client and the server.

Figure 6.8: The NormalConnection-class.

47



6.4 Client Components 6 CLIENT APPLICATION

The NormalConnection (see figure 6.8) extends the Java ME-class Alert. Like this, progress
during the handshake process can be shown to the user. The NormalConnection is instantiated
passing a connection method, a URL, a public key hash and an auth-token to the constructor. The
public key hash and the auth-token are only used with encrypted connections and are therefore
just discarded by this class. The URL contains the URL where the server application should be
reached. During the instantiation the connect-method is called. It starts a thread that tries to open
the specified URL and creates a MessageTransmitter-object out of the input- and output-stream
of the opened connection. After this was completed successfully the handshake is performed. The
NormalConnection does no separate handshake and hence the connection process ends and the
objects waiting for this connection are notified.

Figure 6.9: The SecureConnection-class.

The SecureConnection (see figure 6.9) works similar to the normal-connection. Except that it
uses the public-key-hash and the authorization token. After the connection is open the handshake
procedure starts. The server firsts sends its public key to the client and it is checked whether it
conforms with the hash of the public key. After that the authorization token is encrypted using
this public key and sent back to the server. It can now check that the encrypted token was the
same it issued previously. The next step is that the client sends its own public key encrypted to the
server, which can decrypt the key after validating that the token was correct. Now that both sides
know the public key of the respective other side they are able to communicate in a secure way.
This means the handshake process was successful and the objects waiting for this connection are
notified.

Figure 6.10: The ConnectionInformation-class.

Whenever a connection was established the listening classes are informed with a Con-
nectionInformation-object (see figure 6.10). This object contains a message transmitter that
can be used to send or receive messages without having to worry about connection types
or encryption. Depending on the type of connection, either a NormalMessageTransmitter
or a SecureMessageTransmitter is contained in the ConnectionInformation. The
SecureMessageTransmitter-class is a subclass of the normal transmitter and so it can handle
the exact same method calls as the parent class.

48



6 CLIENT APPLICATION 6.4 Client Components

Figure 6.11: The NormalMessageTransmitter-class.

The NormalMessageTransmitter (see figure 6.11) uses a LineDataInputStream and a
LineDataOutputStream to receive or send data. The message transmitter is able to send a pure
byte message using the sendMessage-method or it can receive one using the receiveMessage-
method. It can also handle SecureComammands and either send them or receive them from the
input stream.

Figure 6.12: The SecureMessageTransmitter-class.

The SecureMessageTransmitter (see figure 6.12) however additionally uses two asymmetric
block ciphers for encryption of data that is going to be sent and for the decryption of incoming data.
For the used encryption the encrypted blocks may have only a certain byte-size. Because of this a
message is split into several byte-blocks of the maximum block size and the first message encoded
contains the number of those blocks that form one unique message. This process is done using the
sendMessage-method just as with the NormalMessageTransmitter. The receiveMessage-
method works the same first reading and decrypting the number of blocks belonging to the en-
crypted message and then receiving all those split-blocks and putting them back together. Cer-
tainly the SecureMessageTransmitter is also able to send and receive SecureCommands using
the sendCommand and receiveCommand-methods.

Figure 6.13: The SecureCommand-class.

A SecureCommand (see figure 6.13) is a representation of message that is passed between
client and server. The command contains a command name and a indefinite list of key-value pairs
representing parameters to this command. The parameters are stored using a hashtable. Before

49



6.4 Client Components 6 CLIENT APPLICATION

the command is sent it is transformed into an XML structure. The getData-method does this and
returns then a byte-array containing the XML tree of this command. A SecureCommand can be
either created with just the commands name as a string or by using a byte-array that has recently
been received that is then parsed to a new SecureCommand-instance.

Figure 6.14: The LineDataInputStream-class.

Figure 6.15: The LineDataOutputStream-class.

To make all this work, two more classes are needed. The normal input and output-streams used
when networking with Java or Java ME are unable to sent or receive a complete message (a certain
amount of bytes forming one group). Therefore the LineDataInputStream (see figure 6.14)
and LineDataOutputStream-classes (see figure 6.15) are used. They prepend an integer with
the number of bytes the message has before sending it. The other side may now read out one
integer from the stream and immediately knows how many more bytes following this integer will
form the next message. The LineDataInputStream-class therefore has a readBytes method, the
LineDataOutputStream uses a writeBytes-method.

6.4.3 methods-package

The methods-package contains the different connection methods. For each connection method that
is defined by the SeCuUI framework and could therefore be used by a server application the client
needs to have a respective connection method, too. Connection methods for the client application
are based on the abstract class ConnectionMethod. There exist two subclasses to this class that
implement its abstract methods. The QrConnectionMethod is a fully working counterpart to
the QR-Code connection used with the framework. The SyncTapConnection-subclass is only a
prototype showing how additional connection methods could eventually work.

Figure 6.16: The ConnectionMethod-class.

The ConnectionMethod-class (see figure 6.16) is an abstract class serving as basis for the dif-
ferent connection methods that can be used with SeCuUI. The class already contains the function-
ality to manage a list of connection listeners and to notify those listeners in case of a successfully
established connection using the notifyConnectionListeners-method. The class defines three
abstract methods: The getName-method simply returns a string denoting the name of this connec-
tion method. This is used because in contrast to the server applications the connection methods of
the client do not have an immediate graphical representation. Instead, when running the client ap-
plication, a text-based list of possible connection methods is displayed. These texts are generated
calling the getName-method on the different connection-method classes. A setDisplay-method

50



6 CLIENT APPLICATION 6.4 Client Components

is called every time before the getDisplayable-method is called. Like this the connection
method can grab hold of the display during the connection phase. The getDisplayable-method
itself should return a displayable component that is used to execute the designated connection
method.

Figure 6.17: The QrConnectionMethod-class.

The QrCodeConnection-class (see figure 6.17) implements the three abstract methods to cre-
ate two-dimensional barcode connections. Hence the string returned by the getName-method
denotes “2D-Barcode”. Calling the getDisplayable-method instantiates a new instance of the
CameraForm-class. This class is described later in this document. In general it starts the phone’s
camera, takes a picture, decodes it and starts a connection with the information received from the
barcode information.

Figure 6.18: The SyncTapConnection-class.

The SyncTapConnection-class (see figure 6.18) serves only as a dummy class for a second
connection method. The getName-method returns the name “SyncTap-Verbindung” for this con-
nection method, but calling the getDisplayable-method has no effect at all and simply returns
null.

6.4.4 qrCode-package

The classes inside this package are used to establish connections using a 2D-barcode. The
CameraForm-class is created in the QrConnectionMethod-class and for the decoding of the pic-
tures taken by the user the LCDUIImageMonochromeBitmapSource-class is needed.

Figure 6.19: The CameraForm-class.

Whenever the user selects to establish a connection using a 2D-barcode, the CameraForm
(see figure 6.19) is instantiated and an instance of it is displayed. The CameraForm extends the
Java ME Form-class and adds an exit- and a capture-command to the soft-key-area of the display.

51



6.5 Using the Client-Application 6 CLIENT APPLICATION

Inside the form the camera of the device is realized and the user is now able to point to a 2D-
barcode and take a picture of it. Pressing the capture-button the makeSnapshot-method is called
which stops the process of capturing an image and starts a thread to decode the image taken. Out
of the snapshot an LCDUIImageMonochromeBitmapSource is created that serves as an input to
the Google ZXing-API described in section 4.6. This API-tries to find and decode a QR-barcode
in that image. If the decoding fails, the camera is put back on and the user has the possibility
to take another picture. Otherwise the decoded byte-array is passed to the handleData-method.
This method resolves the servers network address and optionally a public key hash as well as a
authentication token from the byte-array. With this information a new connection method-instance
is created that takes now control over the display and shows the status of the handshake process.
After everything is completed successfully the connection-method-listeners are notified that the
connection has been established.

Figure 6.20: The LCDUIImageMonochromeBitmapSource-class.

Although the LCDUIImageMonochromBitmapsSource-class (see figure 6.20) is part of the
qrCode-package the code of this class is not part of this thesis but has been created by the Google
ZXing-Team. This class has been written as an extension for the BaseMonochromeBitmapSource
that is the correct class for decoding an image with ZXing. Since this class is abstract it does
not work together with images captured with Java ME. The class used here is not part of the
original ZXing-distrbution but is used with an example client running with Java ME. For better
understanding it has been placed in this package but the whole code including Googles copyright
notice is untouched. The class offers certain methods to get information about the image such as
width and height but also lunimance information at a certain point of the image (getLuminance).

6.5 Using the Client-Application

To get a more practical view on how the client application works this chapter shows two use-
cases of the client application. The first use case “connection and entering data” in section 6.5.1
shows a basic example of a complete execution sequence using the mobile device to enter data.
Establishing a connection with the public terminal and entering data using the auto-complete fea-
ture. Section 6.5.2 shows how the client application is used to manage the values stored for auto-
completion.

Figure 6.21: An image series showing how to use the SeCuUI client.

52



6 CLIENT APPLICATION 6.5 Using the Client-Application

6.5.1 Connection and Entering Data

After the client application has been started, the different connection-methods and the possibilities
to modify the values stored on the mobile device are displayed. Selecting a connection-method
– in this case the QR-Code connection – displays a dialog to establish such a connection. The
user takes a picture of the two-dimensional barcode displayed on the screen of the public terminal
and waits for the device to analyze this picture. In case the picture was not successfully analyzed
he can take another one. After that a connection with the public terminal is established and all
the form elements are synchronized to the mobile device. In this example the first form consists
of a choice of radio buttons for choosing one of three different movies. The user selects one of
them and then uses the display command “Weiter”. This command is represented as button on the
public terminal. The button causes a new form to be loaded that displays the amount the user has
to pay. The next page contains input elements for the user’s name and address. In case there are
some auto-completion values stored on the device and they match the current data-type a drop-
down-field with auto-complete items is automatically added behind corresponding form entries.
The user can now fill in the field or select an entry out of the list of auto-complete-values, which
is then entered into the field on both sides. In this example he uses the last name “Maier” out of
this list. Since both devices are always synced the connection can be closed at any time.

Figure 6.22: An image series showing how to manage the auto-complete values.

6.5.2 Removing an Auto-Complete Entry

Another use case is to modify the different data entries that are stored on the phone and that
are used for the auto-completion process. Besides the different connection methods the user can
select to show the record store in the main menu. After selecting this, a list of the different field
categories is displayed. She selects one of those categories and presses “Open” using the left soft
key. After that a list of the different values stored for this category is displayed. She can select one
entry and delete it using the “remove”-button. The “back”-button always takes the user back one
step. Changes to the items are immediately saved to the phone’s memory.

53



6.5 Using the Client-Application 6 CLIENT APPLICATION

54



7 EVALUATION

7 Evaluation

The SeCuUI framework and especially the client application were evaluated in a user study. The
study was conducted with a server application that was created using the SeCuUI framework.
This application prototype is elucidated in section 7.1. To give the user study a more realistic look
two different fake-companies were created that have been used throughout the study. Their logos
are shown in section 7.2. During the study the users had to complete five different tasks while
the time it took them to complete those tasks was measured. Those tasks are closer described in
section 7.3. The test setup and procedure for each participant is explained in section 7.4. For the
study three different hypotheses were formulated. Those hypotheses can be found in section 7.5.
After completing the five tasks the participants had to fill out an additional questionnaire. Its
structure is shortly explained in section 7.6. Section 7.7 finally looks at the different results of the
user study.

Figure 7.1: The ServerExample-class.

7.1 The Application Prototype

For the user study a prototype server application built upon the SeCuUI framework was created.
The application was used to run all five different tasks with it. Mainly it served to measure the time
it took each user to complete the different tasks. Besides this, the time of the connection process
was measured, too. Each change to any of the components was also logged together with the time
it occurred. An example of such a log-file has been attached to this document (see figure A.4).

The application itself is contained in a class named ServerExample (see figure 7.1). The
main-method contained in this class first shows a dialog and prompts for a user number and a task.
Besides the five tasks of the user study a test-task was created. This task was started first to show
participants what the application looks like and to let them get a feeling how to use the application.
Each participant was allowed to practice as long as he or she wanted to.

Depending on the user number and the task type an instance of the ServerExample-class was
created. Showing either the “Pahn” or the “Kinomaxx”-logo (see section 7.2). The class created
a logger-object first and logged which task type and user number was contained in this log-file.
Also the status of the auto-complete feature and the project-type was logged. During the test itself,
users had to fill in data into forms on multiple screens. These screens were handled as different
“slides”. Each slide was represented by a XUL file and the different XUL files for each task have
been numbered from zero upwards. Except for the “test”-task all “slideshows” started with a slide
just displaying a button labeled “start”. With this button the participants started the measurement
of time by themselves. Like this each participants measurements should be as identical as possible.
More about the different task steps is explained in section 7.3.

After the program started, each time the users pressed the “next”-button at the end of the
slides the nextSlide-method was called. This method increases a slide-counter and loads the

55



7.2 Deutsche Bahn and Kinomaxx 7 EVALUATION

next slideshow into the main window using the disaplyXul-method. On the last slide the next-
button was simply missing and the text “Vielen Dank” was displayed to fulfill the “closure”-
principle [35]. One of the eight golden rules formulated by Ben Shneiderman.

Images of the different screens displayed during one task can be found at the end of the docu-
ment (figures A.5 to A.12).

Figure 7.2: The company emblem of “Kinoxmaxx”.

Figure 7.3: The company emblem of “Deutsche Pahn”.

7.2 Deutsche Bahn and Kinomaxx

During the user study the users were asked to perform different task at a “public terminal”. Since
the study was conducted at the premises of the department in a special room it was not so public
at all. To give the participants a better reference to a real public situation two company logos
were created. During the study tasks the users needed to buy something at the machine. The
“Kinomaxx”-company – the fake logo is shown in figure 7.2 – should remind the user of a big
German cinema chain originally called “Cinemaxx”. Some of the tasks referenced that company
and the participants had to buy a cinema ticket out of three non-existing movie titles. In the
other tasks the user needed to buy a card for special train ticket savings that is originally called
“Bahncard” and is sold by the German railway company. For the study this company was called
“Deutsche Pahn” and the product hence “Pahncard”. The alternative company logo is shown in
figure 7.3.

7.3 The Different Tasks

During the study the users had to complete five different tasks. All of them required the user to buy
something from a public vending machine. The machine was represented by an Apple Macbook
on which a server application created for the study was running. For all of tasks the task procedure
was nearly identical. Participants had to select the second out of three different products, notice
the price for this product, enter their personal data – like first name, last name and address – and
finally enter some credit card information. To distract people from the fact that they needed to do
the same things over and over again the two fake companies explained in section 7.2 have been
invented. This also should visualize that the SeCuUI client could potentially be used on any public
terminal even among different companies.

The study was conducted having two independent variables with two values for each of them.
The first variable was to activate or deactivate the auto-complete feature on the mobile phone. The
second independent variable was the amount of data that was input using the mobile device. In one
case all data was entered using the mobile device in the other case only the credit card number and

56



7 EVALUATION 7.4 Test Setup and Procedure

On

Task 1

Task 2

Task 4

Task 3

Task 5

Number of Values

All 3

A
u

to-com
p

le
te

fu
n

ction

Of f

With mobile  de viceWithout mobile  de vice

Figure 7.4: The five different tasks of the user study.

its expiry date was entered using the mobile device. An additional task used no phone connection
at all. This task was called the reference task. This resulted in a total of five different tasks:

1. No phone connection: To measure the time how long it would take someone to enter all
data without having any mobile device at all. The first task was performed by using only the
keyboard and mouse of the test system.

2. All values / no auto-completion: After connecting the mobile device, the user had to enter
every value using the mobile device. To do this she was not aided by the auto-complete
values stored in the phone’s database.

3. Secure values only / no auto-completion: In this task the participants were told to enter
everything that is possible on the public terminal. Three of the fields the users had to fill
out were blocked on the public terminal. The credit-card-number-field, and the expiry-date-
fields (month and year). To fill in these three fields the users had to switch to their mobile
device. Task description also instructed the participants to connect their mobile devices
immediately when starting with the task even though they did not need to enter anything
with the phone at first.

4. All values / auto-completion: The fourth task used the auto-completion function and so
after connecting the mobile device users should enter all the data using this function. For
each of the required fields the correct values were already present as an auto-complete value.

5. Secure values only / auto-completion: Task 5 again reduced the number of fields that had
to be filled out to the same three ones as in task 3. This time the three fields should be filled
in using the auto-complete-values. All other fields had to be filled out on the public terminal
without having no auto-complete function there.

Figure 7.4 shows the five different tasks again in a diagram. One may notice that the reference
task does not really fit into the task structure and so had no connection to the two independent
variables. This made it hard to statistically evaluate this task against the other ones.

7.4 Test Setup and Procedure

As already mentioned the test was done at the “Lehr- und Forschungseinheit Medieninformatik”.
On two days 21 participants took part in the test. After their participation they were presented
with a bar of chocolate. Each of them was separately tested under exact the same conditions. Fig-
ure 7.5 shows the test setup schematically. During the test only the participant and the conductor
were present. The participants were first told, that they are going to participate in a user study con-
cerning privacy and security on public terminals and that the current test setup should represent a
public terminal. They should use it together with the mobile device as they would do in public.
After that a document explaining the whole test was given to them. The document is attached

57



7.5 Hypotheses 7 EVALUATION

Figure 7.5: The test setup for this user study.

to this thesis (see figure A.13). After they had finished reading, they were shown how the system
works and how to establish a connection between the two devices. After that the participants could
practice entering data with the mobile device as long as they wanted to. When the participants fin-
ished this trial-phase they had to complete all five different task. None of them performed the tasks
in the same order to avoid learning effects. The time the participants needed to connect the two
devices and the overall-time it took them to complete the tasks was measured (see figure A.16).
A document explaining what participants were to do in each task was handed to them just before
each task in the order chosen for this participant. These task-descriptions are also attached to this
thesis (see figures A.14 and A.15). After completing all tasks, the participants were asked to fill in
a questionnaire providing information about themselves and how they felt using the system. See
section 7.6 for more information. Figure 7.6 shows a student completing the questionnaire after
the five tasks.

Figure 7.6: A student taking part in the user study.

7.5 Hypotheses

Subject of the user study itself was to prove different hypotheses. The hypotheses are taken into
account when evaluating the results of the study in section 7.7. For the study the following three
hypotheses have been formulated.

58



7 EVALUATION 7.6 The Questionnaire

• Hypothesis 1 (H1): Using a mobile device in a more secure mode is slower than using an
insecure public terminal.

• Hypothesis 2 (H2): Mobile input using an auto-complete function is faster than without.

• Hypothesis 3 (H3): Entering only some values with a mobile device is faster than entering
all.

7.6 The Questionnaire

This section describes the structure of the questionnaire that had to be filled in by each partici-
pant. The results and different answers are looked at later in seciton 7.7. Participants filled in
the questionnaire online, immediately after they took part in the user study and did their tasks.
Like this they remembered best what they had just done and seen. The questionnaire had a sum
of 46 questions whereas some of them were conditional questions that were optional in case of a
certain answer beforehand. The questionnaire was composed of seven question categories. First
some demographic data of the participants was collected. Things like gender, age or profession
were prompted. The second part asked about their technical knowledge especially with vending
machines and mobile devices. The third part of the questionnaire was dedicated to the possession
and usage of mobile phones. In case a participant owned a mobile device he was asked about
his usage and the function range of the device. The fourth block asked questions about the usage
and experience with public terminals or vending machines and whether people preferred using
machines over humans behind a counter. The test itself featured only one connection method but
as mentioned above, SeCuUI is capable of a large number of such methods. Due to this fact part
five of the questionnaire asked the participants if they could image to use other connection meth-
ods and which one they would prefer. Without prior knowledge of the participants different fields
during the tasks shifted their state depending on the phones connection status. The amount for the
product they were about to buy for example was only shown on the public terminal in case there
was no mobile device connection. In part six of the questionnaire the users were asked whether
they noticed this behavior and what they were thinking about it. The last part of the questionnaire
featured an overall recapitulation of the test and its different tasks. It also contained the most im-
portant question: Would people use the system if it was really available in public. Finally at the
end of the questionnaire additional comments could be made. Despite those comments the partic-
ipants remarks during the study were also noted. Some of the them are being cited in section 7.7.
A complete list can be found in figure A.29.

7.7 Results

This section describes the different results of the user study in-depth. Conclusions are drawn on
an overall-basis but to get a better perspective on the different results this section is split in eight
subsections referring to the seven categories of the questionnaire and section 7.7.5, which focuses
especially on the results of the user study tasks. At first in section 7.7.1 the demographic profile
of the participants is described. Section 7.7.2 shows how the participants rated their own technical
experience. The next two sections describe the mobile device usage and the usage of vending
machines (see sections 7.7.3 and 7.7.4). After that – in section 7.7.5 – the different tasks, their
results, and a statistical analysis of those are presented. Section 7.7.6 shows the users’ opinion
to the connection method they used and to other proposed connection methods. In section 7.7.7
the results of the questions concerning the asterisk- and security-mode are evaluated. Finally
the overall-ratings of the participants are stated in section 7.7.8 and the different hypotheses are
verified. During the study some suggestions and possible improvements have been figured out.
The most important of them are described in section 7.7.9.

59



7.7 Results 7 EVALUATION

7.7.1 Demographic Evaluation

Although 23 people completed the five different tasks only 21 of them have been evaluated lately.
The other two participants did not complete the questionnaire and their data has been removed
for this reason. The male/female ratio among the participants was nearly even with 11 male
participants and 10 female participants. The average age of a participant was 27 with standard
deviation of 9.0 whilst the youngest participant was 15 and the oldest 61 years old. 12 of the 21
participants were university students. The others had different professions. Looking at the highest
education level of the participants. 11 participants had passed the “Abitur” whilst seven people
already had a university degree. 1 participant had so far only finished primary school and two
others had the german “Realschulabschluss”. The data is also visually presented in figure 7.7.

Figure 7.7: Demographic data of the participants.

7.7.2 Technical Abilities

Looking at the technical abilities of the participants each of them should rate their own technical
expertise on a five point Likert-scale from 1-‘very bad’ to 5-very good’. The first question asked
for the general or overall technical abilities. The average answer was 3.76. The next question
in this category asked for the technical abilities concerning computers. Here the participants an-
swered with 3.9 in average. Concerning their mobile device expertise the average value was 3.76
again. Since all values have reached nearly four points in average the participants attested them-
selves very good knowledge in technical things. The high number of graduates can be a reason
for this as well as that people attending the study were quite young. Details on the answers in this
category are shown in depth in figure 7.8.

Figure 7.8: Self-assesment of the technical expertise.

Participants were also asked how worried they are about their security concerning different
aspects of their lives. Again this was answered using a five point Likert-scale ranging from 1-‘no
worries at all’ to 5-‘I’m often thinking about that’. In average, participants were most worried
about two different points that averaged to the same degree with 3.81. The first reason that made
the participants worry is the security at vending or cash machines. Another topic people were
concerned about is the misuse of their personal data for commercial purposes, spam emails or even

60



7 EVALUATION 7.7 Results

stalking. Immediately following those two topics was the security of online-banking applications.
Here an average Likert-value of 3.71 occurred. Traditional theft of personal goods had an average
value of 3.38. This shows that the participants worry more about loosing private data that could be
misused instead of the theft of personal belongings. The compared averages and the exact answers
are shown in figure 7.9.

Figure 7.9: Self-assesment of the personal worries.

Figure 7.10: Features and usage experience of mobile devices.

7.7.3 Usage of Mobile Devices

All of the 21 participants that completed the study were owning a personal mobile device. To
be able to use a mobile device at a public terminal it would not only be important to own such a
device but also to carry the device with one all the time. When being asked how often they take
their mobile device with them 18 of the 21 phone owners answered that they are carrying their
device “(nearly) always”. The remaining three people take it with them at least “multiple times a
week”. Other possible answers to this question were “never”, “once per month”, “once per week”.
This shows that a huge number of people today own a mobile device and they normally carry it
with them at least multiple times a week.

The questionnaire contained a list of different mobile device features and participants were
asked to fill in which of these features were supported by their own device. Most often peoples’
phones had a camera (71 percent) immediately followed by bluetooth functionality (62 percent).
Some people had WLAN, GPS, UMTS or a touchscreen. Nobody answered that he or she has a
QWERTZ-keyboard, a windows mobile phone or an NFC reader. Figure 7.10 shows this in more
detail. Depending on whether the people answered that their phones had bluetooth or a camera
they were asked to additionally say how often they are using that feature. Possible answers were:
“never”, “once a month”, “once a week”, “(nearly) always”. Out of the 15 people that did have a
camera on their phone nobody said that he or she is using it nearly always. Four people use their
camera once a week, 10 people once a month and one participant never uses the camera although
the device is able to take pictures. One of the 13 bluetooth users has the bluetooth switched on all
the time. Two others “once per week”, five people “once per month” and one person never uses
the bluetooth functionality at all.

61



7.7 Results 7 EVALUATION

To see whether people had experience connecting their devices with other devices a general
question asked: “Have you ever used your device to share data with others?”. 14 participants
– that is two thirds – did this already while the last third of participants has never done this before.
The most common action when sharing data on a mobile device is to send contact information
from one phone to another, but using the phone to remotely control another device is something
different. Due to this reason the questionnaire also asked for “remote control or input”. This had
so far just be done by three of the participants. The other 18 participants did this for the first time
when attending the study. Figure 7.10 contains diagrams with more details on the different results.

7.7.4 Usage of Vending Machines

SeCuUI is intended to be rolled out on various kinds of vending machines. The framework allows
programmers to make nearly every application capable of SeCuUI. This is why the questionnaire
also asked participants how they use vending machines today. The first question asked how often
people use different kinds of machines. Again people could choose between “nearly never”, “once
a month”, “once a week”, “multiple times a week”, “daily”. More than half of the participants
use an ATM machine once a week (11 out of the 21 participants). Five people said they use
them multiple times in a week and the remaining five participants only use them about once a
month. Like this ATM machines are the most commonly used machines. Ticket machines for
public transport are used more seldom. Six people barely never used them, eleven people once a
month. Three people said they buy their public transport tickets once a week and one person even
buys those tickets multiple times a week. Eventually this question was influenced by the fact that
most of the participants of the study came from the proximity of Munich. In a city of this size far
more people use public transport and hence have to buy their tickets at such machines. Vending
machines for food or beverages are used nearly never by 9 people. Six people buy something out
of those machines once a month, 4 people once a week and 2 people use them multiple times a
week. Asking for other ticket vending machines used to sell cinema or event tickets 15 people
nearly ever use those machines, whilst six people do so once a month.

Figure 7.11: Counter or machine preference.

All those questions gave information on how often vending machines are used. But in most
cases everything that can be bough or done using a machine can also be acquired in a more classi-
cal way asking a clerk behind a counter. One question of the questionnaire asked the participants
whether they prefer using a machine or not. For this question one third of the participants (this
means 7 people) agreed with the fact that they prefer machines over someone behind a counter.
One person actually preferred someone behind a counter in every case. For 11 of the 21 partici-
pants using a vending machine or not depends on the situation and only two people had no certain
preference when they had to choose. Diagram 7.11 shows this distribution. To get to know more
about the motives that matter most to the participants when deciding what to use the seven people
that chose “vending machine” as an answer were asked again. This time they could select multiple
reasons for the fact they prefer machines. Six of them agreed with the statement “I’m getting faster

62



7 EVALUATION 7.7 Results

what i want”. The statement “I already know what I need to do” was also chosen by 6 of the 7
vending machine users. Only one person did not like to have personal contact to someone working
behind a counter an therefore uses vending machines. All of the seven vending machines users
agreed that using vending machines is faster than asking someone behind a desk. As a last option
the questionnaire offered the statement “I normally have no other possibility than using a vending
machine” but nobody agreed with that. The one person that always preferred talking to a human
was asked similar question customized to his prior answer. The only reason the single participant
checked from the list was the third one denoting: “I think vending machines are impersonal”.

Earlier in the questionnaire the participants had been already asked for their different worries
they have, concerning security of public terminals. This time the question was asked again less
subtle: “Have you every worried about your security at such machines?” 13 people agreed with
that whilst eight denied. All of them who said they are worried where asked to express their
worries. The different answers were very similar to each other. Nearly everyone mentioned that he
or she was worried of the fact that someone could steal personal data that is entered to a machine.
Some people even had ideas of distinctive methods how this could happen like using a miniature
camera or copying the credit card data.

Figure 7.12: Private or public passwords.

The most important thing that needs to be protected in public is passwords of a user. Stealing
a persons ATM card does not make any sense unless the thief does know the user’s secret PIN,
too. To get an approximate value of how many passwords people do use in everyday-life all par-
ticipants where asked to enter how many passwords they enter each week. The first question asked
for the number of passwords that are entered overall so in public and in private. Passwords that are
used automatically without the user’s knowledge should not be counted. Answeres to this question
ranged from 1 to 100 and had an average value of 26.9 passwords each week. Since entering a
passwords in private is not as dangerous as doing it in public – which is as well one of the key as-
pects of SeCuUI – a second question asked how many of those passwords are entered in in public.
Here a minimum of 0 and maximum of 10 was registered whilst an average participant enters 2.6
passwords in public each week. This means that approximately 10 percent of the passwords are
entered in public. See figure 7.12 for details.

Section 7.7.5 clearly shows that although the study showed good speed results for SeCuUI, it is
still not as fast as a traditional PIN entry due to some overhead. To get to know what people expect
at a vending machine they were asked to rate a list of non-functional requirements and decide on a
Likert-scale from 1-’unimportant’ to 5-very important’ how important the different requirements
appear to them (see figure 7.13). The thing that appears most unimportant to the participants is the
“design” of such a machine. This non-functional requirement had an average score of 2.67. The
most important things to the participants were “security” with 4.52, “simplicity” with 4.38 and
“speed” with an average value of 4.24. For SeCuUI this means that security has top priority for
customers using public terminals and so SeCuUI is heading in the right direction by making input
more secure.

63



7.7 Results 7 EVALUATION

Figure 7.13: Non functional requirements.

Figure 7.14: Average time taken for each task.

7.7.5 Task Results

So far the questions answered by the participants had no direct connection to the tasks they did
just before filling out the questionnaire. During the user study the participants had to complete five
different tasks in random order. For each of those tasks two times were measured automatically
by the system. The overall time needed to complete the task and additionally for task two to five
the time the user needed to successfully establish a secure connection. The measurement for this
value started when the user clicked on the “Sicher verbinden”-button shown in figure A.7 and was
stopped when the handshake process was completed successfully. A table showing the different
connection and task times is included in the appendix (see figure A.16). Having a closer look at
those values the average time for task 1 (the participants had to enter all values without a mobile
device connection) is 76 seconds with a standard deviation of 29 seconds. Task 2 required them
to use the mobile device for all of the values without having the auto-complete function enabled.
This took users the longest time with an average 238 seconds (SD 76 seconds). Comparing this
with the reference task participants needed 3.3 times more time to complete this task. Task 3 still
did not involve the auto-complete function but it reduced the number of fields entered using the
mobile device to three. This resulted in average time of 178 seconds (SD 52 seconds). That is
still 2.43 times slower than our reference task 1. The next two tasks activated the auto-complete
function an gave the users a list already containing the correct value for each field. In task 5
this feature had to be used for three fields only and the rest of the data had to be inserted using
the public terminals keyboard. This task again took 163 seconds (SD 48 seconds) with a ratio
of 2.32 times slower than task 1. The method that had the best results when using SeCuUI for
terminal input was task 4. Still slower than task 1 the participants completed it in 129 seconds
(SD 42.1) in average. This means that the reference task 1 was just 1.77 times faster than task 4
where participants could stay looking at their mobile phone while entering all the values using the
auto-complete function. The different task times and ratios are again shown in figure 7.14. Figure
7.15 also shows a Box-Whisker diagram of the different task-execution times.

Having a look at the different connection times one can see that all connection times are

64



7 EVALUATION 7.7 Results

  

Task 1 Task 2 Task 3 Task 4 Task 5
0

50

100

150

200

250

300

350

400

450

T
im

e 
(s

)

Figure 7.15: Average time needed to complete the different tasks.

roughly the same with an overall average of 29.7 seconds. This duration is relatively big and such
is one reason why all tasks using the mobile phone took that much longer.

As mentioned earlier it is hard to perform a statistical comparison of the four different tasks
using SeCuUI (2 to 5) and task 1 because task 1 has no common independent variable it shares
with the other tasks. What can be done is to have a look at the two independent variables and their
impact on tasks 2 to 5. When entering only some of the values using the auto-complete function
(this means task 3 and 5) a statistical analysis shows, that that the time differences measured
here were not statistically significant. In contrast entering all information using the auto-complete
feature the time measured is highly significantly faster (t(18) = 9.76, p<.001) than doing all the
input without an auto-complete function. In this case two participants were removed from the test
because they were outliers. Another interesting aspect is that although task 4 is slower than task 1
participants had the impression that both tasks took the same time (see section 7.7.8).

Figure 7.16: Knowledge of QR-Codes and non-functional analysis.

7.7.6 Different Connection Methods

During the study the participants had to connect a mobile phone to a public terminal. Four of the
five tasks involved such a connection, which was always the same type of connection method: The
QR-Code connection.

The first five questions in this section of the questionnaire covered this connection method.
First participants should state whether they saw a two-dimensional barcode before. 76 percent (or
16 participants) did so. Those 16 were asked again in which context they saw such a barcode. The
were no predefined answers to this question but most participants mentioned the internet-tickets

65



7.7 Results 7 EVALUATION

of the German railroad company. Additionally they appeared together with stamps on letters and
on commercial billboards. The 16 people were also asked whether they had not only seen those
codes but had also used them. Six people did so before, ten not. Now everyone was asked about
the non-functional qualities of the connection-method. On a five-point scale ranging from ‘slow’
(-2) to ‘fast’ (+2) an average value of +0.57 was reached. Though people tended to say it was a
‘little fast’ this shows that speed could be optimized especially for the connection procedure. The
other non-functional requirement was the simplicity. Again on a scale ranging from ‘simple’ (-2)
to hard’ (+2) results showed an average of -0.67, which also shows that the method is not perfectly
simple. The diagrams in figure 7.16 visualize those results.

Figure 7.17: Appropriateness of different connection methods.

But as mentioned above the QR-Code connection is not the only possibility to establish a con-
nection between the mobile device and the public terminal. It would be possible to add many
other connection modules to SeCuUI. Because of this, the questionnaire asked the participants
how appropriate they think would different connection methods be. For five different connection
methods people should select the methods appropriateness ranging from 1-‘not at all appropriate’
to 5-‘very appropriate’. The QR-Code connection was again included in this list and received a
maximum average value of 4.1. Each method was described to the participants in one sentence.
An NFC-method described as: “The device is brought to close proximity with the terminal and
connects automatically.” scored with 3.6 in average. The SyncTap connection described in sec-
tion 2.4.1 got an average value of 3.0. The two last methods proposed a device list of surrounding
bluetooth devices as it is done today for most bluetooth connections. One method proposed to
display a user-image instead of the device’s name. It received 2.8 in average. The plain device-list
using text had 2.3 in average. The sum of answers is shown in figure 7.17.

7.7.7 Security and Asterisk-Mode

The next set of questions covered the fact that depending on the asterisk and security-values
in the XUL document different interface components acted differently. During the experiment
the participants were not told that. Because of this the first question here asked whether they
noticed a change of the fields behavior during the different tasks or not. 86 percent or 18 people
answered ‘Yes’. The next question explained the fact that some fields changed their behavior to
block input on the terminal side. Participants were asked how they felt about this. 11 people chose
the answer “I think that’s meaningful. Like this one immediately knows which fields are safety-
ciritical”. Eight people chose the second answer: “I would always like to decide for myself what
values to enter where”. The third possibility was chosen by 2 participants: “In general blocking
security related fields is good, but during the test the fields were badly chosen.” This shows that the
participants do not really agree with each other for the one or the other methods. Any developer
therefore should only block the fields when it is really necessary because with each normal field
users can select for themselves where to enter the value.

During the test the amount that had to be paid was clearly visible on the terminal just in case

66



7 EVALUATION 7.7 Results

there was no mobile connection. As soon as it was established the amount was replaced by aster-
isks on the public terminal and shown instead on the mobile device. This behavior depends on the
astersisk-value used in the user interface description. The next question drew the participants
attention back to this fact and asked them how they felt about such a method: This time a majority
of 15 people meant: “I think thats meaningful, [...]”. Five people disagreed selecting “I always
like to see all values on the screen, [...]”. One person chose the last possibility: “In general I think
that’s a good idea, but in this case it was not properly used”.

7.7.8 Participant Overall-Rating

The last part of the questionnaire summarized the user study and its tasks. Participants should say
whether on the whole entering data with the mobile phone is helpful. 15 participants or 71 percent
decided ‘Yes’ whilst six other thought No’. For the auto-completion feature everyone – all 21
participants – agreed that this feature is helpful for entering data with the mobile phone.

Figure 7.18: Ratings of the different tasks according to the non-functional requirements “security”,
“speed” and “simplicity”.

Now each participant should rate for each of the tasks how well the following non-functional
requirements, “security”, “speed” and “simplicity” were implemented. For each of the three re-
quirements the five tasks were named as follows: “Input only at the public terminal”, “Input of
all values using the mobile device (no auto-completion)”, “Input of security-related values using
the mobile device (no auto-completion)”, “Input of all values using the mobile device (with auto-
completion)”, “Input of security-related values using the mobile device (with auto-completion)”.
For the non-functional requirement “security” participants should select on a Likert-scale from
1-‘not secure’ to 5-very secure’. Task 2 was rated the most secure with 4.19 in average followed
by task 3 with 4.00, task 4 with 3.90, task 5 with 3.76 and with over 1.5 points less task 1 with 2.24
in average. This clearly shows participants are aware of the fact that entering data with a mobile
phone is a lot more secure than using keyboards installed at a public terminal.

In case of the non-functional requirement “speed” the Likert-scale ranged from 1-‘very slow’
to 5-‘very fast’. Task 4 was rated best with 3.81 followed by task 1 with 3.76, task 5 with 3.71, task
3 having 2.52 and task 2 with 2.00 in average. This is very interesting because the auto-complete
method using the mobile phone and the method with no-phone usage at all reached the same level.
Looking at the time measured for the tasks (see figure 7.14) one can see that task 4 took in fact 1.8
times as long as task 1 in average but it seems the participants did not notice. This again shows
that though connecting a mobile device first costs some time people seem to have a certain amount
of tolerance for the loss of speed.

“Simplicity” was the last non-functional requirement requested. The possible answers ranging
from 1-‘very complicated’ to 5-‘very easy’. In this case again task 1 and task 4 are very close
together. Task 1 leading with 4.38 followed by task 4 with 4.24 in average. Task 5 got 3.9 points
and task 2 and 3 averaged both with 3.1. The results of all three groups are shown in figure 7.18.

Finally participants should tell which one of the methods they just used during the different
tasks they would use from now on in public if they were given the choice. In sum, 86 percent of the

67



7.7 Results 7 EVALUATION

participants selected one of the four different security-enhanced methods. The value is composed
of 4.8 percent that would like to enter everything with their mobile device but not having an auto-
complete feature, 38.1 percent that liked to input all of their values using the mobile phone but
having auto-completion activated and finally 42.9 percent wanting to enter only security-relevant
values using their device but having the possibility of auto-completion there. Nobody decided that
he or she wants to enter only some of the values with an auto-completion value in the future. The
remaining three participants or 14.3 percent of all of the participants chose to stick to the old way
of not using any mobile device at public terminals.

Having a look at the different hypotheses formulated in section 7.5 one can finally say the
following. Although SeCuUI is able to speed up the input process using a mobile device drasti-
cally by using the auto-complete function it is not able to beat the average time of the reference
task. This confirms hypothesis H1 and so using the more secure method is still slower than using
the more insecure public terminal only. For Hypothesis H2 one can say it has also be confirmed
because entering information with an auto-complete feature is even significantly faster than enter-
ing information without this feature. Looking at the results of hypothesis one and two one might
think this leads automatically to hypothesis three but when looking at a statistical analysis of the
times needed to enter the values no significance is found. This might be du to the fact, that the
connection time and attention shifts between the public terminal and the mobile device cost more
time than the little faster input at the public terminal benefits.

7.7.9 Suggestions for Improvement

During and after the test different small mistakes and improvements have been noted. Comments
made by the participants during the test have been noted, too. A complete list of those comments
can be found in figure A.29. The most important things that should be considered in future studies
are:

• Building a more realistic public-terminal environment: During the study only a notebook
represented the public terminal. In fact the study was laid out to mimic two different public
terminals of two different companies. It would have been better to build up two independent
systems looking more like real vending machines and to use another input device on those
“public terminals” that would be more common to today’s machines. This could have been
an on-screen-keyboard or an industrial aluminum-keyboard. With the normal-keyboard and
mouse-input-method that most participants knew from everyday work at their companies
the input times have probably been much faster especially for task 1 than they would have
been on a touch-screen keyboard.

• Standing instead of sitting: Some participants said that when they normally use a public
terminal they do not have the possibility to sit during their input. Conducting the study
with all participants standing in front of the “public terminal” would have also been more
realistic.

• More values in auto-complete lists: Whenever the auto-complete function was used it
contained always only one value which always was the correct one. Participants said they
would have expected a larger list of values. For this study this was done on purpose. A user
who would use SeCuUI with her personal device would normally use the auto-complete
function only for herself. This is why one can assume that on a normal device there would
always be only one first name or one last name stored. In case of credit card informations or
similar things it could be possible that someone owns multiple items of the same kind but
despite this, one would never have more than three values per category.

• Data-type should change keyboard settings: Some of the fields users had to enter required
only digits (zip-code or credit-card-number). On the small nine-digit phone keyboard en-

68



7 EVALUATION 7.7 Results

tering numbers is complicated as long as the phones keyboard is expecting letters to be
entered. To help the participants each of them was shown how to switch to the “number
entering mode” using the hash-key. In a future version it would be good to already set this
mode for certain dataTypes.

• Synchronizing focus and caret: During the study changes made either on the mobile device
or public terminal were immediately synchronized. But the position of the caret and the
current input field focus where not. Like this it happened a few times that someone selected
a field on the public terminal and then started to write with his mobile device. Due to the
fact that the focus change was not synchronized he now wrote to the input field last selected
on the mobile device. This normally was not intended by the participant.

69



7.7 Results 7 EVALUATION

70



8 CONCLUSION

8 Conclusion

This thesis presented the development process of an application suite called SeCuUI (Secure Cus-
tom User Interface). The suite consists of a framework for programmers to built server applica-
tions for public terminals. Applications built with this framework are automatically compatible
to a client application developed as a second application of the suite. With this client application
installed on the user’s mobile device he or she is in charge to fill in and control every form-
component of a public terminals.

To speed up the entry process and make it more comfortable to use the system the data a user
enters is saved according to a specific topic or group this entry belongs to. On any other public
terminal that requires an input of the same category the mobile phones automatically suggest prior
made entries to the user.

8.1 Results

With this functionality SeCuUI represents a software that not only fulfilled the goals set up in
section 1.2 it also demonstrated a balancing act between two different areas of research in this
field. So far researches mostly thought of security on public terminals either in a microscopic
way – inventing new mechanisms of password entry – or using a macroscopic approach – building
systems to completely giving secure remote control over public terminals –. SeCuUI stroke a
balance bringing some part of the remote user interface to the mobile device but in a special
mobile device conform manner. By using an auto-completion feature SeCuUI was also able to
address the issue of the big amount of additional time that more secure input mechanism usually
take.

During the evaluation of a user study it was found out, that people today are already somehow
devoted to the use of vending machines and public terminals. Despite security of their personal
data especially at such machines is one of their biggest worries. Finally a sum of 86 percent of the
participants of the user study chose to use one of the security enhanced methods they were shown
from now on if possible. One last small disadvantage remains: Even the fastest security enhanced
method used during the user study still is 1.8 times slower than not using any mobile device at all.
Although this speed difference is important and should be taken into account for future research
the participants themselves seemed not to notice it because they rated both methods equally fast
when asked for their experience.

8.2 Future Work

This work presented an attempt to something one could also describe as “remotely used user
interfaces”. The results of this thesis showed that it is possible to enhance security in public
space using such a method. Since not much research on such systems has been done so far is
important to further inspect this topic in the future. Even SeCuUI itself could be improved by
extending the module concept with new modules and performing a broader user study in a more
realistic environment. The current user study with only 21 participants should be repeated with a
larger number of participants focussing more on the difference between the basic input at a public
terminal and only one chosen method of security enhanced mobile device usage. Also the setting
of the user study should be more realistic, eventually even rolling out the system in a field study at
a real public terminal.

In general one can say that although research for better and more secure interaction with public
terminals is going on, for many years now the classic PIN entry as it was introduced with the first
ATM machine in 1967 is still in use. This fact should always be a motivation for further research
in this field.

71



8.2 Future Work 8 CONCLUSION

72



A APPENDIX

A Appendix

Figure A.1: All framework classes shown in a UML diagram.
73



A APPENDIX

Figure A.2: All client classes shown in an UML diagram.

74



A APPENDIX

TYPE_STANDARD
TYPE_ATM_ACCOUNT
TYPE_ATM_PIN
TYPE_ADDRESS_CITY
TYPE_ADDRESS_COUNTRY
TYPE_ADDRESS_PTC
TYPE_ADDRESS_PROVINCE
TYPE_ADDRESS_STREET
TYPE_BODY_EYE_COLOR
TYPE_BODY_GENDER
TYPE_BODY_HAIR_COLOR
TYPE_BODY_HEIGHT
TYPE_BODY_WEIGHT
TYPE_CREDIT_CARD_CODE
TYPE_CREDIT_CARD_EXPIRES_MONTH
TYPE_CREDIT_CARD_EXPIRES_YEAR
TYPE_CREDIT_CARD_NAME
TYPE_CREDIT_CARD_NUMBER
TYPE_MASTER_CARD_CODE
TYPE_MASTER_CARD_EXPIRES_MONTH
TYPE_MASTER_CARD_EXPIRES_YEAR
TYPE_MASTER_CARD_NAME
TYPE_MASTER_CARD_NUMBER
TYPE_NAME_FIRST
TYPE_NAME_SECOND
TYPE_NAME_LAST
TYPE_USER_PASSWORD
TYPE_VISA_CARD_CODE
TYPE_VISA_CARD_EXPIRES_MONTH
TYPE_VISA_CARD_EXPIRES_YEAR
TYPE_VISA_CARD_NAME
TYPE_VISA_CARD_NUMBER

Figure A.3: The list of standard Type names that can be used with the dataType-attribute.

75



A APPENDIX

1 0 0 7 ; ; 0 ; ; TASK ; ; 3
2 0 0 7 ; ; 0 ; ;AUTOCOMPLETE ; ; f a l s e
3 0 0 7 ; ; 0 ; ; PROJECT ; ; kinomaxx
4 0 0 7 ; ; 0 ; ; COMPLETE
5 0 0 7 ; ; 2 5 5 5 8 ; ;COMPLETE
6 0 0 7 ; ; 2 7 3 0 9 ; ;GET_CONNECTION
7 0 0 7 ; ; 4 7 2 6 1 ; ;CONNECTED
8 0 0 7 ; ; 5 1 8 2 8 ; ; CLIENT ; ; b t n _ n e x t _ 1 ; ; W e i t e r
9 0 0 7 ; ; 5 1 9 8 2 ; ;COMPLETE

10 0 0 7 ; ; 6 3 0 0 0 ; ; CLIENT ; ; b t n _ n e x t _ 1 ; ; W e i t e r
11 0 0 7 ; ; 6 3 1 4 2 ; ;COMPLETE
12 0 0 7 ; ; 6 7 0 6 7 ; ; CLIENT ; ; t f _ p r e n a m e ; ;
13 0 0 7 ; ; 6 7 9 1 5 ; ; CLIENT ; ; t f _ p r e n a m e ; ;M
14 0 0 7 ; ; 6 9 2 4 6 ; ; CLIENT ; ; t f _ p r e n a m e ; ; A
15 0 0 7 ; ; 7 0 4 1 6 ; ; CLIENT ; ; t f _ p r e n a m e ; ;
16 0 0 7 ; ; 7 7 9 1 1 ; ; SERVER ; ; t f _ p r e n a m e ; ; Ma
17 0 0 7 ; ; 7 8 1 5 2 ; ; SERVER ; ; t f _ p r e n a m e ; ; Max
18 0 0 7 ; ; 7 8 2 9 6 ; ; SERVER ; ; t f _ p r e n a m e ; ; Maxu
19 0 0 7 ; ; 7 9 1 3 5 ; ; SERVER ; ; t f _ p r e n a m e ; ; Maxu+
20 0 0 7 ; ; 8 0 3 6 7 ; ; SERVER ; ; t f _ p r e n a m e ; ; Maxu
21 0 0 7 ; ; 8 0 5 9 9 ; ; SERVER ; ; t f _ p r e n a m e ; ; Max
22 0 0 7 ; ; 8 1 1 9 1 ; ; SERVER ; ; t f _ p r e n a m e ; ; Maxi
23 0 0 7 ; ; 8 1 3 2 7 ; ; SERVER ; ; t f _ p r e n a m e ; ; Maxi
24 0 0 7 ; ; 8 2 5 1 1 ; ; SERVER ; ; t f _ s u r n a m e ; ;M
25 0 0 7 ; ; 8 2 6 8 8 ; ; SERVER ; ; t f _ s u r n a m e ; ; Ma
26 0 0 7 ; ; 8 2 8 1 5 ; ; SERVER ; ; t f _ s u r n a m e ; ; Mai
27 0 0 7 ; ; 8 3 0 2 3 ; ; SERVER ; ; t f _ s u r n a m e ; ; Maie
28 0 0 7 ; ; 8 3 2 8 7 ; ; SERVER ; ; t f _ s u r n a m e ; ; Maier
29 0 0 7 ; ; 8 4 4 4 1 ; ; SERVER ; ; t f _ a d r e s s ; ;M
30 0 0 7 ; ; 8 4 5 3 5 ; ; SERVER ; ; t f _ a d r e s s ; ; Ma
31 0 0 7 ; ; 8 4 8 3 1 ; ; SERVER ; ; t f _ a d r e s s ; ; Mar
32 [ . . . ]
33 0 0 7 ; ; 1 4 0 3 8 8 ; ; CLIENT ; ; t f _ v i s a _ n a m e ; ; Maxi
34 0 0 7 ; ; 1 4 1 6 6 9 ; ; CLIENT ; ; t f _ v i s a _ n a m e ; ; Maxi
35 0 0 7 ; ; 1 4 2 1 6 3 ; ; CLIENT ; ; t f _ v i s a _ n a m e ; ; Maxi m
36 0 0 7 ; ; 1 4 2 5 5 3 ; ; CLIENT ; ; t f _ v i s a _ n a m e ; ; Maxi ma
37 0 0 7 ; ; 1 4 3 0 5 1 ; ; CLIENT ; ; t f _ v i s a _ n a m e ; ; Maxi mag
38 0 0 7 ; ; 1 4 3 7 3 0 ; ; CLIENT ; ; t f _ v i s a _ n a m e ; ; Maxi mah
39 0 0 7 ; ; 1 4 4 4 2 6 ; ; CLIENT ; ; t f _ v i s a _ n a m e ; ; Maxi mai
40 0 0 7 ; ; 1 4 4 5 6 5 ; ; CLIENT ; ; t f _ v i s a _ n a m e ; ; Maxi maid
41 0 0 7 ; ; 1 4 5 3 0 9 ; ; CLIENT ; ; t f _ v i s a _ n a m e ; ; Maxi maie
42 0 0 7 ; ; 1 4 5 4 9 6 ; ; CLIENT ; ; t f _ v i s a _ n a m e ; ; Maxi maiep
43 0 0 7 ; ; 1 4 5 6 2 8 ; ; CLIENT ; ; t f _ v i s a _ n a m e ; ; Maxi maieq
44 0 0 7 ; ; 1 4 9 6 7 9 ; ; CLIENT ; ; t f _ v i s a _ m o n t h ; ;
45 0 0 7 ; ; 1 5 0 1 1 2 ; ; CLIENT ; ; t f _ v i s a _ m o n t h ; ; .
46 0 0 7 ; ; 1 5 1 1 0 1 ; ; CLIENT ; ; t f _ v i s a _ m o n t h ; ; . a
47 0 0 7 ; ; 1 5 1 6 4 9 ; ; CLIENT ; ; t f _ v i s a _ m o n t h ; ; .
48 0 0 7 ; ; 1 5 3 9 6 8 ; ; CLIENT ; ; t f _ v i s a _ m o n t h ; ;
49 0 0 7 ; ; 1 5 4 2 2 5 ; ; CLIENT ; ; t f _ v i s a _ m o n t h ; ; 1
50 0 0 7 ; ; 1 5 7 5 9 3 ; ; CLIENT ; ; t f _ v i s a _ y e a r ; ;
51 0 0 7 ; ; 1 5 8 0 4 6 ; ; CLIENT ; ; t f _ v i s a _ y e a r ; ; 0
52 0 0 7 ; ; 1 6 0 2 2 9 ; ; CLIENT ; ; b t n _ n e x t _ 2 ; ; We i t e r
53 0 0 7 ; ; 1 6 0 3 0 7 ; ; CONNECTION_TIME; ; 1 9 9 5 2
54 0 0 7 ; ; 1 6 0 3 0 7 ; ;COMPLETE

Figure A.4: An excerpt of a log-file created during one task of the user study.

76



A APPENDIX

Figure A.5: Screenshots of the server prototype during a user study session (1 of 8).

Figure A.6: Screenshots of the server prototype during a user study session (2 of 8).

Figure A.7: Screenshots of the server prototype during a user study session (3 of 8).

77



A APPENDIX

Figure A.8: Screenshots of the server prototype during a user study session (4 of 8).

Figure A.9: Screenshots of the server prototype during a user study session (5 of 8).

78



A APPENDIX

Figure A.10: Screenshots of the server prototype during a user study session (6 of 8).

Figure A.11: Screenshots of the server prototype during a user study session (7 of 8).

79



A APPENDIX

Figure A.12: Screenshots of the server prototype during a user study session (8 of 8).

80



A APPENDIX

 

 

Benutzerstudie 
„SecureSwing“ 

 
Vielen Dank für Dein Interesse an der Benutzerstudie SecureSwing. Die Studie dauert ca. 20-
30 Minuten. Während der Studie gilt es fünf verschiedene Aufgaben durchzuführen. Im 
Anschluss an diese Aufgaben muss noch ein kurzer Fragebogen beantwortet werden. 

Wichtig: Währen der Studie wird lediglich die Usability des Prototypen getestet, nicht 
Du selbst! 

Damit stets gleiche Voraussetzungen für alle Teilnehmer gelten bitten wir dich bei Eingaben 
die du später durchführst nicht deine eigenen Daten anzugeben.  

Für diese Studie bist du: 

Maxi Maier 
Marktstrasse 1 
34542 Essen 

Für Zahlungen während der Studie verwende bitte deine Kreditkarte: 

 

Teil a) Bitte mach dich als erstes mit dem mobilen Endgerät sowie mit der Software und dem 
Verbindungsaufbau vertraut. 

Teil b) Führe die 5 Aufgaben aus. 

Teil c) Bitte fülle den Fragenbogen zur Benutzerstudie aus. 

Vielen Dank für deine Teilnahme!!!!

Figure A.13: The introduction sheet given to every participant.

81



A APPENDIX

 

 

Benutzerstudie 
„SecureSwing“ 

 
Aufgabe 1: Nur Eingabe am öffentlichen Display 

Für deine nächste Zugfahrt möchtest du eine Pahncard 50 bestellen. Bitte benutze die 
Anwendung am öffentlichen Display um diese Pahncard zu bestellen. Verwende die 
persönlichen Informationen von der Übersichtsseite. 

Für diese Aufgabe benötigst du kein mobiles Endgerät. 

 

Aufgabe 2: Eingabe aller Werte am Handy (ohne Autocompletion) 

Für deine nächste Zugfahrt möchtest du eine Pahncard 50 bestellen. Bitte benutze die 
Anwendung am öffentlichen Display um diese Pahncard zu bestellen. Verwende die 
persönlichen Informationen von der Übersichtsseite. 

Klicke zuerst auf den „Start“-Button. Danach stelle eine sichere Verbindung mit deinem 
mobilen Endgerät her. 

Nachdem du die Verbindung hergestellt hast verwende bitte ausschließlich das mobile 
Endgerät zur Eingabe der einzelnen Werte. 

 

Aufgabe 3: Eingabe sicherheitsrelvanter Werte am Handy (ohne Autocompletion) 

Du willst heute Abend ins Kino. Bitte benutze die Anwendung am öffentlichen Display um 
deine Kinokarte bei KinoMaxx zu bestellen. Du möchtest dir den Film „Schreck 4“ ansehen. 
Verwende die persönlichen Informationen von der Übersichtsseite. 

Klicke zuerst auf den „Start“-Button. Danach stelle eine sichere Verbindung mit deinem 
mobilen Endgerät her. 

Nachdem du die Verbindung hergestellt hast verwende bitte nur wo nötig das mobile 
Endgerät zur Eingabe der einzelnen Werte. 

Figure A.14: Tasks 1 to 3 handed to the participants.

82



A APPENDIX

 

 

Benutzerstudie 
„SecureSwing“ 

 
Aufgabe 4: Eingabe aller Werte am Handy (mit Autocompletion) 

Du willst heute Abend ins Kino. Bitte benutze die Anwendung am öffentlichen Display um 
deine Kinokarte bei KinoMaxx zu bestellen. Du möchtest dir den Film „ Schreck 4 “ ansehen. 
Verwende die persönlichen Informationen von der Übersichtsseite. 

Klicke zuerst auf den „Start“-Button. Danach stelle eine sichere Verbindung mit deinem 
mobilen Endgerät her. 

Nachdem du die Verbindung hergestellt hast verwende bitte ausschließlich das mobile 
Endgerät zur Eingabe der einzelnen Werte. Bei allen Werten, die du mit deinem mobilen 
Endgerät eingibst verwende die Autocompletion-Funktion. 

 

Aufgabe 5: Eingabe sicherheitsrelvanter Werte am Handy (mit Autocompletion) 

Für deine nächste Zugfahrt möchtest du eine Pahncard 50 bestellen. Bitte benutze die 
Anwendung am öffentlichen Display um diese Pahncard zu bestellen. Verwende die 
persönlichen Informationen von der Übersichtsseite. 

Klicke zuerst auf den „Start“-Button. Danach stelle eine sichere Verbindung mit deinem 
mobilen Endgerät her. 

Nachdem du die Verbindung hergestellt hast verwende bitte nur wo nötig das mobile 
Endgerät zur Eingabe der einzelnen Werte. Bei allen Werten, die du mit deinem mobilen 
Endgerät eingibst verwende die Autocompletion-Funktion. 

 

Figure A.15: Tasks 4 to 5 handed to the participants.

83



A APPENDIX

Times

Seite 1

Task

1 2 3 4 5
C O 1to1 C O 2to1 C O 3to1 C O 4to1 C O 5to1

1 0,00 65,17 1,00 23,99 210,29 3,23 20,97 225,48 3,46 24,17 109,09 1,67 25,47 157,94 2,42

2 0,00 108,35 1,00 32,87 218,04 2,01 38,32 267,67 2,47 26,54 133,79 1,23 29,35 143,46 1,32

3 0,00 46,44 1,00 27,37 159,84 3,44 24,56 162,28 3,49 26,51 99,51 2,14 28,96 261,66 5,63

4 0,00 60,74 1,00 22,71 160,17 2,64 22,30 110,68 1,82 59,59 125,51 2,07 21,78 121,21 2,00

5 0,00 60,32 1,00 35,37 279,66 4,64 26,75 205,14 3,40 50,33 140,24 2,32 29,43 144,75 2,40

6 0,00 54,68 1,00 26,96 153,71 2,81 34,24 166,84 3,05 25,87 94,65 1,73 24,10 110,51 2,02

7 0,00 66,98 1,00 24,30 232,13 3,47 19,95 160,31 2,39 20,43 73,92 1,10 23,56 93,71 1,40

8 0,00 80,75 1,00 50,43 338,09 4,19 32,95 167,84 2,08 30,23 177,59 2,20 29,04 188,48 2,33

9 0,00 95,76 1,00 22,62 185,06 1,93 25,20 165,54 1,73 27,19 118,54 1,24 30,23 162,49 1,70

10 0,00 50,23 1,00 23,41 220,98 4,40 28,52 183,38 3,65 26,43 108,28 2,16 46,39 155,00 3,09

11 0,00 53,92 1,00 25,11 216,60 4,02 25,22 118,90 2,21 27,32 114,33 2,12 41,21 193,51 3,59

12 0,00 65,78 1,00 22,62 195,41 2,97 24,43 153,21 2,33 24,30 90,13 1,37 44,09 167,00 2,54

13

14 0,00 61,76 1,00 29,63 271,28 4,39 30,00 158,44 2,57 24,19 92,71 1,50 26,05 106,52 1,72

15

16 0,00 115,96 1,00 26,08 314,73 2,71 33,11 286,77 2,47 31,25 184,30 1,59 26,12 176,07 1,52

17 0,00 77,76 1,00 25,07 183,05 2,35 28,57 189,19 2,43 25,53 113,91 1,46 23,75 116,62 1,50

18 0,00 90,85 1,00 36,25 465,88 5,13 32,89 279,18 3,07 37,33 234,99 2,59 35,86 257,14 2,83

19 0,00 117,18 1,00 26,86 239,26 2,04 22,97 128,13 1,09 25,27 121,77 1,04 23,97 154,16 1,32

20 0,00 85,95 1,00 25,54 373,08 4,34 23,70 171,14 1,99 171,14 230,16 2,68 26,79 133,61 1,55

21 0,00 78,91 1,00 26,16 172,00 2,18 27,24 148,83 1,89 25,28 113,36 1,44 26,74 246,08 3,12

22 0,00 121,05 1,00 24,60 228,36 1,89 31,10 252,82 2,09 26,19 120,14 0,99 22,17 189,98 1,57

23 0,00 71,89 1,00 26,44 165,27 2,30 22,40 114,15 1,59 26,44 165,27 2,30 20,67 135,91 1,89

Participant

Figure A.16: The time it took participants to connect and to fulfill the complete task (in seconds).

84



A APPENDIX

PDF-Export

Benutzerstudie "SecureSwing"
Demographische Informationen

* 01id: Bitte gib deine Teilnehmernummer an!
Bitte schreibe Deine Antwort hier:

* 02gender: Bitte gib dein Geschlecht an
Bitte wähle nur eine der folgenden Antworten aus:

männlich

weiblich

* 03age: Bitte gib Dein Alter an.
Bitte schreibe Deine Antwort hier:

* 04Beruf: Welchen Beruf übst du zur Zeit aus?
Bitte wähle nur eine der folgenden Antworten aus:

Student

Sonstiges 

[Bitte beantworte diese Frage nur, falls Deine Antwort 'Student' war bei der Frage '04Beruf ']
* 04student: Welches Fach studierst du?

Bitte schreibe Deine Antwort hier:

* 05Education: Welchen bisher höchsten Ausbildungsstatus hast du?
Bitte wähle nur eine der folgenden Antworten aus:

Grundschulabschluss

Hauptschulabschluss

Realschulabschluss

Abitur

Hochschulabschluss

Promotion

* 06Education2: Hast du eine abgeschlossene Berufsausblidung?
Bitte wähle nur eine der folgenden Antworten aus:

Ja

LimeSurvey http://www.tholex.de/survey/admin/admin.php?action=showpr...

1 von 12 28.05.2009 17:58 Uhr

Figure A.17: The survey the user-study participants had to fill out (page 1 of 12).

85



A APPENDIX

1 - sehr
schlecht 2 3 4

5 - sehr
gut

Technische Fähigkeiten allgemein

Computerkenntnisse
Umgang mit mobilen Endgeräten (z.B.
Handys)

Nein

[Bitte beantworte diese Frage nur, falls Deine Antwort 'Ja' war bei der Frage '06Education2 ']
* 06_2: Welcher Beruf?

Bitte schreibe Deine Antwort hier:

Eigene Einschätzung
personals: Wie schätzt du deine technischen Kenntnisse ein?

Bitte wähle die zutreffende Antwort aus:

* worries: Bitte überlege zu jedem der Folgenden Themen, ob dir schon Gedanken über
deine Sicherheit gemacht hast. (1 = keine Sorgen gemacht, 5 = denke ich häufig drüber
nach)

Bitte wähle die zutreffende Antwort aus:

Sicherheit an Geldautomaten 1  2  3  4  
5 

Diebstahl von Eigentum (Geldbörse, Mobiltelefon) 1  2  3  4  
5 

Mißbrauch persönlicher Daten (Spam, Werbung,
Stalking)

1  2  3  4  
5 

Diebstahl und Mißbrauch von Oninebanking-Daten 1  2  3  4  
5 

Nutzung von Mobilen Endgeräten
* mobdev: Besitzt du ein mobiles Endgerät (Handy, PDA, usw.)?

Bitte wähle nur eine der folgenden Antworten aus:

Ja

Nein

[Bitte beantworte diese Frage nur, falls Deine Antwort 'Ja' war bei der Frage 'mobdev ']

LimeSurvey http://www.tholex.de/survey/admin/admin.php?action=showpr...

2 von 12 28.05.2009 17:58 Uhr

Figure A.18: The survey the user-study participants had to fill out (page 2 of 12).

86



A APPENDIX

* takephone: Wie häufig hast du dein mobiles Endgerät dabei?
Bitte wähle nur eine der folgenden Antworten aus:

nie

1 mal im Monat

1 mal pro Woche

mehrmals pro Woche

(fast) ständig

[Bitte beantworte diese Frage nur, falls Deine Antwort 'Ja' war bei der Frage 'mobdev ']
details: Welche Funktionen unterstützt dein mobiles Endgerät?

Bitte wähle alle Punkte aus, die zutreffen:

Bluetooth

WLAN

GPS

NFC

Kamera

Radio

UMTS/3G

Touchscreen

QWERTZ-Tastatur

Windows Mobile

[Bitte beantworte diese Frage nur, falls Deine Antwort 'Bluetooth' war bei der Frage 'details ']
* bluet: Wie häufig benutzt du Bluetooth?

Bitte wähle nur eine der folgenden Antworten aus:

nie

1 mal im Monat

1 mal pro Woche

(fast) ständig

[Bitte beantworte diese Frage nur, falls Deine Antwort 'Kamera' war bei der Frage 'details ']
* camerausage: Wie häufig benutzt du deine Kamera?

Bitte wähle nur eine der folgenden Antworten aus:

nie

1 mal im Monat

1 mal pro Woche

LimeSurvey http://www.tholex.de/survey/admin/admin.php?action=showpr...

3 von 12 28.05.2009 17:58 Uhr

Figure A.19: The survey the user-study participants had to fill out (page 3 of 12).

87



A APPENDIX

ja nein

Datenaustausch

Entfernte Steuerung oder Eingabe

fast
nie

1 mal im
Monat

1 mal pro
Woche

mehrmals pro
Woche täglich

Geldautomaten (ATM)

Fahrtkartenautomaten
andere Ticketautomaten (Kino,
Konzert)
Verkaufsautomaten (Getränke,
Snacks)

(fast) ständig

[Bitte beantworte diese Frage nur, falls Deine Antwort 'Ja' war bei der Frage 'mobdev ']
* connections: Hast du dein mobiles Endgerät schon mal mit anderen Geräten benutzt?

Bitte wähle die zutreffende Antwort aus:

Nutzung von Automaten
* usage: Wie oft benutzt du folgende Automaten....

Bitte wähle die zutreffende Antwort aus:

* counter: Wenn du die Wahl zwischen Automaten oder einer Bedienung am Schalter hast
was ziehst du vor?

Bitte wähle nur eine der folgenden Antworten aus:

Automat

Bedienung am Schalter

hängt davon ab

keine Präferenz

[Bitte beantworte diese Frage nur, falls Deine Antwort 'Automat' war bei der Frage 'counter ']
machinewhy: Warum bevorzugst du Automaten?

Bitte wähle alle Punkte aus, die zutreffen:

ich erhalte schneller was ich will

ich weiß schon genau was ich machen muss

ich möchte keinen persönlichen Kontakt mit Schalterpersonal

meistens sind dort die Wartezeiten kürzer

ich habe meist keine andere Möglichkeit als einen Automaten zu benutzen

[Bitte beantworte diese Frage nur, falls Deine Antwort 'Bedienung am Schalter' war bei der Frage
'counter ']
perferpeople: Warum bevorzugst du die Bedienung am Schalter?

LimeSurvey http://www.tholex.de/survey/admin/admin.php?action=showpr...

4 von 12 28.05.2009 17:58 Uhr

Figure A.20: The survey the user-study participants had to fill out (page 4 of 12).

88



A APPENDIX

Bitte wähle alle Punkte aus, die zutreffen:

ich erhalte schneller was ich will

die person am Schalter weiß schneller was ich will

ich finde Automaten unpersönlich

meistens sind dort die Wartezeiten kürzer

ich habe meist keine andere Möglichkeit als an den Schalter zu gehen

* security: Hast du dir schon einmal über die Sicherheit solcher Automaten Gedanken
gemacht?

Bitte wähle nur eine der folgenden Antworten aus:

Ja

Nein

[Bitte beantworte diese Frage nur, falls Deine Antwort 'Ja' war bei der Frage 'security ']
security2: Was für Sicherheitsrisiken kannst du dir vorstellen?

Bitte schreibe Deine Antwort hier:

* passwords1: Wie oft pro Woche verwendest du Passwörter oder PINs (privat oder in der
Öffentlichkeit)?

Bitte schreibe Deine Antwort hier:

* passwords2: Wie oft pro Woche gibst du Passwörter in der Öffentlichkeit ein?
Bitte schreibe Deine Antwort hier:

* softfactors: Bitte betrachte die folgenden Werte bei der Interaktion mit öffentlichen
Displays und bewerte wie wichtig dir die Eigenschaften jeweils sind. (1 = unwichtig, 5 = sehr
wichtig)

Bitte wähle die zutreffende Antwort aus:

Interaktionsgeschwindigkeit 1  2  3  4  5 

Sicherheit 1  2  3  4  5 

Einfachheit 1  2  3  4  5 

Design 1  2  3  4  5 

LimeSurvey http://www.tholex.de/survey/admin/admin.php?action=showpr...

5 von 12 28.05.2009 17:58 Uhr

Figure A.21: The survey the user-study participants had to fill out (page 5 of 12).

89



A APPENDIX

-2 -1 0 +1 +2

langsam schnell

einfach schwer

Connection methods
* bluetooth: Hast du zuvor schon jemals zwei Bluetooth-Geräte miteinander gekoppelt?

Bitte wähle nur eine der folgenden Antworten aus:

Ja

Nein

* qrcode: Hast du die zweidimensionalen Barcodes (QR-Codes) schon vorher gesehen?
Bitte wähle nur eine der folgenden Antworten aus:

Ja

Nein

[Bitte beantworte diese Frage nur, falls Deine Antwort 'Ja' war bei der Frage 'qrcode ']
qrcode2: Wo hast du solche Barcodes schonmal gesehen?

Bitte schreibe Deine Antwort hier:

[Bitte beantworte diese Frage nur, falls Deine Antwort 'Ja' war bei der Frage 'qrcode ']
* qrcode3: Hast du die Codes auch schon mal benutzt?

Bitte wähle nur eine der folgenden Antworten aus:

Ja

Nein

* 04qrcode: Während der Studie hast du die Verbindung zwischen öffentlichem Display und
mobilem Endgerät mit Hilfe eines solchen QR-Codes hergestellt? Bitte beurteile diese
Verbindungsmethode.

Bitte wähle die zutreffende Antwort aus:

* othermethods: Es wäre möglich andere Methoden zum herstellen einer Verbindung
zwischen dem Terminal und dem Endgerät zu verwenden. Bitte gib jeweils an wie geeignet
du eine solche Methode findest. (1 = überhaupt nicht geeignet, 5 = sehr geeignet)

Bitte wähle die zutreffende Antwort aus:

QR-Codes: Zweidimensionale Codes werden abfotografiert.
1  2 

3  4 

LimeSurvey http://www.tholex.de/survey/admin/admin.php?action=showpr...

6 von 12 28.05.2009 17:58 Uhr

Figure A.22: The survey the user-study participants had to fill out (page 6 of 12).

90



A APPENDIX

5 

Geräteliste: Das Terminal zeigt eine Liste der Geräte in der Nähe an,
man wählt sein eignes Gerät dem Namen nach aus.

1  2 

3  4 

5 

Tokenliste: Das Terminal zeigt eine Liste mit persönlichen
Identifikationssysbolen (Bildern) der Benutzer wählt sein Symbol.

1  2 

3  4 

5 

SyncTap: Am Handy und am Terminal wird gleichzeitig und für die
selbe Dauer eine bestimmte Taste gedrückt.

1  2 

3  4 

5 

NFC: Das mobile Endgerät wird sehr Nahe an einen bestimmten Ort
des Terminals gehalten und verbindet sich danach automatisch.

1  2 

3  4 

5 

Security and Asterisk
* sec: Während den verschiedenen Aufgaben haben sich bestimmte Felder aus
Sicherheitsgründen dynamisch an die Verbindung angepasst und eventuell keine
Informationen mehr angezeigt oder keine Eingabe mehr zugelassen. Ist dir dieses Verhalten
aufgefallen?

Bitte wähle nur eine der folgenden Antworten aus:

Ja

Nein

sec2: Gewisse sicherheitsrelevante Felder sperren ihre Eingabemöglichkeit auf dem
öffentlichen Display sobald der Benutzer sein mobiles Endgerät mit dem öffentlichen
Display verbunden hat. Wie findest du das?

Bitte wähle nur eine der folgenden Antworten aus:

das finde ich sinnvoll, somit weiß man gleich welche Felder sicherheitskritisch sind

ich möchte gerne immer selbst entscheiden wo ich die Werte eingebe

prinzipiell finde ich eine Sperre der Felder gut, aber ich die im test gesperrten felder
erschienen mir nicht sinnvoll

asterisk: Im Test, wurde der Betrag der zu bezahlen ist bei einer Handyverbindung nur am
mobilen Endgerät dargestellt. In der Praxis könnte das Verfahren zum Beispiel noch
benutzt werden, um an Geldautomaten den Kontostand nicht auf dem Monitor anzuzeigen.
Was hältst du davon?

LimeSurvey http://www.tholex.de/survey/admin/admin.php?action=showpr...

7 von 12 28.05.2009 17:58 Uhr

Figure A.23: The survey the user-study participants had to fill out (page 7 of 12).

91



A APPENDIX

Bitte wähle nur eine der folgenden Antworten aus:

das finde ich sinnvoll, damit ist das erspähen von Informationen schwerer

ich sehe lieber alle Werte auf einem Bildschirm, so muss ich immer hin und her
schauen

prinzipiell finde ich das Verstecken von Informationen gut, aber im Test wurde es
nicht sinnvoll eingesetzt

Auswertung des Tests
* mobileuse: Du hattest im Test die Möglichkeit Daten am Automaten mit Hilfe deines
mobilen Endgeräts einzugeben. Fandest du dieses System hilfreich. (Bitte gib eine
Begründung für deine Entscheidung an)

Bitte wähle nur eine der folgenden Antworten aus:

Ja

Nein
Bitte schreibe eine Kommentar zu Deiner Auswahl

* autocompletionuse: In zwei Szenarien konntest du auf bereits im mobilen Endgerät
hinterlegte Werte zurückgreifen (Autocompletion). Fandest du dieses Feature hilfreich oder
nicht? (Bitte gib eine Begründung an.)

Bitte wähle nur eine der folgenden Antworten aus:

Ja

Nein
Bitte schreibe eine Kommentar zu Deiner Auswahl

* security: Bitte bewerten Sie die Sicherheit der getesteten Verfahren (1 = nicht sicher, 5 =
sehr sicher)

Bitte wähle die zutreffende Antwort aus:

Nur Eingabe am öffentlichen Display 1  2  3  4 

5 

LimeSurvey http://www.tholex.de/survey/admin/admin.php?action=showpr...

8 von 12 28.05.2009 17:58 Uhr

Figure A.24: The survey the user-study participants had to fill out (page 8 of 12).

92



A APPENDIX

Eingabe aller Werte am Handy (ohne Autocompletion) 1  2  3  4 

5 

Eingabe sicherheitsrelvanter Werte am Handy (ohne
Autocompletion)

1  2  3  4 

5 

Eingabe aller Werte am Handy (mit Autocompletion) 1  2  3  4 

5 

Eingabe sicherheitsrelvanter Werte am Handy (mit
Autocompletion)

1  2  3  4 

5 

* speed: Bitte bewerten Sie die Geschwindigkeit der getesteten Verfahren (1 = sehr langsam,
5 = sehr schnell)

Bitte wähle die zutreffende Antwort aus:

Nur Eingabe am öffentlichen Display 1  2  3  4 

5 

Eingabe aller Werte am Handy (ohne Autocompletion) 1  2  3  4 

5 

Eingabe sicherheitsrelvanter Werte am Handy (ohne
Autocompletion)

1  2  3  4 

5 

Eingabe aller Werte am Handy (mit Autocompletion) 1  2  3  4 

5 

Eingabe sicherheitsrelvanter Werte am Handy (mit
Autocompletion)

1  2  3  4 

5 

* simplicity: Bitte bewerten Sie die Einfachheit der getesteten Verfahren (1 = sehr
kompliziert, 5 = sehr einfach)

Bitte wähle die zutreffende Antwort aus:

Nur Eingabe am öffentlichen Display 1  2  3  4 

5 

Eingabe aller Werte am Handy (ohne Autocompletion) 1  2  3  4 

5 

Eingabe sicherheitsrelvanter Werte am Handy (ohne
Autocompletion)

1  2  3  4 

5 

LimeSurvey http://www.tholex.de/survey/admin/admin.php?action=showpr...

9 von 12 28.05.2009 17:58 Uhr

Figure A.25: The survey the user-study participants had to fill out (page 9 of 12).

93



A APPENDIX

-2 -1 0 +1 +2

langsam schnell

ungewohnt gewohnt

unsicher sicher

schlecht bedienbar bedienungsfreundlich

unpraktisch praktisch

-2 -1 0 +1 +2

langsam schnell

ungewohnt gewohnt

unsicher sicher

schlecht bedienbar bedienungsfreundlich

unpraktisch praktisch

Eingabe aller Werte am Handy (mit Autocompletion) 1  2  3  4 

5 

Eingabe sicherheitsrelvanter Werte am Handy (mit
Autocompletion)

1  2  3  4 

5 

* usage: Wenn Du die Möglichkeit hättest ab heute dein Handy an vielen öffentlichen
Displays zu verwenden welche Technik würdest du einsetzen?

Bitte wähle nur eine der folgenden Antworten aus:

Nur Eingabe am öffentlichen Display

Eingabe aller Werte am Handy (ohne Autocompletion)

Eingabe sicherheitsrelvanter Werte am Handy (ohne Autocompletion)

Eingabe aller Werte am Handy (mit Autocompletion)

Eingabe sicherheitsrelvanter Werte am Handy (mit Autocompletion)

[Bitte beantworte diese Frage nur, falls Deine Antwort 'Nur Eingabe am öffentlichen Display ' war
bei der Frage 'usage ']
* best1: Du hast ausgewählt, dass die klassische Eingabemethode dir am liebsten ist, bitte
vergleiche die klassische Eingabemethode mit den anderen Methoden. Die klassische
Eingabemethode ist....

Bitte wähle die zutreffende Antwort aus:

[Bitte beantworte diese Frage nur, falls Deine Antwort 'Eingabe aller Werte am Handy (ohne
Autocompletion) ' war bei der Frage 'usage ']
* best2: Du hast ausgewählt, dass die Eingabe von allen Werten am Handy ohne
Autocopmletion die am liebsten ist. Bitte vergleiche diese Methode mit der klassischen
Eingabe ohne Handy. Die neuartige Methode ist....

Bitte wähle die zutreffende Antwort aus:

LimeSurvey http://www.tholex.de/survey/admin/admin.php?action=showpr...

10 von 12 28.05.2009 17:58 Uhr

Figure A.26: The survey the user-study participants had to fill out (page 10 of 12).

94



A APPENDIX

-2 -1 0 +1 +2

langsam schnell

ungewohnt gewohnt

unsicher sicher

schlecht bedienbar bedienungsfreundlich

unpraktisch praktisch

-2 -1 0 +1 +2

langsam schnell

ungewohnt gewohnt

unsicher sicher

schlecht bedienbar bedienungsfreundlich

unpraktisch praktisch

-2 -1 0 +1 +2

langsam schnell

ungewohnt gewohnt

unsicher sicher

schlecht bedienbar bedienungsfreundlich

unpraktisch praktisch

[Bitte beantworte diese Frage nur, falls Deine Antwort 'Eingabe sicherheitsrelvanter Werte am
Handy (ohne Autocompletion) ' war bei der Frage 'usage ']
* best3: Du hast ausgewählt, dass die Eingabe von sicherheitsrelevanten Werte am Handy
ohne Autocompletion dir am liebsten ist. Bitte vergleiche diese Methode mit der klassischen
Eingabe ohne Handy. Die neuartige Methode ist....

Bitte wähle die zutreffende Antwort aus:

[Bitte beantworte diese Frage nur, falls Deine Antwort 'Eingabe aller Werte am Handy (mit
Autocompletion) ' war bei der Frage 'usage ']
* best4: Du hast ausgewählt, dass die Eingabe von allen Werten am Handy mit
Autocompletion dir am liebsten ist. Bitte vergleiche diese Methode mit der klassischen
Eingabe ohne Handy. Die neuartige Methode ist....

Bitte wähle die zutreffende Antwort aus:

[Bitte beantworte diese Frage nur, falls Deine Antwort 'Eingabe sicherheitsrelvanter Werte am
Handy (mit Autocompletion) ' war bei der Frage 'usage ']
* best5: Du hast ausgewählt, dass die Eingabe von sicherheitsrelevanten Werten am Handy
mit Autocompletion dir am liebsten ist. Bitte vergleiche diese Methode mit der klassischen
Eingabe ohne Handy. Die neuartige Methode ist....

Bitte wähle die zutreffende Antwort aus:

comments: Hast du abschließend noch Anmerkungen zum Test, zu den Prototypen oder
allgemeine Hinweise?

LimeSurvey http://www.tholex.de/survey/admin/admin.php?action=showpr...

11 von 12 28.05.2009 17:58 Uhr

Figure A.27: The survey the user-study participants had to fill out (page 11 of 12).

95



A APPENDIX

Bitte schreibe Deine Antwort hier:

Absenden der Umfrage.
Vielen Dank für die Beantwortung des Fragebogens..

LimeSurvey http://www.tholex.de/survey/admin/admin.php?action=showpr...

12 von 12 28.05.2009 17:58 Uhr

Figure A.28: The survey the user-study participants had to fill out (page 12 of 12).

96



A APPENDIX

Participant comments during the user-study 
 

1. Zu viele Schritte 
2. Blick auf den Bildschirm Eingabe am Handy 

3. Radio Button auch gleich per Handy eingegeben 
4. Ende des Formulars nicht ersichtlich 

5. Normalerweise mehr Werte für auto-completion 
6. Keine Summary am Ende des Verkaufsvorgangs 

7. Feldeingaben einschränken auf Datentyp 
8. OK-Button 

9. Hintergrundgrafik auf dem Mobiltelefon irritiert 
10. Audio Feedback bei Eingaben am Nokia Handy positiv 

11. Gesicherte Felder nicht nur durch grau sondern auch durch ein Symbol 
kennzeichnen 

12. Caret wird nicht mitsynchronisiert 
13. Auto-completion bei der Eingabe 

14. Ablagefläche am Automaten wäre sinnvoll 
15. Berechtigung für Foto und Netzwerk störend 

16. Backspace und Weiter auf dem Mobiltelefon verwechselt und roter Hörer 
(Beenden) liegen sehr dich beieinander 

17. Dadurch dass kein Zwang zum Verbindungsaufbau besteht, will man sofort mit 
der Eingabe loslegen 

18. Auto-ccompletion-Felder sind nicht immer zusammen mit dem Eingabefeld 
sichtbar 

19. Auto-completion geht „Zack zack“ 
20. Betrag wird angezeigt 

21. Probanden wurde die #-Taste für den Zahleneingabemodus erklärt 
22. Häufig wurde für die Namenseingabe der Kreditkarte auch das Hand verwendet 

damit kein Diplaywechselt gemacht werden musste 
23. Foto machen „gar nicht so einfach“ 

24. Kreditkartendaten häufig komplett ins Monatsfeld geschrieben 
25. „Komisch wenn man am Terminal arbeitet und den Betrag woanders suchen 

muss“ 
26. UTF-8 Fehler keine Sonderzeichen und Umlaute 

27. „Ein Display zuviel!“ 
28. „Kreditkartenummer wird nicht angezeigt! Das ist gut!“ 

 

Figure A.29: Individual comments given by participants during the user-study.

97



A APPENDIX

98



Contents of Enclosed CD

• Client source code

• Client documentation

• Framework source code

• Framework documentation

• User study application

• User study evaluation

• User study diagrams

• User study log-files

• Related work

• Diploma Thesis (PDF)

• Diploma Thesis (LATEX-file including figures)

99



100



References

[1] S. Berger, R. Kjeldsen, C. Narayanaswami, C. Pinhanez, M. Podlaseck and M. Raghunath,
Using Symbiotic Displays to View Sensitive Information in Public. In: PerCom: Third
IEEE International Conference on Pervasive Computing and Communications, Koloa, Kauai,
Hawaii, IEEE Computer Society, Washington, DC, USA, 139–148, 2005.

[2] BlueCove Team, BlueCove documentation. WWW page, accessed 12-June-2009.
URL http://www.bluecove.org

[3] M. Claßen, Xparse-J XML Parser for Java. WWW page, accessed 12-June-2009.
URL http://www.webreference.com/xml/tools/

[4] W. Claycomb and D. Shin, Secure Real World Interaction Using Mobile Devices. In: Pro-
ceedings of the Pervasive Mobile Interaction Devices Workshop, Dublin, Ireland, 2006.

[5] L. Coventry, A. D. Angeli and G. Johnson, Usability and biometric verification at the ATM
interface. In: CHI ’03: Proceedings of the SIGCHI conference on Human factors in comput-
ing systems, Ft. Lauderdale, Florida, USA, ACM, 153–160, 2003.

[6] A. De Luca and B. Frauendienst, A Privacy-Respectful Input Method For Public Terminals.
In: Proceedings of the 5th Nordic conference on Human-computer interaction: building
bridges, Lund Sweden, ACM, New York, NY, USA, 455–458, 2008.

[7] A. De Luca, R. Weiss and H. Drewes, Evaluation of eye-gaze interaction methods for security
enhanced PIN-entry. In: OZCHI ’07: Proceedings of the 19th Australasian conference on
Computer-Human Interaction, Adelaide, SA, Australia, ACM, New York, NY, USA, 199–
202, 2007.

[8] A. De Luca, E. von Zezschwitz and H. Hußmann, VibraPass: secure authentication based on
shared lies. In: CHI ’09: Proceedings of the 27th international conference on Human factors
in computing systems, Boston, MA, USA, ACM, New York, NY, USA, 913–916, 2009.

[9] Denso-Wave Inc., QR Code.com. WWW page, accessed 12-June-2009.
URL http://www.denso-wave.com/qrcode/index-e.html

[10] T. Deyle and V. Roth, Accessible Authentication via Tactile PIN Entry. In: CG Topics, 3,
2006.

[11] H. Drewes, A. De Luca and A. Schmidt, Eye-gaze interaction for mobile phones. In: Mobil-
ity ’07: Proceedings of the 4th international conference on mobile technology, applications,
and systems and the 1st international symposium on Computer human interaction in mobile
technology, Singapore, ACM, New York, NY, USA, 364–371, 2007.

[12] H. Drewes and A. Schmidt, Interacting with the Computer Using Gaze Gestures. In: Human-
Computer Interaction, volume 4663 of Lecture Notes in Computer Science, Springer, Berlin,
Germany, 475–488, 2008.

[13] FierceWireless, Mobile Connections Reach 4 Billion Worldwide. WWW page, accessed
12-June-2009.
URL http://www.fiercewireless.com/press-releases/
mobile-connections-reach-4-billion-worldwide?utm_medium=nl&utm_source=
internal&cmp-id=EMC-NL-FW&dest=FW

101

http://www.bluecove.org
http://www.webreference.com/xml/tools/
http://www.denso-wave.com/qrcode/index-e.html
http://www.fiercewireless.com/press-releases/mobile-connections-reach-4-billion-worldwide?utm_medium=nl&utm_source=internal&cmp-id=EMC-NL-FW&dest=FW
http://www.fiercewireless.com/press-releases/mobile-connections-reach-4-billion-worldwide?utm_medium=nl&utm_source=internal&cmp-id=EMC-NL-FW&dest=FW
http://www.fiercewireless.com/press-releases/mobile-connections-reach-4-billion-worldwide?utm_medium=nl&utm_source=internal&cmp-id=EMC-NL-FW&dest=FW


[14] Financial Services Technology, Please enter your four-digit pin. WWW page, accessed
12-June-2009.
URL http://www.fsteurope.com/article/Issue-3/AML-AND-IT-Security/
Please-enter-your-four-digit-pin/

[15] Google Inc., ZXing ("Zebra Crossing"). WWW page, accessed 12-June-2009.
URL http://code.google.com/p/zxing

[16] L. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl and H.-W. Gellersen, Smart-Its
Friends: A Technique for Users to Easily Establish Connections between Smart Artefacts. In:
Ubicomp 2001: Ubiquitous Computing, Atlanta, Georgia, USA, Springer, Berlin, Germany,
116–122, 2001.

[17] J. Hunter, JDOM. WWW page, accessed 12-June-2009.
URL http://www.jdom.org

[18] H. M. Hutchings and J. S. Pierce, Understanding the whethers, hows, and whys of divisible
interfaces. In: AVI ’06: Proceedings of the working conference on advanced visual inter-
faces, Venezia, Italy, ACM, New York, NY, USA, 274–277, 2006.

[19] M. Kumar, T. Garfinkel, D. Boneh and T. Winograd, Reducing shoulder-surfing by using
gaze-based password entry. In: SOUPS ’07: Proceedings of the 3rd symposium on Usable
privacy and security, Pittsburgh, PA, USA, ACM, New York, NY, USA, 13–19, 2007.

[20] B. Malek, M. Orozco and A. El Saddik, Novel shoulder-surfing resistant haptic-based graph-
ical password. In: Proceedings of the 6th EuropHaptics conference, Paris, France, 2006.

[21] Massachusetts Institute of Technology, Luther Simjian. WWW page, accessed 6-May-2009.
URL http://web.mit.edu/invent/iow/simjian.html

[22] B. Miligan, The man who invented the cash machine. WWW page, accessed 6-May-2009.
URL http://news.bbc.co.uk/2/hi/business/6230194.stm

[23] Mozilla Corporation, XML User Interface Language (XUL). WWW page, accessed 14-May-
2009.
URL http://www.mozilla.org/projects/xul/

[24] Mozilla Corporation, XUL Tutorial - Adding Buttons. WWW page, accessed 12-June-2009.
URL https://developer.mozilla.org/en/XUL_Tutorial/Adding_Buttons

[25] B. A. Myers, Using handhelds and PCs together. In: Communications of the ACM,
44(11):34–41, 2001.

[26] Nokia, Nokia - Devices. WWW page, accessed 12-June-2009.
URL http://www.nokia.com/A4630648?category=n80#

[27] Nokia Inc., Technical specifications - Nokia N80 Internet Edition. WWW page, accessed
12-June-2009.
URL http://www.nokiausa.com/find-products/phones/
nokia-n80-internet-edition/technical-specifications

[28] W. Paulus, SWIXML - Generate javax.swing at runtime based on XML descriptors. WWW
page, accessed 12-June-2009.
URL http://www.swixml.org

[29] W. Paulus, swixml tags. WWW page, accessed 12-June-2009.
URL http://www.swixml.org/tagdocs/index.html

102

http://www.fsteurope.com/article/Issue-3/AML-AND-IT-Security/Please-enter-your-four-digit-pin/
http://www.fsteurope.com/article/Issue-3/AML-AND-IT-Security/Please-enter-your-four-digit-pin/
http://code.google.com/p/zxing
http://www.jdom.org
http://web.mit.edu/invent/iow/simjian.html
http://news.bbc.co.uk/2/hi/business/6230194.stm
http://www.mozilla.org/projects/xul/
https://developer.mozilla.org/en/XUL_Tutorial/Adding_Buttons
http://www.nokia.com/A4630648?category=n80#
http://www.nokiausa.com/find-products/phones/nokia-n80-internet-edition/technical-specifications
http://www.nokiausa.com/find-products/phones/nokia-n80-internet-edition/technical-specifications
http://www.swixml.org
http://www.swixml.org/tagdocs/index.html


[30] J. Pierce and H. Mahaney, Opportunistic Annexing for Handheld Devices: Opportunities and
Challenges. In: Proceedings of HCIC, Georgia Institute of Technology, Atlanta, Georgia,
USA, 2004.

[31] J. Rekimoto, Y. Ayatsuka and M. Kohno, SyncTap: An Interaction Technique for Mobile
Networking. In: Human-Computer Interaction with Mobile Devices and Services, Springer,
Berlin, Germany, 104–115, 2003.

[32] V. Roth, K. Richter and R. Freidinger, A PIN-entry method resilient against shoulder surfing.
In: CCS ’04: Proceedings of the 11th ACM conference on Computer and communications
security, Washington, DC, USA, ACM, New York, NY, USA, 236–245, 2004.

[33] H. Sasamoto, N. Christin and E. Hayashi, Undercover: Authentication usable in front of
prying eyes. In: CHI ’08: Proceeding of the twenty-sixth annual SIGCHI conference on
human factors in computing systems, Florence, Italy, ACM, New York, NY, USA, 183–192,
2008.

[34] R. Sharp, J. Scott and A. R. Beresford, Secure Mobile Computing Via Public Terminals. In:
PERVASIVE 2006: Proceedings of the 4th international conference on pervasive computing,
Dublin, Ireland, Springer, Berlin, Germany, 238–253, 2006.
URL http://www.springerlink.com/content/q8xp21281q777k14/

[35] B. Shneiderman and C. Plaisant, Designing the user interface. Pearson Education, 2005.

[36] Statistisches Bundesamt Deutschland, Einkommens- und Verbrauchsstichprobe (EVS).
WWW page, accessed 6-May-2009.
URL http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/
Internet/DE/Content/Statistiken/WirtschaftsrechnungenZeitbudgets/
EinkommensVerbrauchsstichproben/Tabellen/Content75/
AusstattungprivaterHaushalteInformationstechnik,templateId=renderPrint.
psml

[37] Sun Microsystems, Inc., Java ME Technology. WWW page, accessed 12-June-2009.
URL http://java.sun.com/javame/technology/index.jsp

[38] Sun Microsystems, Inc., Overview (MID Profile). WWW page, accessed 12-June-2009.
URL http://java.sun.com/javame/reference/apis/jsr118/

[39] Sun Microsystems, Inc., RecordStore (MID Profile). WWW page, accessed 12-June-2009.
URL http://java.sun.com/javame/reference/apis/jsr118/javax/
microedition/rms/RecordStore.html

[40] X. Suo, Y. Zhu and G. S. Owen, Graphical Passwords: A Survey. In: ACSAC: Proceedings
of the 21st Annual Computer Security Applications Conference, Los Alamitos, CA, USA,
IEEE Computer Society, Washington, DC, USA, 463–472, 2005.

[41] D. S. Tan, P. Keyani and M. Czerwinski, Spy-resistant keyboard: More secure password
entry on public touch screen displays. In: OZCHI ’05: Proceedings of the 17th Australia
conference on Computer-Human Interaction, Canberra, Australia, Computer-Human Inter-
action Special Interest Group (CHISIG) of Australia, Narrabundah, Australia, 1–10, 2005.

[42] The Legion of the Bouncy Castle, bouncycastle.org. WWW page, accessed 12-June-2009.
URL http://www.bouncycastle.org

[43] twit88.com, .NET QRCode Library. WWW page, accessed 12-June-2009.
URL http://www.twit88.com/home/opensource/qrcode

103

http://www.springerlink.com/content/q8xp21281q777k14/
http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/DE/Content/Statistiken/WirtschaftsrechnungenZeitbudgets/EinkommensVerbrauchsstichproben/Tabellen/Content75/AusstattungprivaterHaushalteInformationstechnik,templateId=renderPrint.psml
http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/DE/Content/Statistiken/WirtschaftsrechnungenZeitbudgets/EinkommensVerbrauchsstichproben/Tabellen/Content75/AusstattungprivaterHaushalteInformationstechnik,templateId=renderPrint.psml
http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/DE/Content/Statistiken/WirtschaftsrechnungenZeitbudgets/EinkommensVerbrauchsstichproben/Tabellen/Content75/AusstattungprivaterHaushalteInformationstechnik,templateId=renderPrint.psml
http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/DE/Content/Statistiken/WirtschaftsrechnungenZeitbudgets/EinkommensVerbrauchsstichproben/Tabellen/Content75/AusstattungprivaterHaushalteInformationstechnik,templateId=renderPrint.psml
http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/DE/Content/Statistiken/WirtschaftsrechnungenZeitbudgets/EinkommensVerbrauchsstichproben/Tabellen/Content75/AusstattungprivaterHaushalteInformationstechnik,templateId=renderPrint.psml
http://java.sun.com/javame/technology/index.jsp
http://java.sun.com/javame/reference/apis/jsr118/
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/rms/RecordStore.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/rms/RecordStore.html
http://www.bouncycastle.org
http://www.twit88.com/home/opensource/qrcode


[44] S. Wiedenbeck, J. Waters, L. Sobrado and J.-C. Birget, Design and evaluation of a shoulder-
surfing resistant graphical password scheme. In: AVI ’06: Proceedings of the working con-
ference on advanced visual interfaces, Venezia, Italy, ACM, New York, NY, USA, 177–184,
2006.

[45] Wikipedia, The Free Encyclopedia, Java APIs for Bluetooth. Accessed 11-May-2009.
URL http://en.wikipedia.org/w/index.php?title=Java_APIs_for_
Bluetooth&oldid=284221501

[46] Wikipedia, The Free Encyclopedia, Model-View-Controller. WWW Page, [accessed 26-
January-2009].
URL http://en.wikipedia.org/w/index.php?title=
Model-View-Controller&oldid=266636108

[47] Wikipedia, The Free Encyclopedia, QR Code. Accessed 10-May-2009.
URL http://en.wikipedia.org/w/index.php?title=QR_Code&oldid=287838386

104

http://en.wikipedia.org/w/index.php?title=Java_APIs_for_Bluetooth&oldid=284221501
http://en.wikipedia.org/w/index.php?title=Java_APIs_for_Bluetooth&oldid=284221501
http://en.wikipedia.org/w/index.php?title=Model-View-Controller&oldid=266636108
http://en.wikipedia.org/w/index.php?title=Model-View-Controller&oldid=266636108
http://en.wikipedia.org/w/index.php?title=QR_Code&oldid=287838386

	Introduction
	Motivation
	Goals
	Structure of this Document

	Related Work
	Password Entry Methods
	Black and White PIN Pad
	Spy-Resistant Keyboard
	Pressure-Based Graphical Password
	Shoulder-Surfing Resistant Password Scheme
	VibraPass
	Tactile PIN Entry
	Undercover

	Mobile User Interfaces
	Secure Mobile Computing

	Other Approaches
	Biometric Verification at ATM Interfaces
	Gaze-Based Password Entry
	Eye-Gaze Interaction for PIN-Entry

	Connection Methods
	SyncTap Connection
	QR-Code Connection

	Separation of SeCuUI

	SeCuUI
	What is SeCuUI?
	The three Steps
	XML User Interfaces
	Auto-Complete Using the Mobile Device

	Utilized Hardware and Software
	BlueCove
	SwiXml
	Xparse-J
	JDOM
	BouncyCastle
	Google ZXing
	Nokia N80

	SeCuUI Framework
	Working with the Framework
	XUL
	Modifications Made to XUL

	Auto-Complete Feature
	Framework Components
	framework-package
	ui-package
	qrCode-package
	connection-package
	components-package

	Building an application with the SeCuUI framework

	Client Application
	Auto-Complete Feature
	QR-Code Connection
	Java ME
	Java ME Record Store

	Client Components
	client-package
	connection-package
	methods-package
	qrCode-package

	Using the Client-Application
	Connection and Entering Data
	Removing an Auto-Complete Entry


	Evaluation
	The Application Prototype
	Deutsche Bahn and Kinomaxx
	The Different Tasks
	Test Setup and Procedure
	Hypotheses
	The Questionnaire
	Results
	Demographic Evaluation
	Technical Abilities
	Usage of Mobile Devices
	Usage of Vending Machines
	Task Results
	Different Connection Methods
	Security and Asterisk-Mode
	Participant Overall-Rating
	Suggestions for Improvement


	Conclusion
	Results
	Future Work

	Appendix

