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Abstract
Behavioural biometric systems are based on the premise that
human behaviour is hard to intentionally change and imitate.
So far, changing input behaviour has been studied with the
goal of supporting mimicry attacks. Going beyond attacks,
this paper presents the first study on understanding users’ abil-
ity to modify their typing behaviour when entering passwords
on smartphones. In a prestudy (N=114), we developed visual
text annotations to communicate modifications of typing be-
haviour (for example, gap between letters indicates how fast
to move between keys). In a lab study (N=24), participants
entered given passwords with such modification instructions
on a smartphone in two sessions a week apart. Our results
show that users successfully control and modify typing fea-
tures (flight time, hold time, touch area, touch-to-key offset),
yet certain combinations are challenging. We discuss impli-
cations for usability and security of mobile passwords, such
as informing behavioural biometrics for password entry, and
extending the password space through explicit modifications.

1 Introduction

The way we type on physical and on-screen keyboards is
remarkably individual: Many studies have shown that people
can be identified based on their typing rhythm [36], finger
placement [11], and other such features of typing and touch
behaviour [8,37,44]. This approach can be used, for example,
to block unwanted access to technical systems, accounts, and
personal mobile devices: Even if attackers gain knowledge of
a password, they also have to enter it with the same behaviour
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as the legitimate user. The underlying assumption of such
behavioural biometric authentication systems is that humans
differ implicitly in how they type.

We present the first systematic exploration of a funda-
mentally different view: We study how users explicitly mod-
ify commonly utilised biometric features of their typing be-
haviour. Our goal in this paper is not to design a new authen-
tication system but to better understand users’ fundamental
ability to control their typing behaviour. Better understanding
such an ability to intentionally modify interaction behaviour
is important in the light of a growing number of biometric
security systems, as illustrated with the following use-cases:

Extending the password space: Instead of only using differ-
ent characters to compose a password, each character could
be entered in a different manner. For instance, although both
use the same eight characters, “password” is different from
“pass[hold long]word”, where the user keeps the second “s”
pressed for longer than her usual behaviour.

Avoid leaking “natural” behaviour: As more and more sys-
tems process behaviour, it might be a viable strategy for users
to intentionally modify behaviour for some. For example, a
user might authenticate on a work laptop using a modified
typing rhythm when giving a presentation, to not reveal her
“natural” typing behaviour, which she uses in (other) biomet-
ric systems, to a potential attacker. This strategy might also
be used for authentication on the web or filling in a form in
an unsafe environment, e.g., when using an unknown device.

Recovering from a leak of behavioural data: A leak of
behavioural information implies that this biometric can no
longer be used if we assume that behaviour is unchangeable.
However, this is worth challenging. As an analogue example,
some people decide to intentionally change the way they write
their signature. Similarly, it might be possible to intentionally
change, for example, password typing behaviour features to
recover from a leak to be able to continue using this biometric.

In all these examples, users have reasons to intentionally
modify aspects of their behaviour which they do not need to
control for the underlying input method (e.g., typing rhythm
does not matter for entering an email). Prior work on inten-



tional changes of typing behaviour has exclusively studied
this ability for attackers with technical support [4, 23, 24] or
for limited features in desktop settings without changes and
learning over time [14, 21, 33]. Thus, it still remains unclear
to what extent users can control and modify fundamental
biometric features of their mobile touch typing behaviour.

We address this gap by contributing: (1) Visual text an-
notations to communicate typing behaviour modifications,
developed in a prestudy (N=114). (2) A lab study (N=24)
using this scheme to investigate intentional modifications for
different features and their combinations, for password typ-
ing on smartphones in two sessions a week apart. Based on
the results, we discuss implications for mimicry attacks, re-
search on behavioural biometrics, and usable passwords with
intentional modifications.

The paper is structured as follows: After discussing related
work (2), we develop a visualisation of typing behaviour (3),
followed by our study design (4) and results (5) on intentional
behaviour modifications. We conclude with a discussion (6).

2 Related Work

In this section, we relate our work to research on keystroke
biometrics and mimicry attacks. These areas motivate our
investigation of intentional modification of typing features
and our choice of the specific features we studied.

2.1 Keystroke Biometrics
Our work is related to keystroke biometrics (or “keystroke
dynamics”), which describe users’ individual behavioural
characteristics when entering text on a keyboard. This in-
formation can be used by the system to identify users, for
example, to protect accounts, devices, and data. A rich body
of related work examined this idea first for typing on phys-
ical desktop keyboards (for example, [29, 30]; survey [36]),
then on early mobile phones with physical keys (for exam-
ple, [7, 13, 15, 21, 22, 25, 46]). More recent work investigated
keystroke biometrics for on-screen typing on smartphones
(for example, [10, 11, 16, 44]; recent survey [37]), including
keyboards operated via gestures instead of tapping [8].

For entering passwords in particular, recognising users
based on how they enter the secret word provides an extra (im-
plicit) layer of security [11], for example, to protect against
cases in which the attacker got to know the password via
shoulder surfing [32], smudge [2, 41] or thermal attacks [1].

Due to the origin of keystroke biometrics on physical desk-
top keyboards, the most commonly used typing behaviour
features are temporal [36]: Users’ typing is characterised by
their typical hold times (i.e., time between key down and up
event), and flight times (i.e., time between key up and down
on the next key). Mobile touch devices offer further spatial
features, such as touch area and offsets between touch loca-
tions and key centres. Offsets, in particular, showed higher

(a) Touch mimicry with techni-
cal support [23].

(b) Keystroke mimicry sup-
ported with AR [24].

(c) Signature forgery without
technical support [4].

(d) Visualisation to support keystroke mimicry on a PC [38].

Figure 1: Several examples from related work for supporting
mimicry attacks on (a) touch biometrics, (b, d) keystroke
biometrics and (c) signatures. Images taken from cited papers.

biometric value, that is, they facilitated more accurate distinc-
tion of users [10, 11]. Related work motivates our choice of
features: hold time, flight time, offsets, and touch area.

In summary, related work on typing behavioural biometrics
used features as they occur “naturally” as an implicit part
of typing. Our work is fundamentally different: We examine
these typing features as explicit and actively controlled by
users, for example to increase the password space. In particu-
lar, we study how well users can indeed control these features
when entering passwords on a smartphone.

2.2 Mimicry Attacks

Attacks on keystroke biometric systems can be performed
either automated or manually. Automated attacks use gener-
ative models to synthesise forgeries from observed data and
were shown to be effective against handwritten signatures [4]
and keystroke dynamics on a PC [28,31,34]. Some work also
tested such attacks when proposing a new keystroke biometric
system. For example, Stefan et al. found their system resistant
against inputs generated from a first-level Markov model [35].

The most commonly considered attack on behavioural bio-
metric systems is the so-called mimicry attack: Here, an im-
postor tries to manually reproduce (mimic) the (known) be-
haviour of a legitimate user to gain access.



(a) ‘Bold Letter’ using bold font to indicate large touch area
and circle size for hold time. Circle location shows offset, key
gaps indicate flight time.

(b) ‘Long Key’ using circle size for touch area and key width
for hold time. Same as above: Circle location shows offset,
key gaps indicate flight time.

Figure 2: Main design candidates for visualising target fea-
ture values for studying intentional behaviour modifications.
Both were evaluated in our prestudy. Based on the results we
decided to use the ‘Long Key’ concept for our main study.

As a simple case, a zero-effort attacker model evaluates a
biometric system against natural behaviour collected of other
users who did not intend to actually bypass the system. While
this model has been commonly used to evaluate vulnerability
of behavioural biometric systems, related work found that it
underestimates attack success [4, 31]. This calls for evalua-
tions with means for more skilled and targeted attacks.

To support attackers in launching successful mimicry at-
tacks they need to know the behaviour to imitate. In the case of
handwritten text, for example, this could be a sample signature
(cf. Figure 1–c). Researchers mounted successful mimicry at-
tacks against touch input behaviour [23], keystroke dynamics
on a PC [38], and keystroke dynamics on mobile phones [24].

Key to those attacks were systems which both visualise the
target behaviour and provide the attacker with feedback on
their attempts (cf. Figure 1). For example, Khan et al. [24]
used augmented reality using a phone’s camera to show vi-
sual cues on top of its view on another phone’s keyboard.
This guided correct timing and touch behaviour. In another
approach they used audio stimuli to guide the timings.

In summary, prior work used representations and active
modifications of typing behaviour to support mimicry attacks.
In contrast, we aim to better understand the human ability to
control mobile typing behaviour per se.

3 Prestudy: Developing a Visual Representa-
tion for Typing Behaviour Modifications

3.1 Selection of Features
There are a multitude of possible features that can be used for
biometric authentication in the context of mobile touch inter-
action. An extensive list was compiled by related work [11]
and covers 24 spatial, temporal and contact features. Khan et

al. [24] found this extensive feature set hard to simultaneously
control for their mimicry attack. They thus removed highly
correlated features, resulting in a set of six: key hold time,
flight time, down pressure, down area, down x, and down y.

We combine x and y together as touch offset. Furthermore,
pressure and area were highly correlated on our test devices,
since most Android phones1 estimate pressure from area. We
thus decided to omit pressure and used area directly.

To sum up, we decided to study a set of four features,
namely touch area, flight time, hold time and touch-to-key-
offset with the latter being two-dimensional (x, y).

3.2 Visualisation Design

We developed several designs that communicate modifications
of the four features to instruct participants, for example, to per-
form a long key press for the second character in a password.
We first tried simple markup (e.g., p. – . ȧs . . sw. –ȯr . d—) but
found this representation to become cluttered quickly and to
offer very limited expressiveness.

We thus chose a pictorial approach: We showed letters with
a key metaphor to visualise behavioural changes (Figure 2).
We explored a range of possible visual features, including
offsetting the key or its label, writing bold or italic, and using
underscores and coloured dots.

We narrowed the options down to two final designs (cf.
Figure 2). Both used whitespace gaps between keys to indicate
flight time and a red dot to indicate touch offset. One variant
(‘Bold Letter’) visualised larger touch area by rendering the
key in bold, and used the size of the offset dot to represent
hold time. The other (‘Long Key’) used the size of the dot
to visualise touch area, and key width to show longer hold
time. While ‘Bold Letter’ resulted in a more compact format,
‘Long Key’ unified both temporal features on a shared axis
(time flows from left to right). We conducted an online survey
to determine our final design.

3.3 Online Survey

3.3.1 Survey Design and Procedure

To assess intuitiveness and readability of our designs, we
created an online survey which showed example passwords
with visualised modifications. Participants had to indicate
which parts of the visualisation were used to encode which
behavioural cues, without prior explanations. People did this
for both designs in counterbalanced order. Afterwards, they
were asked to rate on a 5-point Likert scale how intuitive and
readable they found the two visualisations.

The survey was distributed over a university mailing list. It
took 5 minutes to complete. Participants had a chance to win
a e10 gift voucher.

1We used LG G6 phones in our study.



3.3.2 Results

A total of 114 participants answered our survey (56 % female;
mean age 27 years, range 18 to 63 years). Both offset and
flight time were correctly interpreted by 90 % of the partic-
ipants for both designs. Area and hold time were correctly
interpreted by 81 % and 82 % in the ’Long Key’ condition,
respectively. However, these two features were only correctly
interpreted by 50 % and 51 % in the ‘Bold Letter’ condi-
tion. ‘Long Key’ was rated as more intuitive (median=agree,
median_bold=neutral) but ‘Bold Letter’ was rated to be
more readable (median=strongly agree, median_long=agree).
When asked for their preferred method, 59 % of the partici-
pants reported the ‘Long Key’ notation while 39 % voted for
the ’Bold Letter’ visualisation. The rest had no preference.

3.4 Final Visual Representation
We decided to use the ‘Long Key’ visualisation: It has the
advantage of encoding temporal features on a shared axis and
all features allow for continuous representation of values (in
contrast to the binary bold letter).

In conclusion, we used the following visual encoding
shown in Figure 2–b: Touch-to-key-offset is marked by a red
dot at the position where the key should be touched. Flight
time is represented by a whitespace gap between two key
rectangles that scales with duration. Analogously, hold time
is represented by scaling the width of the key rectangle with
duration. Finally touch area is visualised by the size of the
red dot used for offset (larger size indicates larger area).

4 Main Study

4.1 Study Design
As our study design is quite complex, the following subsec-
tions each explain one main component. The most complex
one is task, which is given both as an overview and in detail.

4.1.1 Passwords

In general, participants had to repeatedly enter given pass-
words (“football”, “princess”, “password”). While these three
are obviously not great passwords in terms of security, we
selected them since they have comparable properties and are
common passwords2. Moreover, they do not require switch-
ing keyboard mode (e.g., between characters and symbols),
which we wanted to avoid as a simplification for this first
investigation into intentional typing behaviour modification.
Similarly, we favoured simple passwords to ensure that task
difficulty was mainly determined by behaviour variations and
not affected by memorability or search time for rare symbols.

2https://www.teamsid.com/worst-passwords-2016/, last ac-
cessed 20.02.2019

4.1.2 Features

We studied intentional modification of four features: touch-to-
key-offset (on five levels: centre/left/right/top/bottom), flight
time and hold time (both on two levels: default/long), as well
as touch area (on two levels: default/large).

4.1.3 Tasks

Participants solved 37 tasks, each using one of the three pass-
words. The tasks differed in various aspects, described below.
While the design is complex, the overall goal was to cover
six aspects, namely (1) different passwords with (2) different
feature modifications at (3) different locations within each
word. We also include (4) different combinations of features
that are modified in the same password, either (5) at the same
character/keypress (we call this co-located) or (6) distributed
across several characters/keypresses within the word.

We iterated the task design several times by means of
prestudy runs with two to three people in each version. We
gradually narrowed the tasks down to an acceptable study
duration of one hour. In full detail, the tasks used in the main
study were structured and designed as follows (Figure 3):

Natural tasks (1–3): The first three tasks simply asked
people to enter each password six times without presenting
any intentional behaviour modifications.

Modifying a single feature (tasks 4–15): In each of these
tasks participants had to modify one feature (e.g., hold time).
There were three such tasks per feature, namely one per pass-
word (i.e., 4 features � 3 passwords = 12 tasks). Across the
three tasks per feature, all feature levels occurred at least once,
while covering different locations: The first task per feature
modified the 2nd character of the password, the second task
modified the 2nd and 7th characters, and the last task modified
2nd, 4th, and 7th characters. The assignment of passwords
across these tasks was counter-balanced, such that modifica-
tions overall occurred in all passwords at all locations.

Modifying two features (tasks 16–27): In each of these 12
tasks people modified two features (for example, hold time
and flight time). There were two tasks per combination of two
features: The first had one modification on the 2nd character
and the other on the 3rd (i.e., distributed). The second task
had both modifications on the 7th character (i.e., co-located).

Modifying three features (tasks 28–35): In these eight tasks,
participants had to modify three features, with two tasks per
combination of three features: The first had modifications on
the 2nd, 4th, and 7th character (distributed). The second one
had all three modifications on the 5th character (co-located).

Modifying four features (tasks 36 and 37): Finally, partici-
pants had to modify four features: The first one had modifica-
tions on the 2nd, 4th, 6th, and 8th character (distributed), the
last had all modifications on the 5th character (co-located).

The task order was not randomised, in favour of gradually
increasing the number of modified features per password,
which we suspected to have an influence on task difficulty.

https://www.teamsid.com/worst-passwords-2016/


Figure 3: Overview over the tasks in each session. In the beginning (task 1–3) participants were asked to enter the passwords
naturally, afterwards (task 4–15) a single feature had to be modi�ed with increasing number of occurrences (colour of the cell).
Thereafter, two (task 16–27), three (task 28–35) or four (tasks 36, 37) features had to be modi�ed at once. All possible feature
combinations were tested and features were eitherdistributed(~) over the password orco-located(*) on a single key.

4.1.4 Sessions

The whole procedure was repeated two times, in two ses-
sions about a week apart. In this way, we observed the typing
behaviour of each participant at two points in time.

4.1.5 Summary

For the following report of our data analyses and results, it is
useful to think of our study design as follows:

Tasks 1–3 are used to analyse natural (i.e., unmodi�ed)
behaviour, while the other tasks are used to analyse user be-
haviour when modifying the four behaviour features.

Note that from task 16 onward (i.e., all tasks with feature
combinations), our study is a typical repeated measures design
with: numberof modi�cations (2, 3, 4)� distributedmultiple
modi�cations (distributed, co-located)� session(1st, 2nd).
We use this for typical ANOVAs to study in particular the
impact of modi�cation of multiple features.

4.2 Apparatus

We developed an Android app that controlled the study pro-
cess (e.g., counterbalancing, task progression, explanations).

The values used for scaling our visualisations (e.g., default
�ight time for default key gap) were informed by prestudy
experiments and related work [10] (�ight time260 msnormal,
1000 mslong; hold time80 msnormal,300 mslong; area 0.2
normal, 0.4 large, unitless as reported by the Android API;
offset x� 40 px, offset y� 70 px). To avoid visual clutter, we
limited the scaling with minimum and maximum threshold
values, beyond which the visualisation did not change.

We integrated a modi�ed version of the Android open
source project LatinIME3 keyboard. This enabled us to log
all typing events and touch features. To reduce distraction,
we disabled the context menu for special characters shown
on long press. In addition, our study app logged the expected
key and behaviour modi�cations, as well as the current user
and task for each keystroke.

3https://android.googlesource.com/platform/packages/
inputmethods/LatinIME/ , last accessed: 22.02.2019

4.3 Procedure

Upon arrival, participants were introduced to the goal of the
study and were asked to sign a consent form to permit use
of the collected data. After an initial demographics question-
naire they performed the tasks (cf. Figure 3) as described in
section 4.1.3 on our test device. We asked participants to enter
passwords with their right thumb to keep results comparable.

When �rst confronted with a new type of modi�cation, par-
ticipants got a short explanation of what to do and prior to
every task they had the option to train entering the password.
Except for the tasks without modi�cations (natural tasks) they
were provided with real time feedback, using our visualisa-
tion, to show their behaviour next to the expected one. Every
task had to be completed successfully six times and without
feedback. The number of attempts was not limited.

Each task was followed by a short Likert questionnaire
containing the statements: (1)“I was able to adjust to the
speci�ed behaviour.”, (2) “I was successful in completing the
task.”, and (3)“The task was dif�cult for me.”.

After completing all tasks, participants were asked to come
up with a modi�ed password on their own and could take
notes to remember it. The same process was repeated in the
second session, excluding the initial demographics question-
naire. Creating a custom password was replaced with recalling
and performing the password from the previous session. After
the second session we conducted a short interview. Sessions
were scheduled one week apart.

4.4 Participants

Study invitations were distributed over a mailing list of our
local university. Requirements were right-handedness and
familiarity with typing on mobile phones. We recruited a total
of 24 participants (14 female; mean age 27 years, range 14
to 54 years). Half of participants were in their twenties.58 %
were students,30 %were employed, and the remaining ones
were in school. Participants were compensated withe 20 for
completing the whole study.



Figure 4: Overview of participants' natural typing behaviour
(i.e., typing without being presented with any modi�cations),
as measured in the �rst three tasks of each session.

5 Results

Signi�cance tests were conducted using ANOVA with
Greenhouse-Geisser correction and Bonferoni corrected post-
hoc tests (signi�cance at alpha level p < 0.05). If not reported
otherwise, data for analyses is aggregated for both sessions.

As a �rst overview, we report key descriptive measures:
The grand mean task completion time across all tasks(i.e.,
completing all six successful password entries of a task) and
participants was 38.3 seconds . For typing speed, the grand
mean was 28.7 words per minute (WPM [43]). The grand
mean of the number of incorrect entries per task was 1.74.

We report on participants' natural typing behaviour (5.1),
their ability to modify it (5.2), and their accuracy in doing so
(5.3). We analyse the effect of multiple simultaneous modi�-
cations (5.4) and the impact of modi�cations on individuality
of behaviour (5.5). We conclude with details on technically
detecting modi�cations (5.6) and participant feedback (5.7).

5.1 Natural Behaviour

We �rst report on “natural” behaviour – typingwithoutany
modi�cation instructions (tasks 1–3). Figure 4 presents the
results. They match our expectations based on related work:

Touch offsets are slightly shifted to the lower right, as typ-
ical for input with the right thumb [9]. Moreover, median
�ight time ( 290 ms) and hold time (72 ms) are in line with
related work [10] and close to the ones we chose as defaults
for scaling key width and gaps in our visualisation (�ight time
260 ms, hold time80 ms). Thus, our chosen values indeed
matched people's natural behaviour.

Feature Measure target session target * session

Offset absolute x .777a

absolute y .890a .015c

relative (error) .082b

Flight time absolute .785a .010c

relative (error) .332a .038b

Hold time absolute .848a

relative (error) .624a

Touch area absolute .737a

relative (error) .930a

a: p < .001,b: p < .005,c: p < .05, empty cells not signi�cant

Table 1: ANOVA results for ability (1) to modify behaviour
(absolute, Section 5.2) and (2) to replicate target feature val-
ues (relative i.e., error, Section 5.3). The last three columns
show the effect sizes (w2) for target value (i.e., the feature
value communicated via our text annotation),session, and
their interaction. See text for results from post-hoc tests.

Touch area signi�cantly correlated with x location of the
target key (r=-0.252, p<.001): Due to thumb stretching, typing
keys on the left of the keyboard resulted in a �atter thumb
posture and thus larger touch area. Flight time showed a main
and secondary peak (Figure 4). The latter was caused by zero
�nger travel distance for “double letters” (e.g., password).

5.2 Ability to Modify Behaviour

Figures 5 and 6 visualise the distribution of the behavioural
features for differenttarget values, i.e., expected feature val-
ues shown by our visualisation. Next, we report on statistical
tests comparing these distributions per feature (see Table 1).
Here we report on the post-hoc tests and further details:

For all features, post-hoc tests showed that directions of
differences were as expected (e.g., offset signi�cantly further
to the left forleft, �ight time signi�cantly longer for long).

For vertical offset and �ight time, the interactions of session
and target were signi�cant (see Table 1), yet the small effect
sizes and visual inspection of descriptive plots indicated that
this was too tiny to warrant meaningful interpretation.

In summary, the signi�cant results of these statistical tests
con�rm the “big picture” visible in Figure 5 and Figure 6: For
all features, people signi�cantly modi�ed their behaviour in
the direction indicated by our visualisation.

5.3 Ability to Replicate Target Feature Values

The previous section investigated differences in absolute fea-
ture values. It is also interesting to analyse howaccurately
people were able to replicate modi�cations. To this end, Fig-
ure 7 visualises the distribution of participants' errors when
reproducing the target values indicated by our visualisation
for each feature. Table 1 summarises the ANOVA results.
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