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Please start the experiment and rewrite the paragraph below, in the specified place
fine but only in moderation. we have enough witnesses. a correction had to be
published. suburbs are sprawling up everywhere. meet tomorrow in the lavatory.
try to enjoy your matemity leave. the ventilation system is broken. freud wrote of
the ego. get rid of that immediately. the sum of the parts.
fine but only in moderation. we have ...
=D )

Figure 1: We explore the effect of music on (identification from) typing on a physical keyboard in an online study (N=43) that
varied the tempo and loudness of music played during a text reproduction task (right) and analyzed participants’ keystrokes.

Abstract

This paper explores the relationship between music and keyboard
typing behavior. In particular, we focus on how it affects keystroke-
based authentication systems. To this end, we conducted an on-
line experiment (N=43), where participants were asked to replicate
paragraphs of text while listening to music at varying tempos and
loudness levels across two sessions. Our findings reveal that listen-
ing to music leads to more errors and faster typing if the music is
fast. Identification through a biometric model was improved when
music was played either during its training or testing. This hints
at the potential of music for increasing identification performance
and a tradeoff between this benefit and user distraction. Overall,
our research sheds light on typing behavior and introduces music
as a subtle and effective tool to influence user typing behavior in
the context of keystroke-based authentication.
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« Security and privacy — Biometrics; Usability in security and
privacy; « Human-centered computing — Text input; Empirical
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1 Introduction

In today’s digital age, technology users enter text constantly. In-
teracting with keyboards forms an important part of our daily
activities. This includes activities in our private lives like writing
messages to friends and family but it is also a prominent part of
many people’s day-to-day work routine, including tasks like content
generation or programming.

We can also leverage typing for authentication by focusing on
the written content or how a user types. Approaches using written
content include passwords, PINs, and passphrases and are based on
the premise that a shared secret is only known to the legitimate user.
As such, they require an additional explicit step (i.e., entering the
secret) by the user to be authenticated. In contrast, we can also use
typing implicitly by leveraging the unique way a person enters text.
This approach is called keystroke dynamics or typing biometrics.
It uses features of typing behavior like the hold time of keys, the
flight time between inputs, or the pressure of a key press to find
patterns unique for a user [4, 6, 36, 37, 39]. Compared to explicit
authentication, this technique can be executed continuously (e.g.,
running in the background while a user completes a writing task).
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We can use this to provide an additional layer of security after login
or to reduce user annoyance by replacing the secondary task of
upfront authentication [38].

Factors internal (e.g., emotion) and external to the user (e.g.,
new keyboard) influence people’s typing. The reliability of key-
stroke dynamics may be affected by both external and internal
stimuli altering typing behavior. Related work found internal fac-
tors, including the users’ emotional state [18], intentional changes
in typing [17, 22] or natural changes over time [41] (also called
behavioral drift). External factors might be injuries or changes in
the input hardware. For users of keystroke dynamics, that can mean
false rejects and loss of access to the protected app or device.

One particularly interesting external stimulus that could in-
fluence typing is music, both due to its inherent properties like
rhythm and tempo as well as the potential emotional response it
can provoke. Furthermore, listening to music is common across
both writing- and non-writing-focused jobs!, making it highly rel-
evant in many peoples everyday lives. In previous work, music
was shown to increase performance [35] and attention [14] as well
as leading to adjustments in working speed for physical activi-
ties [28, 35]. Those findings suggest the possibility of an effect on
recognition through a keystroke dynamics system (e.g., through
changed typing speed). Yet, the specific influence of music on typing
patterns and the subsequent implications for biometric recognition
remain largely unexplored.

A better understanding of the impact of music on keystroke
dynamics has the potential for graspable applications to increase
the recognition performance and, thus, the security of this approach.
Currently, enrollment in a keystroke dynamics model (i.e., the initial
step of learning about a user’s unique typing patterns) happens
in silence or in uncontrolled conditions. It remains unclear if and
how playing music might affect recognition performance later,
considering that many users may be listening to music during
everyday use. We also hypothesize that playing similar music could
elicit similar typing behavior, implying that playing the same song
again during authentication might improve performance and thus
contribute to security. As a final example, including factors like the
tempo and loudness of music played in a model used for recognition
might allow for a more dynamic representation of user typing under
different conditions and thus could make recognition more robust.

The aim of this paper is to lay the foundation for such applica-
tions by gaining a deeper understanding of the effect of music on
typing. We investigate the impact of tempo and loudness of music
played on measures of typing behavior and compare the perfor-
mance of a biometric recognition model when trained and tested
under different music configurations. We complement this research
by investigating user experience and preferences for the different
music settings. To this end, we conducted an online study with
43 participants and gave them a text reproduction task which was
accompanied by different configurations of tempo and loudness for
a fixed music track. We repeated the procedure in two sessions at
least three days apart to gather a test set for identification.

We found that participants made more typing errors when listen-
ing to music. Faster music increased typing speed by reducing flight

!https://cloudcovermusic.com/research/music-at-work-research, last accessed March
11, 2025
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time. Hold time remained stable regardless of music exposure. Loud
fast music was perceived as distracting and participants generally
preferred quiet music for typing. However, training and testing an
identification model under different music conditions yielded im-
proved results. We complement our results by discussing practical
implications for (adaptive) biometric systems and recommendations
for applying our findings in future user interfaces.

Contribution Statement. The contribution in this paper is two-
fold: We 1) provide experimental evidence of the effect of music on
user typing behavior and recognition through a biometric model
based on an online study (N=43). We 2) derive practical implications
and trade-offs and summarize them in opportunities for practition-
ers and future research.

2 Related Work

Here, we give some background on authentication, biometrics, and
keystroke dynamics in particular before introducing related work
on possibilities to influence typing behavior and the specific influ-
ence of music on typing.

2.1 Authentication and Keystroke Dynamics

Authentication is essential in today’s world to protect sensitive data,
memories, and belongings both in the personal and professional
environment. According to O’Gorman [30], authentication can be
categorized into three approaches: knowledge-based authentication
using a secret like a PIN or a password, token-based authentication
characterized by the possession of an object like a smartcard, and
biometric authentication levering unique characteristics in users’
physiology or behavior. The advantage of biometrics is that they
cannot be lost or forgotten, and authentication can often be done
in the background without active user involvement.

In this work, we focus on keystroke dynamics, a form of behav-
ioral biometrics that leverages typing patterns for authentication.
This approach is well explored in related work and was applied
both to typing on physical keyboards [26, 27] and mobile phones
with and without physical keys [3, 5, 6, 10, 15, 16, 21, 39, 42]. Two
surveys by Teh et al. [36, 37] give a good overview of the field.

The most common features used for keystroke dynamics are key
hold times (time from pressing to releasing a key) and key flight
time (time between releasing a key and pressing the next) [36].
In addition to those temporal features, soft keyboards (like on a
mobile phone) enable the use of spatial features like touch area or
touch to key offset which has been shown to increase biometric
performance [5, 6].

In addition to the features used, keystroke dynamic systems
can be classified by their input into either fixed-text or open-text
systems [32]. Fixed-text keystroke dynamics recognize users based
on their behavior when entering a given sequence and thus are most
suited as an additional layer of security for passwords. In contrast,
open-text systems are independent of content. They thus are suited
for continuous authentication, for example, to ensure that a certain
person indeed writes a text or that an unlocked device was not
compromised after the initial login [36]. However, this can come
with increased implementation effort and decreased recognition
performance due to the more challenging underlying problem [32].
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2.2 Influencing Keyboard Interactions

There are many approaches for influencing typing on a keyboard
suggested in related work, including the use of visual and audi-
tory cues [9] or haptic feedback like vibration [19] to communicate
(un)desired actions like confirming data transmission on an un-
secured website. Other work employed techniques to change the
tactile sensation of pressing a key through ultrasonic sounds [11, 12,
25] or changes to the key’s perceived structure and stiffness [12, 24].

While the presented approaches were not designed to influence
typing behavior they show a broad variety of options to do so.
In contrast, Hoffmann et al. [13] could actively show a reduction
in typing errors by increasing the resistance of keys that would
lead to erroneous input. Similarly, Mecke et al. [23] could show
that key press timings could be manipulated through controllable
electromagnets under the keyboard exerting force on a permanent
magnet attached to the user’s finger.

Despite the broad range of approaches to influence typing on
physical keyboards and their potential beyond this use case, all
share a common drawback: they require (extensive and expensive)
setups, rendering them impractical in most daily scenarios. Here
we see the potential of music to achieve similar effects without a
dedicated setup as it is already a part of people’s daily lives.

2.3 Impact of Music on (Typing) Performance

Music can influence humans in many different ways. According to
Chamorro-Premuzic and Furnham [8], there are three main uses
of music: it is leveraged to evoke an emotional response, cogni-
tively consumed with a focus on structural and technical aspects
or listened to for enjoyment in the background during other tasks.

Based on those uses, Sanseverino et al. [33] found emotional
music to increase job satisfaction and performance, while listening
in the background negatively impacted those factors. Lee et al. [18]
also investigated emotional audio cues and found high emotional
arousal linked to shorter key hold times. Huang and Shih [14]
investigated the effect of background music on worker performance
and found it to decrease their attention. Their results suggest a
personal and emotional component in this effect with stronger
negative impacts if workers liked the presented music.

Beyond its uses, music can also be described by its features like
tempo, volume, or content of vocals. Bramwell-Dicks et al. [2] found
that music containing vocals can decrease typing performance due
to its distracting nature, particularly at high loudness levels. Several
papers found faster music speeds to lead participants to adjust
their performance and increase their speed in physical (non-typing)
tasks [28, 35]. However, this effect also held true for decreasing
the speed of music, hinting at a strong connection between music
speed and task execution [35].

2.4 Summary

There are numerous studies on the impact of music on human
performance, with some of them also focusing on typing. While
some effects on typing features like speed were shown, to the best of
our knowledge, no related work investigated the effects of music on
typing behavior in the context of its impact on recognition through
a keystroke dynamic model. In this paper, we close this gap.
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3 Study Design & Modeling

With our study, we provide a better understanding of the effect
of music on typing text and, as a consequence, on identification
through a biometric model based on keystroke dynamics. At the
same time, we also investigate potential effects on the user beyond
the way they are typing, like the errors made and their perception
during the task. From those goals, we derived the following three
research questions that we aim to answer in this paper:

RQ1 How do the tempo and loudness of music affect hold time,
flight time, and error rate during typing?

RQ2 How do the tempo and loudness of music impact recog-
nition through a biometric model?

RQ3 How do the tempo and loudness of music impact the user
experience during typing?

To answer our research questions, we designed a text copying
task that participants had to complete while listening to music.
We chose a copying task rather than a text production task to
remove thinking time as an impact factor on typing. Note that
music is very complex and has numerous features that could be
investigated concerning typing. In this paper, we focus on the tempo
and loudness of music for two reasons: both are unambiguously
quantifiable and can be continuously manipulated (compared to,
e.g., genre or mood).

3.1 Variables

We followed a within-subject repeated measures design with two
independent variables: We varied the TEMPO of music played while
typing on two levels: slow (60 bpm) and fast (160 bpm) following
the values used by Nittono et al. [28]. As a second factor, we also
varied LOUDNESs of music with two levels. Participants set both
volumes with the cues of choosing a volume for background music
(quiet condition) and one for active music listening (loud condition).
We chose those prompts to reflect the cognitive and background
use of music introduced by Chamorro-Premuzic and Furnham [8].
We did not capture slider settings (beyond the study situation), as
they may map to very different absolute volumes depending on
participants’ hardware. We always started with a baseline condition
without music and randomized the order of all other conditions. We
repeated this procedure in two SEssIONSs at least three days apart
to provide realistic test data for our identification analysis.

As dependent variables, we measured users’ typing behavior in
the form of timestamped key events. We captured participants’ per-
ception of each typing task regarding the music they heard through
Likert ratings and open questions.

3.2 Procedure

Our study procedure is illustrated in Figure 2. We invited partici-
pants to two identical sessions. At the start of each session, they
were informed about the study and their rights and could consent
to the procedure before providing demographic data. In the next
step, participants were asked to calibrate their audio by moving
a slider to select a loudness level for loud and quiet music (see
Section 3.1). To ensure consistent audio during the study, we asked
participants to wear headphones and not change their audio levels
after this point. After the calibration, the main part started with the
baseline text reproduction task without music. This was followed
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Initial Questionnaire:

Consent
Demographics
Typing Habits

Baseline
Text Reproduction
+
Intermediate
Questionnaire

Tempo
Slow Fast

Mecke et al.

Conditional Text Reproduction
Loudness
Quiet Loud

Text Text
Reproduction Reproduction

Final Questionnaire:
—>> e Rating

Intermediate e Perception

Text Text Questionnaire

Reproduction Reproduction

Repeated for all four music combinations in randomized order

Repeated in a second session at least 3 days apart

Figure 2: Our online experiment was structured as three questionnaires around a main text reproduction task. The experiment
started with an initial questionnaire on demographics and typing habits and concluded with a final questionnaire comparing
the different music conditions. In the main part of the study, participants first executed a baseline text reproduction task with
no music. Afterward, they executed the text reproduction task while listening to music at different TEMPO and LOUDNESS at
two levels in a repeated measures design in randomized order. Each task was followed by an intermediate questionnaire on
participants’ perception of the given music condition. The procedure was repeated in a second session at least three days later.

by four tasks with the combinations of loud/quiet and fast/slow
music in random order. After each task, we asked for participants’
perceptions. The study concluded with general questions about
participants’ music listening preferences.

3.3 Apparatus

To facilitate our study design, we built a website to present both
the questionnaires and the text reproduction tasks. We decided on
a custom solution to have complete control over the music play-
back and logging of key events for the keystroke dynamics analysis.
The paragraphs of text used in the tasks were constructed from
8-10 sentences (about 290 characters per task) from MacKenzie
and Soukoreff’s phrase sets [20] each. We chose them as they are
short and easy to remember, making them interchangeable. This
also counteracts biases in typing like hesitations due to thinking
breaks or having to enter challenging words. We constructed five
paragraphs that participants received in a random order (indepen-
dent of the conditions). To ensure the text was actually entered, we
required a Levenhstein distance below 5 for participants to be able
to continue with the experiment.

3.4 Stimulus

Instead of using different songs for the different tempos, we opted
for a single piano piece? without vocals. Our goal with this choice
was to keep the music as neutral as possible to remove biases such
as an emotional connection [14, 18, 35] or an influence on typing
performance due to vocals [2] as much as possible. However, we
do acknowledge that music is very complex, and thus the exact
effect on any single participant is arguably impossible to predict.
More work on different pieces of music and/or more standardized
sounds (like [40]) would be needed to better understand this area.
We both increased and decreased the natural song’s tempo to reach
our target of 160 bpm and 60 bpm, respectively. We chose those
tempos to align with the experiment by Nittono et al. [28]. We
used pitch correction to remove artifacts of this manipulation and
verified the sound quality through internal testing.

2The full piece used in our study is available at: https://pixabay.com/music/beats-
romantic- piano-background-music-for- short-video-vlog-blog- 1-minute- 193855/, last
accessed March 11, 2025

Table 1: Demographics of the participants of our online study.

N=43
Gender 20 (47%) Female
21 (49%) Male
2 (4%) Prefer not to say
Age 36 (13) Mean (SD)
19-65 (31) Range (Median)

3.5 Recruitment and Participants

We recruited a sample (balanced for gender) of 100 US-based par-
ticipants through the platform Prolific>. We had to exclude a large
portion of those participants for various reasons: based on the col-
lected keystroke data, we found that some participants copied (parts
of) the text (using drag and drop, thus not generating keystrokes),
used special (control) keys that lead to corrupted keystroke data,
or tampered with the volume during the study. A large portion did
not show up for the second session of our study, even though this
was clearly communicated as essential for our experiment. After
this pre-processing step, we were left with a sample of 43 partici-
pants (female: 20, male: 21, prefer not to say: 2). Participants were
between 19 and 65 years old with a mean age of 36 (see Table 1).
Most participants were current undergraduate students (25) or
had acquired an academic degree (8). Ten participants were follow-
ing a non-academic profession. Participants estimated their time
using keyboards at 25 hours per week (median = 20, SD = 22). In
response to our initial Likert statements, they slightly agreed to
be generally fast typists and sometimes make errors while typing.
Still, they remained neutral about always listening to music when
using the keyboard and finding music helpful for concentration.
Participants were compensated with £2.25 for an estimated com-
pletion time of 15 minutes (i.e., at £9 per hour) in each session. Our
institute’s ethics committee approved our study (EK-MIS-2023-192).

Shttps://www.prolific.co/, last accessed March 11, 2025
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4 Results

Following our research questions, we analyzed our data concern-
ing three main aspects: 1) effects of music on typing features, 2)
effects of music on recognition between sessions, and 3) user per-
ception of the conditions and their performance thereunder. If not
stated otherwise, we tested for significance using repeated mea-
sures ANOVA with Greenhouse-Geisser correction where necessary
and Bonferroni-corrected post-hoc tests. Due to group sizes above
5 [29] and ANOVA’s robustness against non-normal distributed
data [1, 31] we assumed normality and omitted respective tests.
Our report focuses on significant results at an alpha level of p < .05.

4.1 Effects of Music on Typing Metrics (RQ1)

To answer our first research question, we first analyze how the
tempo and loudness of music impact typing metrics. As typing
metrics, we chose flight and hold times (commonly used in biometric
models) and error rates as a measure of distraction. In our study,
we captured keystroke data through key events. From those, we
calculate hold time as the time between pressing and releasing a
key. Flight time is the time between releasing a key and pressing the
next. Note that this value can be negative when multiple keys are
pressed at once. Finally, we calculate the error rate as the number
of presses of the ’backspace’ key. We excluded keystrokes where
one of the measures deviated more than three standard deviations
from the mean to remove outliers in the dataset (e.g., due to long
breaks between key presses).

4.1.1 Presence of Music. We tested for the effect of the presence of
any music by introducing a dummy variable combining the data
of all conditions where music was played. We then conducted a
repeated measures ANOVA with the presence of music and the
session as factors. We did not find an effect of the presence of music
on either hold time (p = .199) or flight time (p = .401). However, we
found a significant increase in errors (F(1,42) = 4.402, p = .042), with
an additional 1.549 errors being made when exposed to music. In
addition, we observed that flight times in the second session were
significantly shorter by 7.208 ms (F(1,42) = 10.771, p = .002).

4.1.2  Configuration of Music. Next, we tested for the effect of music
tempo and loudness on the collected measures of typing behavior.
Figure 3 gives an overview of the results. We conducted repeated
measures ANOVA tests with tempo, loudness, and session as factors.
We did not find any effects of loudness (p = .183), tempo (p = .055),
or session (p = .407) on hold time. When analyzing flight time, we
found a significant effect of both session (F(1,42) = 5.499, p = .024)
and tempo (F(1,42) = 5.181, p = .028). Flight times were shorter by
4.901 ms in the second session and by 3.803 ms when exposed to
fast music. We did not find an effect of music loudness (p = .987).
Finally, we did not find an effect of either loudness (p = .550), tempo
(p = .323), or session (p = .524) on error rates.

4.1.3 Summary. Participants made more typing errors when ex-
posed to music. Listening to faster music leads to increased typing
speed in the form of reduced flight time. Contrary to our expecta-
tion, we found that participants were typing faster in the second
session, possibly due to familiarity with the task. We found no
effects on hold time (neither through testing nor visual inspection),
hinting at this measure being stable when exposed to music.
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4.2 Effects of Music on Identification (RQ2)

There are a plethora of different models that can be used for identifi-
cation through keystrokes. We decided on a random forest classifier
in this scenario as a well-established and explainable model that
is outlier tolerant and requires minimal pre-processing or assump-
tions about the data [34]. We chose to train our model on keystrokes
from all participants collectively (identification/classification ap-
proach) rather than treating each participant in isolation (verifica-
tion/anomaly detection approach). This method potentially offers
greater discriminative power by enabling the model to learn dis-
tinguishing features across users, instead of focusing solely on
individual patterns. [7]. However, it is reliant on the availability of
such data from other users and thus not suitable in all cases.

For our analysis, we removed all keystrokes for letters not present
in all paragraphs of text. We did so to avoid bias to the model
through additional or missing keys, for example, due to partici-
pants mistyping or letters not being present in a paragraph.

Based on this dataset of 135,114 keystrokes, we built random
forest classifiers with default parameters and 100 estimators. We
used the keystrokes provided in the first session and evaluated the
models on data collected in the second session. Note that we do
not optimize our models as this analysis does not aim to achieve
competitive recognition performance but rather to uncover effects
on the performance induced by our study conditions. While we
expect trends found in our analysis to transfer to more optimized as
well as fundamentally different models (e.g., optimized for temporal
data), this needs to be confirmed in future work.

To test the effects of the music played on identification, we
trained several random forest classifiers. We used the hold time,
flight time, and the key pressed as features. We trained separate
classifiers for 1) each combination of tempo and loudness, 2) for the
baseline of no music, 3) for all conditions with music playing (i.e.,
all conditions except the baseline), and 4) for all conditions at once.
Models were trained on the first and tested on the second session.

For a more stable estimate of identity, we make predictions based
on the whole paragraph of text rather than single keystrokes. We
take the most predicted class based on all keystrokes within a
paragraph as the prediction for that paragraph. To account for ran-
domness in training, we report the mean F1 score (i.e. the harmonic
mean of precision and recall) over 10 random forest executions
throughout this section. Table 2 gives an overview of the results.

4.2.1 Presence of Music. Analogously to the previous analysis we
first tested for the effect of the presence of any music. We conducted
a repeated measures ANOVA on the F1 scores with the training
(first session) and testing (second session) configuration as factors
and three levels each: the baseline (i.e. no music), music (i.e. all
conditions except the baseline) as well as all data for comparison.
Results show a significant effect of the training configuration (F(2,18)
=111.757, p < .001) with Bonferroni corrected post-hoc tests con-
firming F1 scores being significantly higher by 0.109 when training
with the music configuration (p < .001) and 0.094 when training on
all data (p < .001) compared to the baseline respectively. Similarly,
we observed an effect of the testing configuration (F(2,18) = 662.670,
p < .001) on the F1 score. F1 scores were significantly higher by
0.175 in the music configuration (p < .001) compared to the baseline.
When testing with all data, this difference was 0.190 (p < .001).
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Figure 3: Flight time, hold time, and error rate in relation to tempo and loudness of music played. The median baseline values
(no music) are indicated by the horizontal green lines. All values are averaged over both sessions.

Table 2: Overview of the results of the random forest identification analysis depending on the TEMPO and LOUDNESS of
music played. Rows denote the configuration under which the model was trained in the first session, and columns show the
configuration against which it was tested on data from the second session. Each cell represents the mean of 10 models with
the standard deviation given in brackets. The music condition includes all configurations except for the baseline. The all
condition includes all data from the respective sessions. Column-wise maximum and minimum values (i.e., best/worst training

configurations for each test case) are marked in bold.

TESTING CONFIGURATION

Z loudness loud quiet

5 tempo fast slow fast slow music baseline all

E loud  fast 0.747 (.041) 0.697 (.036) 0.610 (.024) 0.745 (.027) | 0.862 (.026) 0.651 (.032) 0.889 (.027)
g slow | 0.717 (.025) 0.732 (.027) 0.759 (.046) 0.737 (.034) | 0.848 (.027) 0.682 (.039) 0.856 (.023)
Z quiet  fast 0.747 (049) 0.697 (.037) 0.697 (.033) 0.656 (.045)| 0.853 (.021) 0.736 (.063) 0.863 (.031)
S slow | 0.673 (.029) 0.728 (034) 0.728 (.039) 0.643 (.032)| 0.862 (.021) 0.575 (.035) 0.843 (.021)
E music 0.773 (041) 0.786 (.025) 0.797 (.021) 0.796 (.035) | 0.943 (.010) 0.741(.028) 0.943 (.010)
2 baseline 0.736 (.023) 0.622 (.049) 0.728 (.035) 0.661 (.030)|0.798 (.033) 0.664 (.032) 0.836 (.029)
B all 0.748 (.039) 0.806 (.026) 0.800 (.016) 0.819 (.029)| 0.921 (.028) 0.731(.027) 0.927 (.026)

4.2.2  Configuration of Music. As a second step, we tested for dif-
ferences induced by the configuration of music, i.e. the different
levels of loudness and tempo tested in the study. We conducted a
repeated measures ANOVA on the F1 score with the training loud-
ness and tempo as well as the testing loudness and tempo as factors.
Each factor had two levels (loud/quiet or fast/slow respectively).
We found significant effects of training loudness (F(1,9) = 10.446,
p = .010) and tempo (F(1,9) = 10.977, p = .009) as well as testing
loudness (F(1,9) = 17.384, p = .002). We found no effect on the testing
tempo (p = .442). Post-hoc tests revealed a significantly increased
F1 score by 0.022 when training with loud music (p = .010) and by
0.015 when training with slow music (p = .009) respectively. The
F1 score was positively influenced by 0.020 when testing with loud
music (p = .002).

4.2.3 Identical Testing Configurations. Beyond the effects of par-
ticular music conditions, we hypothesized that training and testing
under similar conditions would increase recognition performance.
Here, we test this assumption. We conducted a repeated measures
ANOVA on the F1 score with similarity of tempo and similarity of

loudness as factors. Each factor had two levels (identical or different
conditions). Results show no effect of the similarity of tempo (p =
.487). However, we found a significant effect of the similarity of
loudness (F(1,9) = 7.441, p = .017) with post-hoc tests showing a de-
crease of 0.010 in F1 score when training and testing using identical
loudness. As we were explicitly interested in completely identical or
completely different conditions we investigated interaction effects
as well but found no significant effect (p = .120).

4.24 Best and Worst Configurations. As a final step, we visually in-
spected the identification results for interesting patterns. Minimum
and maximum F1 scores are marked in bold in Table 2 for reference.
The single best identification performance was achieved with a
mean F1 score of 0.943 when training and testing on the music
condition (i.e. on all data but the baseline). More generally, training
on either all data or the music condition yielded the best results.
The combination of training on quiet and slow music and testing on
the baseline yielded the single worst performance with a mean F1
score of 0.575. Generally, the weakest results were produced when
training on this condition or the baseline.
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4.2.5 Summary. Regarding identification performance, we observed
very strong positive effects of the presence of music both during

training and testing. The combination of slow and quiet music was

similar to our baseline of no music and both yielded overall the

weakest results. However, we found a positive effect of training

with slow music in general. Both training and testing with loud

music impacted performance positively. Against our expectation,

we did not find positive effects of training and testing under similar

conditions. On the contrary, having differing loudness levels when

training and testing yielded slightly better results.

4.3 User Perception (RQ3)

We assessed participant perception during the study through an
initial questionnaire on demographics and habits, intermediate
questionnaires on the specific configuration they had just experi-
enced, and a final questionnaire on their overall experience and
preferences. Here we give an overview of the results from those
questionnaires.

4.3.1 Ratings of Conditions. After each typed paragraph, partic-
ipants had to rate three 5-point Likert statements about their ex-
perience with the specific condition. For this analysis, we focus on
answers from the first session to capture participants’ first impres-
sions. Figure 4 shows the detailed answers. The statement This
track helped me concentrate more’ was overall rated neutrally, while
participants disagreed with the statements I would prefer to type
with this type of music in the background in the future’ and I felt
relaxed while typing with this music track’.

We tested for the effects of the conditions on those ratings using
the Kruskal-Wallis test. We did not find an impact on the ability
to concentrate (p = .068) but observed significant effects on the re-
ported preference ratings (y%(4) = 11.136, p = .025) and participants’
feeling of relaxation (y%(4) = 37.899, p < .001). Bonferroni corrected
post-hoc Dunn tests revealed that participants felt significantly
more relaxed in the baseline condition compared to both fast loud
(Z =5.116, p < .001) and fast quiet music (Z = 3.128, p = .018). Both
fast loud music (Z = -5.106, p < .001) and fast quiet music (Z = -3.105,
p < .019) were perceived as significantly less relaxing than slow
quiet music. Participants preferred the baseline condition over the
combination of fast and loud music (Z = 2.992, p < .028)

4.3.2  Comparative Ratings. In the final questionnaire, we asked
participants to compare the conditions they had experienced and
report on their overall perception. Participants rated high loudness
(53%) as the most difficult condition to type in followed by high tempo
(28%). Slow tempo (9%), low loudness (7%), and no music at all (2%)
were only rated as the most difficult by a few participants. Analo-
gously, participants ranked loud fast music as the most distracting
configuration. Fast conditions were ranked as more distracting and
within those groups, loud music was ranked more distracting than
quiet music. The baseline was the least distracting.

In response to general 5-point Likert statements about their
perception of the music participants rated both increased music
tempo (median = 2) and loudness (median = 2) as detrimental to
their concentration and were neutral about music improving their
typing experience (median = 3).
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4.3.3  Summary. Across multiple ratings, we observed that partici-
pants perceived loud fast music as the most distracting and found it
hardest to type and concentrate while listening to it. Analogously,
conditions were rated increasingly relaxing with decreasing loud-
ness and tempo of music played. Participants were neutral about
music improving their typing experience and preferred not to listen
to the presented conditions while typing in the future.

5 Discussion

In this paper, we conducted an online experiment to explore the
impact of music on typing features and identification through a
biometric model. Here we summarize and discuss our findings. We
reflect on the limitations and challenges of our work and propose
research opportunities and application areas based on our findings.

5.1 Impact of Music on Identification and
Typing

As the key contribution of our work, we gathered empirical evi-
dence for the impact of music on typing behavior and identification
performance through keystroke dynamics. Previous work found
increases in music tempo to lead to faster task performance [28, 35].
We confirmed a similar effect for typing behavior with faster music
leading to faster typing speeds. Other than Lee et al. [18], we did
not observe an effect of the music played in our experiment on
key hold times. However, in contrast to their study, music in our
experiment was chosen with the goal of being neutral instead of
emotional which they found to be connected to the influence on
key hold times. Huang and Shih [14] found an effect of background
music played on listener attention scores based on them having
strong feelings about the music. While their results also suggest a
general effect of the presence of music, they did not find statistical
evidence for this. Our findings complement their research and sup-
port the notion of such a more general effect of music on attention.
This is evidenced by increased errors made and decreased reported
concentration when listening to music in our study.

With regards to identification, we revealed a strong positive ef-
fect of the presence of music on performance, both when it was
present during training and during testing. The best performance
was achieved when both training and testing on data collected while
participants were listening to music. If music was only present dur-
ing testing, this increased performance as well. Thus, music seems
to both provoke and emphasize unique features in user typing behav-
ior. That said, slow quiet music performed similarly to having no
music present, which hints at the necessity of music being consumed
cognitively (i.e. actively heard) [8] and not only in the background
for the effects to occur. This is in line with our finding of slow music
increasing identification when used during training, and loud music
increasing identification in general.

Finally, we revealed a tradeoff between the described effects and
user preferences, as loud music was rated to be distracting, and to
reduce concentration. This was also evidenced by the increased
error rates we observed when participants were exposed to music.

5.2 Challenges and Limitations

We only use a single simple piece of music. Our aim with this
choice was to reduce external factors as much as possible, but as
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Figure 4: Participants’ ratings of Likert statements (full text in Section 4.3.1) given after each condition in the first session.

a drawback, we have to assume that participants did not have an
emotional connection to the piece, which was shown impactful in
related studies [14, 18, 33]. Investigating a wider range of musi-
cal genres, individual differences in musical preferences, and the
impact of lyrical versus instrumental music could provide a more
comprehensive understanding of the relationship between music,
typing performance, and keystroke dynamics. However, each choice
will presumably come with other drawbacks, as features of music
are hard to disentangle. As of now, we do not know if our results
translate to other music. One compromise for a future study could
be to allow participants the choice of a song for slow and fast music,
respectively, to achieve an emotional connection and get a wide
range of different features.

When conducting the statistical tests, we observed an unexpected
effect of the session on flight time, implying either a habituation
effect or decreased user involvement in the second session. In addi-
tion, we opted for letting users choose the appropriate audio levels
for their specific hardware setup. This makes this setting very sub-
jective and hard for us to control and further quantify. We had to
exclude a few participants as we found evidence of them changing
the audio levels. While we initially had considered an online study
to reach a broader participant pool, those challenges call for more
long-term data collection under more controlled conditions. Future
work could repeat our study in a lab environment using the same
hardware across all participants. This would also allow for a deeper
analysis of the potentially different effects of absolute volume and
perceived loudness of the music. Adding a session might help to
better understand the effects we observed. However, this solution
comes with its own challenges of harder participant recruitment,
unfamiliarity with the hardware, and potential observation bias
reducing ecological validity.

Finally, we acknowledge, that the music and all configuration in
our identification analysis were combined from other conditions

and thus contained more samples. This might have biased results,
as, for example, more training data can by itself lead to better
model performance. However, we also observed the positive impact
of training with music against the baseline in the non-combined
conditions, and having more samples in the test dataset should not
have an impact on the results. We are thus reasonably confident
that our results hold true.

5.3 Opportunities for Security and Privacy
Research and Applications

As of now, keystroke dynamic systems are often trained in silence
or under unknown conditions. Our results show that music is a
factor that should be considered to improve, better understand, and
more accurately capture the real-world use of future systems. Here
we propose opportunities for security and privacy research and
applications of our findings.

5.3.1 Enhancing Keystroke Dynamics with Music. Our results show,
that it can be largely beneficial for identification performance to add
music, even if it was not present during training. Considering this
factor during training can further increase performance. However,
music can also be distracting and provoke errors. Thus, its use is a
tradeoff between usability and security and should be considered
based on the security requirements of the specific scenario.

5.3.2 Increasing Robustness to Music. In our study, we did not
observe an effect of music on hold time. While this does not imply
that there is no effect, it prompts the more general question as
to which factors of typing are influenced by which factors of the
music played. For the case of hold time as an example, related work
implies that the emotional connection may play a role [18]. For flight
time, we found music tempo as an influencing factor. Overall, this
suggests that certain features of keystroke dynamics may be more
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resilient to different auditory influences. A better understanding
of those connections could have important implications for the
development of more robust user identification.

5.3.3  Adapting Biometrics to the Environment. We observed vary-
ing identification performance depending on both the training and
testing configuration. We see this as an opportunity for varying
degrees of adaption to improve identification. When the expected
authentication environment is known, our results (compare Table
2) give a starting point for finding the best training configuration.
If the current music can be sensed, this could be done in real-time,
for example by choosing an appropriate model from a pre-trained
ensemble. Finally, it might be an option to actively play or adapt
music to improve identification accuracy in high-stakes situations.

5.3.4 Avoiding Recognition. We mainly focused on improving model
performance to enhance security. However, it may also be desirable

to avoid recognition to protect one’s privacy, for example when be-
ing tracked online based on typing behavior. As such, the previous

point could analogously be adapted to hamper identification.

5.3.5 Personalizing Music. Participants in our study felt distracted
by loud music and preferred silence in many cases. However, many
people enjoy listening to music they like at a loudness they can
adapt to their current task and that is comfortable for them. Thus,
taking a broader approach and understanding personal influencing
factors could complement our more fundamental analysis of music
and its influence on typing and identification.

6 Conclusion

In this paper, we explored the relationship between music and key-
board typing behavior, focusing on how it affects identification
through keystroke dynamics. To this end, we conducted an on-
line experiment (N=43), where participants had to type text under
varying music configurations. We found, that the presence of mu-
sic during training and testing positively influences identification
performance. Loud music had a positive effect but was perceived
as distracting by participants, presenting a tradeoff between secu-
rity and usability. With our work, we could more generally show
that music is a factor that should actively be considered in future
keystroke dynamic systems. We hope to inspire further research
into the effects of music on typing and its complex interplay with
authentication through keystroke dynamics.
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