

Capsule Network with Routing Mechanism

Part 2: Matrix Capsule & EM Routing

- Ou Changkun
- Email: <u>hi@changkun.us</u>
- Homepage: <u>https://changkun.de</u>

Agenda

1. Recap & Matrix Capsule Network

- (Vector) Capsules
- Dynamic Routing by Agreement
- (Recap: Capsule blueprint & Routing by Agreement
- Matrix) Capsules Blueprint

2. Routing Mechanism and Unsupervised Clustering

- Dynamic Routing & k-Mean
- GMM & EM Routing & Gaussian Mixture Model

3. Experiments

- smallNORB classification task
- Adversarial examples

(Vector)**Capsules** blueprint

- "A capsule is a group of neurons whose output represents different properties of the same entity."
- General ideas differ from [Sabour et al. 2017]:
 - \circ Vector \rightarrow Matrix
 - $\circ \quad \text{Activity Vector} \rightarrow \text{Pose Matrix} + \text{Activity Probability}$

[Hinton, G. E., Sabour, S., Frosst, N. (2018). Matrix Capsules with EM Routing.]

[Ou Changkun © 2018]

(Matrix) Capsule Network Blueprint

[Ou Changkun © 2018]

Routing by EM Clustering (GMM)

Architecture: Matrix Capsule

[Hinton, G. E., Sabour, S., Frosst, N. (2018). Matrix Capsules with EM Routing. ICLR 2018]

Experiments: smallNORB

Routing iterations	Pose structure	Loss	Coordinate Addition	Test error rate
1	Matrix	Spread	Yes	9.7%
2	Matrix	Spread	Yes	2.2%
3	Matrix	Spread	Yes	1.8%
5	Matrix	Spread	Yes	3.9%
3	Vector	Spread	Yes	2.9%
3	Matrix	Spread	No	2.6%
3	Vector	Spread	No	3.2%
3	Matrix	Margin ¹	Yes	3.2%
3	Matrix	CrossEnt	Yes	5.8%
Descline CNN with 4 2M person store				5.007

Baseline CNN with 4.2M parameters 5.2% CNN of Ciresan et al. (2011) with extra input images & deformations 2.56%

1.4%

Our Best model (third row), with multiple crops during testing

Open Source Implementation:

- CNN baseline (4.2M): 88.7% (best)/94.8% (paper)
- Matrix Cap with EM routing (310K, 2 iteration): 91.8%(best)/98.6%(paper)
- https://github.com/www0wwwjs1/Matrix-Capsules-EM-Tensorflow

[Hinton, G. E., Sabour, S., Frosst, N. (2018). Matrix Capsules with EM Routing. ICLR 2018]

https://cs.nyu.edu/~ylclab/data/norb-v1.0-small/

Experiments: smallNORB

[Hinton, G. E., Sabour, S., Frosst, N. (2018). Matrix Capsules with EM Routing. ICLR 2018]

Experiments: Adversarial Robustness

*BIM & FGSM are methods for creating adversarial examples

BIM CNN
BIM CAPS

[Hinton, G. E., Sabour, S., Frosst, N. (2018). Matrix Capsules with EM Routing. ICLR 2018]

Summary of Matrix CapsNet

- Key Points of Matrix Capsule:
 - (Matrix, Activation) \rightarrow (Matrix, Activation)
 - Encapsulate entity or its pattern
 - **Routing** by *agreement* Mechanism

o ...

- Pros:
 - Equivariance
 - Built-in interpretability
 - Adversarial robustness
- Cons:
 - Reproducibility
 - Computational Performance
 - Routing process
 - o ...

References of this Section

- 1. [Hinton, G. E., Krizhevsky, A., & Wang, S. D. (2011, June). **Transforming autoencoders**. In International Conference on Artificial Neural Networks (pp. 44-51). Springer, Berlin, Heidelberg.]
- 2. [Su, J., Vargas, D. V., & Kouichi, S. (2017). One pixel attack for fooling deep neural networks. arXiv:1710.08864.]
- 3. [Hinton, G (2017). What's wrong with convolutional neural nets. <u>https://www.youtube.com/watch?v=</u> <u>Mqt8fs6ZbHk&t=562s</u>]
- 4. [Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic Routing Between Capsules. arXiv:1710.09829.]
- 5. [Hinton, G. E., Sabour, S., Frosst, N. (2018). Matrix Capsules with EM Routing. ICLR 2018]
- 6. [Sukhbaatar, S., Weston, J., & Fergus, R. (2015). End-to-end memory networks. In Advances in neural information processing systems (pp. 2440-2448).]
- 7. [Hung-Yi Lee (2017). Capsule. <u>https://www.youtube.com/watch?v=UhGWH3hb3Hk</u>]