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ABSTRACT

For decades, engineering in computing systems has used a human-in-the-loop
servo mechanism. A conscious human being is usually believed, in a rational
manner, to operate, assist, and control the machine to achieve desired objectives.
Over time, researchers have started to use human-in-the-loop schemes in more
abstract tasks, such as iterative interface design problems. However, with the
observations and developments in social science, the underlying rationality as-
sumption is strongly challenged, and humans make mistakes. With the recent
advances in computer science regarding artificial intelligence, data-driven algo-
rithms could achieve human-level performance in certain aspects, such as audio
recognition, image segmentation, and machine translation tasks. The human-
in-the-loop mechanism is being reconsidered and reshaped towards an extended
vision to assist human decision-making or creativity in the human-computer in-
teraction (HCI) research field.

This thesis explores the boundary for human-in-the-loop optimization systems to
succeed and be beneficial. In the interaction loop, machine agents are designed
rationally to interact with human beings that may behave using incomplete ratio-
nal policies iteratively. The thesis first examines and deliberates common princi-
ples in mainstream HCI research regarding the advice for building human-in-the-
loop systems using existing computation techniques concerning decision-making
support, utility-based optimization, and human concepts regarding preferences,
satisfaction, and expertise.

To reflect real-world constraints in a human-in-the-loop optimization system, the
thesis explores three design problems: text summarization, image color enhance-
ment, and 3D polygon reduction. These design problems are selected to involve
human perception and intelligence, aesthetic preference, and rational judgments.
Specifically, to understand and analyze the interaction loop, the thesis conducted
a series of experiments to study the impact of various building blocks in human-
in-the-loop systems that observes exploration and exploitation of human users,
including problem context, solution space, reliability of human inputs regarding
preference and expertise, and relevant user interfaces for inputs. Combining the
findings of the experiments, the thesis revisits vulnerable assumptions that may
be largely ignored when designing a modern human-in-the-loop optimization
system.

The experiment on the impact of user interfaces narrows down the exploration
space of this thesis and empirically demonstrates how different preferential user
interfaces influence the overall interaction performance. Based on the findings,
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subsequent experiments further investigate how human judgments can be a flaw
of a human-in-the-loop optimization system. The result shows that, due to cog-
nitive limitations and unrealistic system assumptions, inconsistent and unstable
preferences commonly exist in this human-in-the-loop optimization system, re-
sulting in suboptimal machine outcomes and user dissatisfaction, which conflicts
with the objective of using a human to gain the expected output.

With a deeper look into human aspects, another experiment attempts to reveal
the potential causes, such as involved level of human expertise. The system fur-
ther tests the usage of individuals with different levels of expertise. Based on the
observation and analysis, higher-level expertise leads to lower subjective satis-
faction and more interactions, whereas novices terminate faster and also achieve
expert-level performance, which not only reveals challenges to utilizing the ob-
tained human insights but also be considered as an indicator to reveal how we
can better involve a human in an optimization loop for exploring a solution space.

All these contributions in human-in-the-loop optimization systems lead to a re-
thinking of the source of intelligence and engage philosophical discussions. These
topics eventually approach more fundamental questions regarding the definition
of intelligence and how we might succeed in keeping our intelligence in the loop.



Zusammenfassung v

ZUSAMMENFASSUNG

Seit Jahrzehnten verwendet das Ingenieurwesen in Computersystemen einen
“human-in-the-loop” Servomechanismus. Ein bewusster Mensch wird in der
Regel auf rationale Weise eingesetzt, um die Maschine zu bedienen, zu un-
terstiitzen und zu kontrollieren, um die gewiinschten Ziele zu erreichen. Im
Laufe der Zeit haben Forscher begonnen, “human-in-the-loop” Schemata in
abstrakteren Aufgabenstellungen wie iterativen Schnittstellendesignproblemen
einzusetzen. Allerdings wird mit den Beobachtungen und Entwicklungen in
den Sozialwissenschaften die zugrunde liegende Rationalitdtsannahme stark in
Frage gestellt und Menschen machen Fehler. Mit den jingsten Fortschritten in
der Informatik im Bereich der kinstlichen Intelligenz kénnten datengetriebene
Algorithmen in bestimmten Bereichen menschendhnliche Leistungen erbringen,
wie zum Beispiel bei der Audioerkennung, Bildsegmentierung und maschinellen
Ubersetzung. Der “human-in-the-loop” Mechanismus wird im Bereich der
Forschung zur Mensch-Computer-Interaktion (MCI) neu tberdacht und neu
gestaltet, um die menschliche Entscheidungsfindung oder Kreativitdt zu unter-
stutzen.

Diese Arbeit untersucht die Grenzen fir “human-in-the-loop” Optimierungssys-
teme, um erfolgreich und vorteilhaft zu sein. In der Interaktionsschleife werden
Maschinenagenten rational entworfen, um mit menschlichen Wesen zu inter-
agieren, die iterativ moglicherweise mit unvollstandigen rationalen Richtlinien
handeln. Die Arbeit untersucht und diskutiert zunichst gemeinsame Prinzip-
ien in der Mainstream-Forschung zur Mensch-Computer-Interaktion (MCI) hin-
sichtlich der Empfehlungen fiir den Aufbau von “human-in-the-loop” Syste-
men unter Verwendung vorhandener Berechnungstechniken zur Entscheidung-
sunterstiitzung, nutzungsbasierter Optimierung und menschlichen Konzepten
beziiglich Vorlieben, Zufriedenheit und Expertise.

Um realititsnahe Einschrinkungen in einem “human-in-the-loop” Opti-
mierungssystem widerzuspiegeln, untersucht die Arbeit drei Designprobleme:
Textzusammenfassung, Verbesserung von Bildfarben und Reduzierung von
3D-Polygonen. Diese Designprobleme wurden ausgewahlt, um die menschliche
Wahrnehmung und Intelligenz, &sthetische Priaferenzen und rationale Urteile
einzubeziehen. Um die Interaktionsschleife zu verstehen und zu analysieren,
fihrte die Arbeit eine Reihe von Experimenten durch, um die Auswirkungen
verschiedener Bausteine in “human-in-the-loop” Systemen zu untersuchen,
die die Exploration und Ausnutzung menschlicher Benutzer beriicksichtigen,
einschliefflich des Problemkontexts, des Losungsraums, der Zuverldssigkeit
menschlicher Eingaben beziiglich Vorlieben und Expertise sowie relevanter
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Benutzeroberflachen fiir Eingaben. Durch die Kombination der Ergebnisse der
Experimente hinterfragt die Arbeit anfillige Annahmen, die bei der Gestal-
tung eines modernen “human-in-the-loop” Optimierungssystems weitgehend
ignoriert werden konnen.

Das Experiment zur Auswirkung von Benutzeroberflichen begrenzt den Ex-
plorationsspielraum dieser Arbeit und zeigt empirisch, wie unterschiedliche
bevorzugte Benutzeroberflichen die Gesamtleistung der Interaktion beein-
flussen. Basierend auf den Ergebnissen untersuchen nachfolgende Experimente
weiter, wie menschliche Urteile die Schwachstelle eines “human-in-the-loop”
Optimierungssystems werden konnen. Das Ergebnis zeigt, dass aufgrund kogni-
tiver Einschrankungen und unrealistischer Systemannahmen inkonsistente und
instabile Préaferenzen in diesem “human-in-the-loop” Optimierungssystem hau-
fig vorkommen und zu suboptimalen Maschinenergebnissen und Benutzerun-
zufriedenheit fithren, was dem Ziel widerspricht, einen Menschen zur Erzielung
des erwarteten Outputs zu nutzen.

Mit einem tieferen Blick auf menschliche Aspekte versucht ein weiteres Experi-
ment, potenzielle Ursachen aufzudecken, wie zum Beispiel das involvierte Niveau
menschlicher Expertise. Das System testet auflerdem die Verwendung von Per-
sonen mit unterschiedlichen Kenntnisstinden. Basierend auf Beobachtungen
und Analysen fiithrt héhere Expertise zu geringerer subjektiver Zufriedenheit
und mehr Interaktionen, wihrend Anfianger schneller aufgeben und auch eine
Expertenleistung erbringen. Dies zeigt nicht nur Herausforderungen bei der
Nutzung der gewonnenen menschlichen Erkenntnisse auf, sondern kann auch
als Indikator dienen, um aufzuzeigen, wie wir einen Menschen besser in eine
Optimierungsschleife einbeziehen konnen, um einen Losungsraum zu erkunden.

All diese Beitrige in “human-in-the-loop” Optimierungssystemen fithren zu
einem Umdenken tiber die Quelle der Intelligenz und fithren zu philosophischen
Diskussionen. Diese Themen néhern sich schliefllich grundlegenderen Fragen
iber die Definition von Intelligenz und wie es uns gelingen kénnte, unsere intel-
ligence in the loop zu halten.
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Introduction

It is beyond a doubt that all our knowledge begins with experience.

— Immanuel Kant, Critique Of Pure Reason, 1781

With the increasing interest in human-Al interaction, human-in-the-loop
(HITL) [101] systems have been applied to a wide range of domains, such as ma-
terial design [12], animation design [11], photo color enhancement [82], image
restoration [155], and more [23, 53, 80, 163]. These systems actively exploit hu-
man choices to optimize machine results. They propose a set of design alterna-
tives and then iteratively adapt their results based on choice preference feedback,
thereby increasing the quality of the system outcomes and the satisfaction of the
human involved while simultaneously speeding up the process.

One of the ancestors of these approaches is the Design Galleries approach [96].
Its authors state that “Design Gallery interfaces are a useful tool for many com-
puter graphics applications that require tuning parameters to achieve desired ef-
fects”. They proposed a generic user interface (UI) and emphasized techniques
for dispersing parameter settings. However, it is implicitly believed that the pro-
cess would always converge and end in a desired solution. While following the
assumptions, more and more reasons are discovered that challenge these assump-
tions, such as domain context [130], timing [51], trustworthiness [73], cognitive
biases [12], unstable and contradicting preferences [112]. A human-in-the-loop
system is not always beneficial to the user, and the system might not always be
effective in achieving user satisfaction.
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With these brief observations from the literature, this thesis was initially mo-
tivated by the successfully advertised human-in-the-loop system but towards
presenting a set of empirical studies to investigate the boundary for human-in-
the-loop optimization systems to be beneficial. In the interaction loop, machine
agents are designed rationally to interact with human beings that may behave
using incomplete rational policies iteratively.

1.1 Thesis Scope

Over the past few decades, computing system engineering has dreamed of a
human-in-the-loop servo mechanism. A conscious human being is usually be-
lieved, in a rational manner, to operate, assist, and control the machine to achieve
desired objectives. One of the very early uses of the terms “man-in-the-loop” [26]
or “human-in-the-loop” appeared in the 1980s [159]: “...we used a human in the
loop. Commands that the system could not successfully parse but which seemed
reasonable were reinterpreted by a hidden operator who recast them into valid com-
mands without the subject’s knowledge... By necessity, the operator made decisions
quickly and frequently...” The fundamental idea of these usage refers to a control
loop between two entities where a human operates a machine system that may
be easily broken.

Over time, with the increasing developments of hardware and software com-
plexity, machine systems are more and more reliable, error-tolerant, and self-
defensive. The overarching vision of “using a human in the loop” changes from
continuous operation to occasional intervention. One of the interpretations is,
the process of building layers of automation and operation complexity to exist-
ing machine systems accumulates collective rational system designers’ and en-
gineers’ intelligence. For example, a machine system involves not only relevant
software but also requires specialized hardware chips, reliable communication
protocols, algorithms that are robust to noise and errors, and the ability to pro-
vide reproducible results when the same input is given so on. All these incremen-
tal developments in the machine world built up a vision of artificial intelligence,
and the area was centered around perfect rationality.

It is precisely because of the rational assumption that apart from critical ar-
eas [49], in many cases, machine systems exceed human ability. Hence, the
human-in-the-loop mechanism is being reshaped towards an extended vision that
uses machine intelligence to assist individual human decision-making [145] or
creativity [37] in the human-computer interaction (HCI) research field. For the
support of decision-making, system design principles were heavily influenced
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by Simon [142] and his intelligence-design-choice model of decision-making. In-
stead, despite evidence and practical success of generative models', whether ma-
chine system generates creativity hence harbinger of art’s demise is still an open
question [38].

While there are rich HCI research publications that focus on designing user in-
terfaces to combine with recent developments in computational intelligence, in-
creasing the ability of machine systems has started to fulfill some of the expec-
tations: delegate complex tasks to rational and reliable machine systems, inspect
rich information to support a decision; generate content to support human cre-
ativity; and etc. Still, most user interface research focuses on specialized, targeted
user groups, a pattern that uses user feedback to optimize machine systems —
human-in-the-loop optimization — appears as a research gap: Can we design a
machine system to adapt its internal objective according to individual user inter-
actions? Will it align with the users’ goals and achieve better outcomes?

Not surprisingly, achieving a successful system adaptation still relies on an un-
derlying rationality assumption to individual users’ interaction behavior. With
the observations and developments in social science, the assumption is strongly
challenged, and humans may not always be able to provide reliable responses
for machines to learn and adapt. However, these boundary conditions are rarely
investigated in the HCI research field. As one of the goals of HCI research is to
design systems that consider the user perspective more if a system aims to adapt
to individual users based on their inputs, how can we ensure users can provide
reliable responses? How can we ensure the system can adapt to the user’s expec-
tations?

This thesis will focus on the human-in-the-loop optimization systems designed
to optimize machine results based on human choice feedback. As previously
discussed, we are particularly interested in the boundary for human-in-the-loop
optimization systems to be beneficial. More broadly, how will the involved indi-
vidual human intelligence fit into the collective machine intelligence in an inter-
action loop?

1.2 Research Questions

To fully understand the impact of the building blocks of human-in-the-loop op-
timization systems, this thesis identified six key areas. Figure 1.1 provides a vi-
sualized structure to the research questions and relevant chapters of this thesis.

'https://openai.com/blog/chatgpt/, last accessed 17.02.2023
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Figure 1.1: The intelligence in the human and machine interaction loop.

In this framework, under a specific problem context, the system ability or ma-
chine’s built-in intelligence is built on top of collective intelligence from system
designers and engineers. Such intelligence aims to solve a particular problem,
constructs a space of solutions based on many design decisions when solving
the problem, and all solutions can be explored using the exposed user interface.
Based on the perception of the machine outcomes, the user uses their intelli-
gence to provide feedback inputs back to the machine system through the user
interface. Then, the machine will measure the overall system performance from
different angles, and shape an observed performance of the current state, which
is constructed as a performance space. The machine system will then optimize
the performance space to find the best solution and adapt it to the user. The
machine system will then present the new solution to the user, and the process
repeats until termination criteria are met.

Therefore, with this overarching process, the guiding research questions of this
thesis are:

RQ1 Problem context. What are suitable problem domains we should consider
when using a human-in-the-loop strategy?

RQ2 Performance metrics. What are the relevant performance metrics, and how
can we measure them to facilitate the performance comparison between human-
in-the-loop systems?

RQ3 User interface. What are the current user interface design practices, and
which interface suits human users better in the context of human-in-the-loop
optimization?

RQ4 Termination criteria. What are the most suitable termination criteria, and
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how can the quality of human responses influence this criterion?

RQ5 Human expertise. How does the involved user expertise impact the system
outcomes and subjective satisfaction?

RQ6 Objective alignment. How can we identify the alignment of objectives be-
tween the human user and the machine system?

We will discuss the answers to these research questions in the following chapters.

1.3 Contributing Publications and Outline

As a note, this monograph dissertation comprises multiple previously published
results, including chapter 3-7. These results were published as individual research
projects framed for better focus but fundamentally connected from project to
project. This thesis presents an overarching picture and builds on top of the other
relevant literature.

Furthermore, the thesis also includes additional insights as a follow-up comple-
ment to prior publications. Table 1 clarifies the original contributions of the au-
thor of this thesis and the contribution of others to the relevant publications.

[114] Changkun Ou, Sven Mayer, Andreas Butz. 2023. The Impact of Expertise in
the Loop for Exploring Machine Rationality. In the 28th ACM Symposium
on Intelligent User Interface (IUI °23). ACM, New York, NY, USA, 15 pages.

[112] Changkun Ou, Daniel Buschek, Sven Mayer, Andreas Butz. 2022.
The Human in the Infinite Loop: A Case Study on Revealing and
Explaining Human-Al Interaction Loop Failures. In Mensch und
Computer 2022 (MuC’22). ACM, New York, NY, USA, 11 pages.
doi:10.1145/3543758.3543761.

[113] Changkun Ou, Sven Mayer, Daniel Buschek, and Andreas Butz. 2024.
Rethinking Opinion Measurement Interfaces for Human-in-the-loop Op-
timization. Transactions on Computer-Human Interaction (ToCHI). ACM,
New York, NY, USA, 28 pages. SUBMITTED.

[115] Changkun Ou, Yifei Zhan, Yaxi Chen.  2019. Identifying Ma-
licious Players in GWAP-based Disaster Monitoring Crowdsourcing
System. In the 2nd International Conference on Artificial Intelli-
gence and Big Data (ICAIBD). IEEE. New York, NY, USA, 10 pages.
doi:10.1109/ICAIBD.2019.8836972.
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[112] and [115] received Honourable Mention and Best Paper Awards at the re-
spective conferences.

The research contributions can be classified following the definitions proposed
by Wobbrock and Kientz [161], who introduced seven types of contributions, in-
cluding artifact contributions, methodological contributions, and theoretical con-
tributions. We follow with their description of the corresponding contribution.

Theoretical Contribution: This thesis presents an overarching framework for
different building blocks of the human-in-the-loop system, which enables theo-
retical and empirical analysis of human-in-the-loop systems. In chapter 5, the
thesis contributes a taxonomy space of user interfaces for measuring user opin-
ions in human-in-the-loop systems; chapter 6 contributes a theoretical analysis
of possible human and machine errors that can occur in a human-in-the-loop
system; Lastly, chapter 7 contributes a theory and interpretations regarding the
objective alignment between the user and the interacting machine.

Empirical and Artifact Contribution: The thesis discusses multiple empiri-
cal user studies designed to analyze human-in-the-loop systems’ different build-
ing blocks. As open source artifacts?, it also contributes three open-source real-
world human-in-the-loop systems to actual human responses in text summariza-
tion, image color enhancement, and 3D model simplification problem contexts,
including the dataset collected from the user studies conducted in this thesis.
These datasets are open-sourced and can benefit much other future research on
human priors and human-in-the-loop systems. Together, these contributions
support researchers and developers in investigating and building future human-
in-the-loop systems that are more robust and more beneficial.

Methodological Contribution: The thesis presents a comprehensive record-
ing and analyzing methodology for human-in-the-loop systems. It deliberates
the necessary aspects to measure when analyzing a human-in-the-loop system
and a common experiment framework to common abstract procedures of user
studies regarding human-in-the-loop systems.

This thesis is structured as follows:

Chapter 1: Introduction introduces the motivation of this thesis and an
overview of the research questions and this outline.

’https://changkun.de/s/intelligence-in-the-1loop, last accessed 17.02.2023
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Chapter 2: Background and Definitions comprises the related work and
the usage of terms in human-in-the-loop systems, approaches for inferring pref-
erence from human feedback and better adaptation, psychological theories of the
rationality of humans and judgments, and the understanding of human expertise
and approaches to measure it.

Chapter 3: Problem, Solution, and Performance Spaces presents the prob-
lem, solution, and performance spaces, which are the fundamental building
blocks of human-in-the-loop systems on the machine side. The chapter discusses
the suitable problem domains and selection approach used in this thesis, then
presents the existing objective metrics to measure the solution space. This chap-
ter addresses RQ1 and RQ2.

Chapter 4: Experiment Design and Apparatus deliberates a common ex-
periment abstraction across all other chapters that appeared in this thesis and
also discuss the necessary engineering details for implementing the systems be-
ing used in the user studies.

Chapter 5: Measuring Opinions with Interfaces investigates a taxonomy
of opinion measurement user interfaces for human-in-the-loop systems and con-
ducted a study to inspect the impact of different user interfaces on the quality of
human responses. This chapter addresses RQ3.

Chapter 6: Termination Condition look closer into the termination criteria
of human-in-the-loop systems, especially from the human perspective. The chap-
ter describes two possible error sources that may be overlooked while designing
human-in-the-loop systems and demonstrates the possible solutions to mitigate
them. This chapter addresses RQ4.

Chapter 7: Expertise and Objective Alignment addresses how involved hu-
man expertise can impact system outcomes and subjective satisfaction. Based on
the results, the chapter also discusses possible interpretations of aligning human
objectives and the internal machine optimization process. This chapter addresses
RQ5 and RQ6.

Chapter 8: Reflections and Outlook reflects on the work presented in this
thesis. Furthermore, it includes several reflections on our observations, the di-
rections for future research, and how they can benefit from this work.
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Background and Definitions

Every age has its myths and calls them higher truths.

— Morris Kline, Mathematics: the loss of certainty, 1982

Before diving into the main contributions of this thesis, this chapter! provides a
brief overview of the related work and the main concepts that are used through-
out the thesis in 1) recent advances in human-in-the-loop optimization systems; 2)
machine learning approaches, especially Bayesian optimization regarding infer-
ring human preference from choice; 3) cognitive and social psychology concepts
and theories regarding rationality and satisficing.

2.1 Human-in-the-loop Systems

The human-in-the-loop strategy may be applied in different domain contexts,
which connect to different design goals, including personalization, co-creation,
and decision-making support. Primarily, concerning the human-in-the-loop
strategy, it is either using humans as a servo mechanism to steer pre-defined
machine behavior or utilizing machine algorithms to analyze and optimize the
machine behavior based on human inputs.

The content of the chapter is partly based on Ou et al. [112, 113, 114].
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From the human computation [123, 151] perspective, a human-in-the-loop sys-
tem may be designed to use crowds [56] as human processors to solve system
tasks that neither machine nor human can solve independently. Although using
collective intelligence has been largely verified to be beneficial for crowdsourc-
ing tasks [66], there are several identified challenges [127] to integrating human
computation, which highlighted challenges such as user motivation, sustainabil-
ity, and input bias. To motivate users to contribute, researchers have used a
Game-With-A-Purpose (GWAP) approach [85], but turning a task into a game
could be another challenging design problem. Dealing with diverging opinions
within small crowds may be difficult because tasks might require a certain level of
expertise. Moreover, human-in-the-loop systems using crowds may suffer from
malicious inputs [115] and lead the entire system toward using biased inputs
when the initial samples lack trust. Particularly for design-related tasks, crowd
opinions may not fit individual interests and needs regardless of data bias. Hence
using crowd-powered design systems [80] is considered limited when individual
customization has a higher priority.

In a personalized context, Buschek et al. [14] examined the potential pitfalls for
achieving user interests in the co-creation context. The limitations on the ma-
chine side, identified as lack of machine creativity [89], and usability [77]. They
highlighted a trained Al contains system bias, but lacks discussions on where
is the source of bias and how much mismatch between individual expectations
and system abilities. In terms of mismatched expectations, Eiband et al. [36] re-
ported that users might intentionally provide flawed inputs when a system fails
to achieve their satisfaction in everyday intelligent applications. As a follow-up,
however, Vélkel et al. [150] showed that a user must exhaustively provide noisy
feedback to confuse an intelligent system. Still, they lack verification and inter-
pretation as to whether the repeated unsatisfactory results come from system
limitations or user behavior change. For Al-assisted decision-making scenarios,
trustworthiness becomes a primary social concern regarding reliability in areas
where a decision is vital, such as clinical decisions [16, 74]. Still, it is implicitly
assumed that the human involved eventually makes a rational decision over sub-
Jjectively untrusted Al outcomes. Factors such as algorithm aversion [29] were
confirmed to indicate that users are more biased [124] towards human results
and produce considerable noise even in the judicial area [31].

Although prior research [23, 53, 80, 96, 155, 162] that involves human-in-the-loop
strategies have shown human knowledge to be helpful for a machine to learn, pre-
vious literature rarely discusses the circumstances under which human-in-the-
loop could shine. Especially when users intentionally or unintentionally provide
defective or uncertain inputs, it is unclear whether the system can continue to
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process it effectively and whether other cascading effects will be triggered.

This thesis is an attempt to address this research gap by analyzing different build-
ing blocks of a human-in-the-loop system and then showing practical challenges
that can arise to align a human-in-the-loop system to the user when exploiting
their individual preferences.

2.2 Inferring Preference from Human Feedback

Human-in-the-loop optimization outcomes depend on the machine algorithm ca-
pability as well as the preferential feedback expressed by a human user. Studies
on the term “preference” appear in many disciplines. For clarity in the subsequent
discussions, this thesis follow Hausman [50] in their counterargument against
eliminating preference using choice [48] and acknowledge the existence of pref-
erence. In our use of terms, shown in Figure 2.1, preference is a subjective concept
representing an impermeable and unobservable state of an individual mind. A
preference may or may not be present when the individual encounters multiple
given options. A choice denotes the objectively observable actions of the individ-
ual that selects at least one option among the given ones, and decision or judg-
ment reveals a subjective realization process from a preference towards a choice.
A choice may not reflect the underlying preference due to external influences.

In existing theories regarding preferences in psychology and economics, theo-
retical models tend to infer preference from comparisons [146] and rely on basic
axioms [1] of this preference logic: completeness and transitivity. The complete-
ness axiom assumes the existence of preference, which guarantees that individu-
als can always express their preference by choosing among at least two options;
transitivity means that one can infer that A is preferred over C if A is preferred
over B and B is preferred over C.

13 ” 13 ’\é
decision/judgment — Cﬁ,) =<
A <

1
| “I prefer strawberry”
——————— [ AP

preference i External Impact ! choice

Figure 2.1: A decision process turns an internal preference state into an observ-
able choice. The choice may not reflect the underlying preference due to external
influences.
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Although these axioms are convenient for a rigorous discussion of the logic of
preferences, they are still strong assumptions that may easily be violated. Be-
havioral literature shows that choices are partly dominated by the context [130],
and the transitivity axiom is not applicable when implicitly involving other judg-
ments that were not previously considered. For example, when a human decides
to use two objectives and chooses A over B and B over C involving only one ob-
jective, they may implicitly involve the previously unconsidered objective when
choosing between A and C as a pair. As a result, C may be preferred over A.
Moreover, the completeness axiom may be violated when the human thinks that
“Idon’t know” or “I don’t care” among two subjectively indistinguishable options,
thus causing a random choice. For obtaining preference from choice, a learning
approach has to effectively deal with this uncertainty regarding the presence of
preference and the rationality of an individual being.

Bayesian Optimization (BO) [102] provides a way to model human feedback [21,
40] and enables human-in-the-loop optimization [137] by utilizing, e.g., biologi-
cal measurements [30, 72], interaction behavior [19], and measured preferential
choices [12, 45, 83]. It learns a posterior from the measured human feedback and
aims to search for a global maximum of an unknown function by exploration and
exploitation. In conjunction with measured human feedback, two popular genres
of BO are actively being researched, as shown in Table 2.1.

Since Utility-based BO [102, 133] requires measuring human feedback as a utility
value and learns a posterior from choice, it aims to search a global maximum of
an unknown function by exploration and exploitation. Therefore, it can be used
to propose examples using an acquisition function, ask the human to provide a
choice, and then infer the underlying preference iteratively. In contrast, When
dealing with choices from pairwise comparisons, preference-based BO (PBO)?
can propose examples using an acquisition function, ask the human to provide a
choice and infer the underlying preference iteratively. As a specialized category
of BO, PBO has received increasing development in recent studies [45, 82, 100,
140]. While BO learns based on absolute rating utility (rate and assign a score to
an option), PBO learns from human choice in pairwise comparisons according to
Thurstone’s law of comparative judgment [146].

Although PBO has used pairwise comparisons to mitigate various issues regard-
ing unstable human judgments, these current approaches could also violate pref-
erence axioms due to cognitive limitations. Tversky and Kahneman [148] have
widely presented how heuristic biases might influence the choice behavior. Ex-

2This thesis use PBO as a more general term to represent a category of methods that infer prefer-
ence from choice, in contrast to the specific approach by Gonzalez et al. [45].
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Table 2.1: Examples of different Bayesian Optimization frameworks. Types of
feedback can be either utility-based or preference-based. Most of the BO frame-
works do not model indifference, and none of them consider incomplete prefer-
ences. Note that 1) rating can be considered either as absolute utility or preferen-
tial ranking distance depending on the underlying preference model, 2) selection
is a special case of ranking where one item is strictly preferred over other options,
and the ranking order of those unselected options is not specified, which means
that their preference relation may be considered incomplete.

Optimizer Input Feedback  Options Indiff./Incomp.
Naive BO [102]  Rating Utility Pointwise No/No
2GC [12] Selection Preferential  Pairwise No/No
PBO [45] Selection Preferential  Pairwise No/No
EUBO [93] Selection Preferential Pairwise No/No
4GC [11] Rating  Preferential  Listwise No/No
SLS [83] Selection Preferential  Listwise No/No
SPS [82] Selection Preferential  Listwise No/No
PPBO [100] Selection Preferential  Listwise No/No
Top-k BO [105] Ranking Preferential  Listwise Yes/No

ternal causes can also produce a considerable amount of noise in choice [62].

To avoid the mentioned violations of the transitivity axiom, the recent exten-
sions [6, 82, 140] to PBO transited from using a binary pairwise comparison to
using a reasonable amount of options. These extensions can largely prevent vi-
olation of the transitivity axiom and infer more information at a time because
they either consider choosing a set of options as winners among all given op-
tions [6, 82]; or provide a ranking of all given options, where options may share
the same level of rank [140].

To overcome the violation of preference axioms, PBO has also considered han-
dling noisy inputs [91] and guarantees theoretical convergence when dealing
with unstable choices. Despite all these developments in PBO, there still exist
many challenges in practice. The first challenge is that a human might change
their objective during the integrative optimization even using pairwise compar-
isons because PBO assumes a fixed implicit underlying choice function which it
can learn. Although PBO is capable of dealing with noisy inputs, another chal-
lenge is that it requires much more iterations to let the optimization converge.
This is usually very costly when involving a human, and to design human-in-the-
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loop systems carefully, one must design the UI carefully to mitigate these issues
and reduce user errors. Note that more ranking elements may also increase the
uncertainty for users to make imperfect decisions [101] due to increased work-
load. Thus, one should carefully consider the presented number of elements.

2.3 Human Rationality and Judgments

Apart from inferring human feedback using a learning algorithm, understanding
the satisfaction of users when they are involved in a loop requires deeper insights
from human psychological factors regarding bounded rationality and satisficing.

Simon [141] first coined the term bounded rationality to describe the perceived
information limits of individual rationality. This observation provides a sufficient
discussion base for interpretations regarding irrational decisions. As previously
discussed, Tversky and Kahneman [148] emphasized one possible category of
systematic errors from the cognitive perspective. In recent discussions [10, 44],
researchers take a statistical perspective and underline that recurring noise could
also contribute equally [62] to bounded rationality. This is met by matching be-
havior from the preference point of view, as bounded rationality appears in the
decision or judgment process and causes the violation of the completeness axiom
due to satisficing.

Satisficing is a “good enough” decision strategy [132, 141] that ends the search
process when a certain threshold quality is met. When some of the presented
options are subjectively acceptable, the effects of bounded rationality and satis-
ficing cause the process to terminate with a sub-optimal outcome. An opposite
decision tendency is called maximizing, where a final decision cannot be made
without enough information. Schwartz et al. [135] provided evidence by assess-
ing subjective happiness and individual differences in what people aspire to when
they make decisions in various domains of their lives. People who use a maxi-
mizing strategy desire the best possible result. Although the authors did not find
any strict causality for a maximizing strategy producing significantly lower satis-
faction with life than satisficing, they argue that a maximizing decision strategy
might constantly look for better objective outcomes. In modern recommender
systems, for another example, prior work [57] showed that a satisficing strategy
leads to the quicker selection, hence increasing content viewing time. In contrast,
subjects using a maximizing strategy spent significantly more time on selection
activities. In comparison, subjects using satisficing decision strategies spent sig-
nificantly less viewing time, regardless of subjective content quality.
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The objective reasons why human-in-the-loop optimization systems work dif-
ferently for bounded rational human agents remain underexplored. Although
previous psychology research correlated rationality with using satisficing and
maximizing decision strategies, there is little discussion about what objective
properties lead to the reported subjective dissatisfaction in this new context.
Especially as the previously reported unsatisfactory results rarely evaluate the
objective quality of optimized choice options while involving different levels of
rationality, it is also interesting to understand if an unsatisfactory result has com-
parably lower quality or whether satisficing is sufficient to maximize a machine
learner’s capability. In addition, with proper selection on a task, the quality of
a rational choice is also part of the consequence of human intelligence, known
as “expertise”. Concerning decisions using expertise, empirical research also re-
ports that people with high expertise apply more criteria during their decision,
especially clinic decisions [47], which proved less efficient and more correlated
to a maximizing strategy. Still, it remains unclear what the satisfaction would be
in this case.

Economics widely studied decision-making when choosing a preferred item from
several alternatives. The expected choice utility maximization [97] forms the
theoretical basis. It describes a standard economic model on a finite number of
decisions but assumes that individual beings behave rationally. In psychology,
Simon [141] proposes the concept of bounded rationality and proposes to replace
this assumption, as rationality is only limited, and decisions are made by satisfic-
ing. Later, prospect theory [64, 149] empirically demonstrated human judgments
in reality when trying to maximize a certain utility function (wealth) in risky
situations (e.g., under time pressure) and explained the behavior with bounded
rationality. The heuristic biases constitute a key source of general decision error.
Tversky and Kahneman [148] showed that in any decision under uncertainty,
System 1 (fast and instinctive thinking) tends to override System 2 (slow and
rational reasoning) [60], hence creating a statistical bias on the decision. More
specifically, 1) representativeness substitutes the most readily accessible exam-
ples to form a decision, 2) availability uses mental shortcuts, and 3) anchoring as
a conclusion bias describes that initial information has a consequence on a later
decision.

In addition to heuristics, other effects can also influence judgments: 1) in a utility
maximization context, diminishing returns [138] may occur as wealth increases
and marginal utility decreases; 2) loss aversion [63], as part of the endowment
effect [61], describes that people prefer to retain an owned property rather than
to acquire an alternative, potentially better one. People hence tend to stick to
seemingly safe decisions when a potential gain would require more risk. 3) In
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the present understanding, combined with a statistical view [10, 44], systematic
noise descriptively shapes another form of decision error that contributes equally
to judgment error as individual bias [62]. The decision noise components [62]
break down into level noise (decision variability between groups), stable pattern
noise (contextual bias within groups), and transient noise (purely occasional).

2.4 Expertise and Intelligence

Different than context-dependent rationality and satisficing, the involved exper-
tise of a human, i.e., the intrinsic intelligence and knowledge of a human, is con-
structed in their long-term experiences and is considered more effective in the
interaction and decision process. Therefore, to further understand the human
factors in the context of human-in-the-loop optimization, it is also important to
understand the concept of expertise and its impact on the interaction and decision
process.

To analyze the concept of expertise and quantify the impact of involved exper-
tise, one of the most straightforward questions regarding expertise is: “what is an
expert?” Depending on the domain context, there are different decompositions
of the concept of expertise. In particular, Garrett et al. [43] describe six different
dimensions regarding expertise, whereas Collins [24] suggests three dimensions
and Kotzee and Smit [79] suggests only two dimensions based on social aspects.
On a higher level, Bourne Jr. et al. [9] argues for interpreting expertise as a de-
scriptive term that involves knowledge and skills, which are mental or cognitive
concepts rather than physical talent. Therefore, tasks that might be physically
quickly adapted and measured regarding efficiency are less suited to verifying
the expertise involved [69, 70].

To quantify the loosely defined concept “expertise,” a range of theoretical models
have been developed, e.g., by describing a game between a decision-maker and
an expert who proposes options [86]. For our purpose here, it is interested in
quantifying the level of expertise of a specific human within a particular context.
Treem and Leonardi [147] propose to define 1) an observer who knows what it
looks like and 2) an expert who has an objective communicative skill that outper-
forms the observer who can infer their expertise. Ooge and Verbert [111] further
developed this concept and introduced a third metric for inferring expertise by
using a preliminary task to measure a person’s performance.

Because of the interpretation ambiguities and different arguments about proper
measures in other contexts, instead of asking about an absolute level “is A an ex-
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pert?”, identifying a person with a comparatively higher level of expertise than
another appears to be a more reliable local assessment. This transition turns the
expertise assessment into a ranking question “is A better than B in context C?”
similar to preference ordering [90]. Ferrod et al. [39] turned the problem of de-
tecting the level of expertise of a user from dialogues into a text classification
task that concerns and emphasizes expertise in the telecommunication domain.
Although their measures are not directly transferable to a general context, the
classification methodology confirms that relative expertise inferred from classi-
fication can avoid defining absolute levels. To measure the involved expertise
in a feedback loop, one does not only need to measure the accumulated human
experience but also needs to consider the context involved.

2.5 Summary

This chapter shaped a few fundamental terminologies regarding the initial under-
standing of the human-in-the-loop system. Although the definition of the term
“human-in-the-loop” is loosely different from “interaction” itself, with a parse
of recent literature, human-in-the-loop related research mainly focuses on the
direction of humans takes the lead, and machine analyzing and learning user in-
puts progressively so that the background machine system can produce unique
adapted content, which led to an optimization context. To achieve this goal, there
are many existing practices in the field of machine learning. While in the scope
of this thesis, we mainly looked into the literature regarding using Bayesian op-
timization to model users’ preferences based on their decision-choice behavior;
hence, we will also use “human-in-the-loop optimization® to refer to such a ma-
chine system. With a connection to an actual human, we also inspected literature
that formerly investigated the imperfection of human decisions and the concept
of expertise. All these backgrounds will be further discussed in the following
chapters when presenting our empirical explorations and reflections.
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3

Problem, Solution, and
Performance Spaces

Existence precedes and rules essence.

— Jean-Paul Sartre

To start, this chapter! will elaborate on the problem space, solution space, and
performance space to facilitate the empirical explorations in this thesis. We will
discuss the problem space in detail, including our selection approach of the prob-
lem contexts and the corresponding solution spaces of the related algorithms. We
will discuss possibilities to measure the performance regarding the overall behav-
iors of the system between user, machine, and underlying optimization approach
that aligns machine behavior towards an individual human.

3.1 Problem and Solution Space

In a human-in-the-loop optimization scope, it is more fitting to use decision-
making tasks that sit between pure subjective preference matter (e.g., favorite
colors) and well-defined objective optimization problems that can be solved pro-
cedurally (e.g., finding the global minimum of a strictly convex continuous func-
tion). We need to select tasks where users provide ranking feedback using their

The content of the chapter is partly based on Ou et al. [113, 114].
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expertise. A task should also be iterative for observing progress and partially
subjective because users could balance the trade-off on different objectives.

With the above consideration, this thesis selected tasks that include text sum-
marization, photo color enhancement, and 3D model simplification for the fol-
lowing reasons: 1) They all partially involve rational, objective judgment, and
subjective components. 2) Each domain requires different levels of human ex-
pertise: text summarization only requires language proficiency, which is funda-
mental human expertise; photo color enhancement involves an understanding
of aesthetics and color theory; 3D model simplification requires domain-specific
technical 3D modeling expertise. 3) All these contexts had been discussed in the
human-in-the-loop optimization literature [81, 82, 83, 112, 143] individually but
not compared to each other together.

In order to minimize the problem scale, in chapter 5, we will discuss the user
interface design for the text summarization and photo color enhancement design
space. In chapter 6, we will look closer at the 3D model simplification design
space. Lastly, in chapter 7, we will conduct a user study and compare across all
three contexts.

Below, we will first discuss the problem and solution space in detail for each
domain.

Domain 1: Text Summarization Inthe domain of text generation, text sum-
marization is the problem of generating a short summary of a given text. It is a
well-studied problem in natural language processing (NLP) and has been used in
many applications, such as news summarization, document summarization, and
query summarization. When dealing with text summarization, the general ap-
proach can be considered in two directions [87]: 1) Extract the most important
sentences from the original text, and pick the parts of the text with the highest
relevance defined by a correlation distance. The selection process directly pro-
duces the summary. 2) Generate a summary from the extracted sentences, similar
to what most humans would do when tasked to summarize a text.

The first direction is called extractive summarization, and the second direction is
called abstractive summarization. The former is a simpler task and can be solved
by a greedy algorithm [99], while the latter is a more challenging task and re-
quires a more sophisticated model. As a mix of both approaches, See et al. [136]
allows a model to replicate some parts verbatim while rewording the others.

Domain 2: Image Color Enhancement In contrast to many other disciplines,
the issue of picture color enhancement is not clearly defined, and applicable so-
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lutions are often evaluated based on basic heuristics. One of the most important
reasons is individual differences in color perception and prior education [17].
This allows us to automate the image quality enhancement process by using ma-
chine learning techniques [15] to understand the connection between many im-
ages and, depending on a heuristic measure and preferential feedback [81], the
underlying goal of machine algorithm is to maximize the appearance of an image
based on the feedback from a user.

Therefore, when the user teaches the algorithm by manually providing feedback,
the algorithm tunes parameters that alert the color filters to alert the overall artis-
tic style of an image. In the majority of cases, the user is not aware of the un-
derlying algorithm, but the algorithm exposes a set of explainable features to the
user, which can be used to understand the overall direction of a user to improve
the image color without being aware of all underlying details.

Domain 3: 3D Mesh Simplification For the specific geometry processing
problem, polygon reduction, presented in this thesis, we briefly discuss its recent
advances and the relevant methods we utilized to build our system. The geometry
processing “No-Free-Lunch” theorem [154] states that not all geometric proper-
ties can be well preserved simultaneously in discrete instantiations of a smooth
geometry. Therefore, different processing tasks have specialized algorithms and
corresponding configurations, such as soft or hard geometries. In general, poly-
gon reduction methods can be categorized as local decimation, global remeshing,
or a weighted combination of both.

Local decimation means that neighbor vertices and edges are greedily removed.
These methods date back to the last century [41, 42] and have also been used
for levels of detail (LOD) generation [54], even baked into hardware render-
ing pipelines [110]. They are efficient but contain ill-posed cases with results
depending on the implementation. Instead, the general idea of global remesh-
ing [7, 35, 76, 120] is to define a directional field as constraint boundary conditions
on a Poisson equation and then minimize an artificial energy function. After min-
imization, a new target mesh can be reconstructed from scratch using the solved
solution. Computationally, this is much more costly and cumbersome, but the
resulting mesh quality is much better than that from local decimation. State-of-
the-art practical solutions, such as Karis et al. [68], use a weighted combination of
both that balances the processing speed against quality. A large mesh can be split
into smaller ones, then processed using mixed global [55, 58] and local [42, 54]
methods, but this also introduces the new problem of cutting a mesh. We refer
to Metis [71, 121] as a mature solution for graph partitioning.
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3.2 Performance Space

As shown in Figure 1.1, the problem context and the defined solution space to-
gether will produce system outcomes for the user, then combined with the user
feedback, a set of considered measures defines the overall system performance.

To facilitate the inspection and analysis of the performance of human-in-the-loop
systems, one can consider an interaction loop more successful from the human
side if 1) the involved human spends less time on providing feedback inputs, 2)
the user can achieve a satisfactory result in fewer interactions, and 3) the user
interface allows the human to give more precise and clear feedback. From the
machine side, the underlying optimizer can learn human feedback more effec-
tively and propose outcomes of high objective quality faster. In this subsection,
we will discuss the considered metrics for the human side and the machine side
in this thesis and how they are measured in subsequent studies.

3.2.1 User Performance

The performance of a user in a human-in-the-loop system can be considered from
two different aspects: behavior and responses. The former is related to the overall
interaction with the system, while the latter is related to the user’s feedback to
the system. They are two different channels of information that can be used to
evaluate and verify each other.

Behavior Measures Behavior can be considered from different perspectives.
From the user’s interaction perspective, one can measure the overall interaction
of the developed system, including 1) decision time, starting from when the eval-
uation options were presented to the last time when users interacted with the
interface; 2) occurrence of incomplete preferences per participant per iteration,
3) occurrence of expressing indifference 4) the number of mouse operations to
select/rank the given system outcomes in listwise interfaces.

User Responses To evaluate human responses while interacting with a
human-in-the-loop system, one can collect rating and preferential ranking data
in each iteration of interaction as user responses. One can use the utility value
from direct rating or the learned latent utility from preferential rankings to quan-
tify this user feedback. Besides the responses collected while interacting with the
system, there are two additional measures regarding expertise and overall satis-
faction.
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Before participation, a user’s demographics are measured, especially background
knowledge and expertise. As discussed in section 2.4, since user expertise is mea-
sured differently in prior research, we use a similar approach as Ferrod et al.
[39], Ooge and Verbert [111], and combine the following established metrics:
1) self-indication, 2) accumulated work experience, and 3) recent experiences in
the domain. For the text context, we ask for their language proficiency; for the
image and mesh contexts, we ask for their self-indicated photo editing and 3D
modeling expertise. All contexts asked for their months of work experience as
well as when was their most recent experience.

Based on the collected data, relative levels of expertise are used in our context for
the discussion of expertise, and we normalized these measures among all users,
then grouped users into three groups using quantile-based discretization: novice,
intermediate, and experienced. Note that the descriptions only represent the rela-
tive levels among our recruited users. In a larger user group, they may be recon-
sidered as novice or intermediate accordingly.

Lastly, at the end of participation, there are six questions presented to measure the
overall subjective satisfaction regarding the machine outcome: Q1) participants’
overall subjective satisfaction with the final results; Q2) the confidence they think
they can do a better summarization by themselves than the system, which was
optimized based on their provided feedback; Q3) whether the outcome matched
their expected summary; Q4) whether they felt improvements of the summariza-
tion from iteration to iteration; Q5) whether they felt the “I don’t know” option
was helpful, and Q6) whether they believed they gave clear feedback to the AL
We measured these questions using a bipolar slider-based Likert scale. Among
these questions, Q1 to Q4 are intended to measure subjective satisfaction.

3.2.2 Domain-specific Objective Outcome Measures

For the performance on the machine side, there are interior and exterior mea-
sures. The interior measures are related to the Bayesian optimizer’s behavior,
while the exterior measures are related to the system outcome and correspond-
ing domain-specific metrics regarding the objective quality.

Bayesian Optimizer To measure the behavior of a Bayesian optimizer, one
can consider using prior input information that maps a set of collected user re-
sponses to a set of optimized parameters. Based on the estimated posterior, one
can measure the expected improvement of the optimizer’s performance in the
next iteration. This enables us to understand the optimizer’s learning progress
and the system’s overall performance.
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Text Summarization There are many different approaches to define the over-
all similarity between two paragraphs. The core idea of the existing measurement
is to compare a machine-generated text to one or multiple human-generated
texts. This type of comparison might be biased by the human’s writing style.
Therefore, the comparison also often aggregates a large number of human re-
sults. In particular to the summarization context, the total number of words in
the outcome texts to validate if a user made progress on the given objectives. We
can also compute the BLEU [117] and ROUGE [92] (including ROUGE-1, ROUGE-
2, and ROUGE-L) scores to measure the objective quality of summarized texts as
they are frequently used to evaluate the quality of summarization, and correlate
positively with human evaluation.

Image Color Enhancement For the image color enhancement, we can com-
pute saturation, contrast, and brightness using a mean of pixel-wise subtrac-
tion between source and outcome in the H, S, and V channels correspondingly.
Furthermore, we can compute the mean pixel-wise difference of U channels in
YUV color space for tint changes and similarly in the V channel for temperature
changes. While these measurements do not reflect actual image “quality”, to-
gether with the strategy of the optimizer to always show the current best choice,
a consistent trend here can be seen as an indication of continued improvements.
Although those metrics stay at a technical level, they positively correlate with
human judgment.

3D Model Simplification The task of 3D model simplification concerns sim-
plification ratio [8] and perceivable changes regarding visual quality, wireframe
quality, and surface quality. The visual quality and wireframe quality are useful
indicators concerning human perceptual judgments. In contrast, surface qual-
ity is defined at a technical level and was found to be more difficult to perceive
visually compared to the other qualities [25]. Therefore, we can compute the
simplification ratio to validate whether users progressed on the given objectives.

In terms of visual quality, one can use rendering quality from multiple camera
views to measure visual quality during mesh simplification. A 3D model can be
rendered as a series of images from different perspectives with given rendering
settings, such as specified light conditions, camera settings, and rendering al-
gorithms. We can use an equally weighted combination of peak signal-to-noise
ratio [78] (PSNR), and structural similarity [153] (SSIM) to measure the render-
ing difference. For wireframe quality, we can compute scaled Jacobian cell qual-
ity [75] because it was previously suggested to better correlate with the human
judgment [25]. The scaled Jacobian cell quantity itself measures how a given face
is regularized. Lastly, we can sample two point clouds on the source mesh and the
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outcome, then use Chamfer distance [4] to indicate the surface quality. Surface
quality is less observable compared to the other three objectives.

3.3 Summary

This chapter discussed the relevant measurements in a human-in-the-loop opti-
mization system, including human-side expertise and satisfaction measurement,
behavior measurement such as human choice feedback, interaction behavior,
timing, and involved iterations. We also discussed the domain-specific objec-
tive outcome measures for text summarization, image color enhancement, and
3D model simplification, which will be used in the following chapters for analyz-
ing the overall system outcome quality. The measurement using these metrics
contributed to the shape of the overall performance space; they will also facili-
tate the verification of different observation channels and are beneficial for the
overall discussion of the interpretation of the results.
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4

Experiment Design and Apparatus

There are two methods in software design. One is to make the
program so simple there are obviously no errors. The other is to

make it so complicated there are no obvious errors.

— Tony Hoare

In previous chapters, we discussed the relevant background knowledge and the
considered problem contexts in this thesis. Before we narrow down to the spe-
cific problem domains, this chaper' demonstrates a general abstraction of the ex-
perimental design throughout the thesis and the engineering details of relevant
domain-specific systems.

4.1 Design Patterns of Experiment

For a human-in-the-loop optimization system, the experiment that evaluates how
users interact with it will involve different parts: 1) understanding the user back-
ground, 2) sampling and calibrating individual differences, 3) interaction and op-
timization loop until termination criteria are met, and 4) collecting user feedback
and experience. Therefore, the overall four experiment stages for a participant
are visualized in Figure 4.1, and the different phases are explained below.

The content of the chapter is partly based on Ou et al. [112, 113, 114].
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Figure 4.1: A general procedure of all studies discussed in this thesis. A participat-
ing user conducts one of the problem domains: text summarization, photo color
enhancement, and 3D model simplification. The experiments reported in chap-
ter 5 explores the domain of text summarization and photo color enhancement.
chapter 6 mainly focuses on the 3D model simplification. An overall comparison
across three domains is reported in chapter 7.

Study Intro Participants started participation with an informed consent form
and answered initial demographic questions, including their age, gender, and lev-
els of expertise.

Main Task The user interface presents a set of machine outcomes to partici-
pants. The main task for a user is to provide feedback to the machine using the UL
Based on the collected user feedback, the background optimizer will iteratively
optimize the machine outcomes. Because the optimizers need initialization sam-
ples to fit individuals, to minimize the participation time, in the first four iter-
ations, a participant evaluated outcomes produced by quasi-random Sobol sam-
pled [128, 158] system parameters. After acquiring these preference priors from
participants, starting from the 5th iteration, the optimizer is used, and partici-
pants can freely terminate when satisfied with the current system outcomes. The
task ends automatically after 20 iterations to limit participation time.

In particular to the problem domains discussed in this thesis, we use the following
three main tasks as empirical examples:

o Text summarization: Given a news article, the system produces a summary
of the article. Based on the user feedback, the system optimizes the sum-
mary to be more concise while preserving the meaning of the article.

« Photo color enhancement: Given a photo, the system produces a color-
enhanced version of the photo. Based on the user feedback, the system
optimizes the color-enhanced photo to be more pleasing to the user.
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+ 3D model simplification: Given a 3D model, the system produces a simpli-
fied version of the model. Based on the user feedback, the system optimizes
the simplified model to be more pleasing to the user.

Ending a Task After termination, participants answered six questions regard-
ing their satisfaction with the system outcomes and their experience with using
the system to give feedback.

Ending the Study Each participant will need to complete Latin square-shuffled
machine outcomes. Specifically, articles in text summarization tasks?, photos in
image color enhancement tasks®, and 3D models in mesh simplification tasks*.

4.2 Apparatus and Engineering

To successfully execute the experiment, we must build a system for participants.
In this section, we will discuss high-level engineering details of the system and
the infrastructure that we used to run the experiment.

For the frontend interfaces, there are potentially two different kinds of needs. In
the lab experiment context, the user interfaces must be controlled, and the overall
experiment procedure must be managed to minimize confounding variables. In
the wild experiment context, the user interfaces must be easy to use and provide
a good user experience. In both cases, a possible reuse of the facility is to sepa-
rate the core functionalities into the backend so that the front end can be easily
replaced by different Uls as long as the backend APIs are compatible.

In the subsequently presented user studies, we developed the frontend web Uls
using Material UI®, React DnD®, and three.js’. For the native desktop software
U, we collaborated with an industrial partner8, who useed Unity®.

2Selected from the CNN daily mail dataset, article IDs: ea06fd0b, 35f0e33d, 42c027e4. See https:
//huggingface.co/datasets/cnn_dailymail, last accessed 17.02.2023

3Selected from Koyama et al. [82]. See https://github.com/yuki-koyama/sequential-
gallery/tree/main/resources/scaled, last accessed 17.02.2023

4Selected model name: Stanford bunny, Suzanne, and fan disk. See https://github.com/
alecjacobson/common-3d-test-models, last accessed 17.02.2023

Shttps://mui.com/, last accessed 17.02.2023

®https://react-dnd.github.io/react-dnd/about, last accessed 17.02.2023

"https://threejs.org, last accessed 17.02.2023

8Ingman Technologies GmbH and WAY Engineering GmbH.

https://docs.unity3d.com/2020.3/Documentation/Manual/UIToolkits. .html


https://huggingface.co/datasets/cnn_dailymail
https://huggingface.co/datasets/cnn_dailymail
https://github.com/yuki-koyama/sequential-gallery/tree/main/resources/scaled
https://github.com/yuki-koyama/sequential-gallery/tree/main/resources/scaled
https://github.com/alecjacobson/common-3d-test-models
https://github.com/alecjacobson/common-3d-test-models
https://mui.com/
https://react-dnd.github.io/react-dnd/about
https://threejs.org
https://docs.unity3d.com/2020.3/Documentation/Manual/UIToolkits.html

30 Apparatus and Engineering

Apart from the frontend, We expose the core functionalities of our system as Web
APIs that run the different computation services, such as text summarizer, image
color enhancer, and mesh reducer. The backend core service is written in Go'° for
easier concurrency management. It serves all frontend interfaces, data collection,
and communications with other dedicated computing microservices, including
domain services and an optimizer service. The logged data were directly managed
using the OS file system with naming conventions. All services are deployed
on the institute infrastructure (Ubuntu 20.04, 8-Core Intel Core i9-9900K, 64GB
RAM, and NVIDIA GeForce RTX 2080 Ti with 11GB of GPU memory).

We implemented three separate domain services. To perform text summarization,
we picked the pre-trained BART model via HuggingFace!!. We implemented an
isolated text summarization server using Flask!'? with GPU acceleration. We use
Nucleus sampling [52] as a stochastic text decoding strategy'® for our inference
use case because it allows for a bounded hyper-parameter space (between 0 and
1) and can generate diverse human-like sentences in the inference phase. Since
we designed our user task to consider the length of summarization as a decision
criterion, we used a summarization ratio as a hard limit that controls the text
generation length and a length penalty as a selected soft limit that encourages
the model to generate shorter text. As a result, our hosted text summarization
service allows four adjustable system parameters at every model inference stage:
1) summarization ratio, 2) length penalty, 3) top-p*>, and 4) temperature®.

For photo color enhancement, we used a parameterized photo enhancer [81,
82, 83] as an image processing service for better integration to the core ser-
vice. This service allows five adjustable system parameters that are bounded
between 0 and 1: 1) brightness, 2) contrast, 3) saturation, 4) temperature, and
5) tint. Lastly, we engineered a hybrid local/global algorithm based on state-of-
the-art research [42, 58], as a 3D mesh processing service, and it also contains five
bounded system parameters: 1) simplification ratio, 2) border preservation, 3) hard
edge preservation, 4) sharpness preservation, and 5) quadrilateral preservation.

We implemented the underlying optimizer using BoTorch [3] as a command line
service, which reads the user responses to estimate the next optimal system pa-
rameters for exploration. BoTorch provides the EUBO [93] optimizer as one of
the state-of-the-art PBO optimizers that consider noisy inputs to estimate system
parameters for pairwise comparisons. We extended EUBO to utilize ranking com-
parisons to fit a Gaussian process using the user’s rank data first. Then, we used

Onttps://go.dev, last accessed 17.02.2023
Unttps://huggingface.co/sshleifer/distilbart-cnn-12-6, last accessed 17.02.2023
2https://flask.palletsprojects.com/en/2.2.x/, last accessed 17.02.2023
Bhttps://huggingface.co/blog/how-to-generate, last accessed 17.02.2023
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the learned latent utility value to fit another Gaussian process and infer the next
batch of exploration positions. The acquisition function is the Analytic Expected
Utility Of Best Option acquisition function [93]. Typical extensions of BO model
a preference function that transfers the problem of learning a utility function
to learn a preference function that implies a latent utility function, e.g., Gonzalez
et al. [45]. However, EUBO models the expected utility of system outcomes based
on a given user response dataset P,, = {(x14, X2, 7(X1,4, X2 )}, where x; ;
and xo ; are the pair of interests, and r(-) is the response of a user that indicates
either 1 prefer the first outcome of the pair or 2 refers to the second outcome. The
acquisition function of EUBO considers maximizing the expected outcome utility
difference between iterations E; [argmax_. 1 E;y1[f(x)] — argmax, .  E;[f(x)]]
where f is the assumed latent utility function'*. The design of the EUBO guar-
antees that the current optimum is included in pairwise or listwise comparisons,
and we can use maximum posterior expected utility [21] to understand the impact
on outcome utility.

For utility-based optimization context, we implemented a straightforward utility-
based BO; for preference-based Uls, we use EUBO [93] that is designed for pair-
wise comparisons; and for all listwise ranking context, we adopted EUBO such
that the optimizer can infer a batch of outcomes based on ranking preferences.

Hartmann (6D) Levy (10D) Ackley (20D)

SN

Random Sampler

Sobol Sampler

Figure 4.2: The performance benchmark for validating implemented Bayesian
optimizers compared to a random exploration (baseline). Higher y-axis utility
values mean better exploitation performance. The upper row shows exploitation
performance using a random sampler for the initial samples. The bottom row
shows exploitation performance using a Sobol sampler. Each column shows the
performance of a different synthetic function. The results validate our imple-
mented BOs and outperform random exploration.

4This acquisition function is intractable due to nested structure, but Lin et al. [93] showed a simpler
equivalent E,, [argmax{ f(x1), f(x2)}] that preserves the same design property.
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As a demonstration of the validity of the implemented Bayesian optimizer, we se-
lected four standard synthetic functions'>: Weighted Vector Sum (5D), Hartmann
(6D), Levy (10D), and Ackley (20D) for benchmarks. The results demonstrate that
all of our implemented Bayesian optimizers outperform random exploration.

4.3 Summary

This chapter introduced an abstraction of human-in-the-loop optimization exper-
iment design patterns. We presented how three considered problem contexts fit
into the same experimental procedure. We also discussed a detailed implemen-
tation of the experiment procedure regarding text summarization, photo color
enhancement, and 3D model simplification. In the next chapters, we present ex-
periments based on these details and discuss the findings from those empirical
explorations. Specifically, in chapter 5, we will discuss the user interface design
for the text summarization and photo color enhancement design space. In chap-
ter 6, we will look closer at the 3D model simplification design space. Lastly,
in chapter 7, we will show a user study and compare all three contexts.

15See https://www.sfu.ca/~ssurjano/optimization.html, last accessed 17.02.2023
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Measuring Opinions with Interfaces

Divide each difficulty into as many parts as is

feasible and necessary to resolve it.

— René Descartes

This chapter! revisits the design space of opinion measurement interfaces in the
context of human-in-the-loop optimization and elaborates on the terminologies
used to differentiate user interface variants. Moreover, the content discusses an
experiment to validate four major structured hypotheses. It shows the impact of
user interfaces on a human-in-the-loop optimization loop by comparing multiple
design variations of opinion measurement interfaces. The overall results suggest
two optimal interfaces: 1) pairwise non-forced choice interface; or 2) listwise
utility and preferential choice hybrid interface. The choice between the two is a
tradeoff between decision time, the precision of measured human feedback, and
overall optimization loop performance.

5.1 Opinion Measurement Interfaces

Conventional opinion measurement interfaces have different absolute measures,
such as categorical choice and ordinal Likert-scale measures. The underlying

The content of the chapter is partly based on Ou et al. [113].
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Figure 5.1: Real-world measured opinions in different interfaces: a) Commonly
used rating scales to measure opinion regarding one item; b) Two alternative
candidates (non-)forced choice; c) Music album song orders without specified
criteria, and forced ranking of conferences and movies using a distance.

analysis is based on Thurstone’s law of comparison [146]. The optimal design of
a pointwise measuring UI has been explored in psychology to reduce measuring
error, for example, by asking repeated questions and checking the overall consis-
tency [139], regarding the influence of ticks [98], or by allowing users to express
uncertainty about their own input [46]. Previous work also discussed improving
rating accuracy in the human-in-the-loop context [33, 106].

A first systematic evaluation regarding the design space was provided by No-
barany et al. [109]. They also observed that the rating interface might not be
ideal for measuring opinions and discussed how to support ranking in the in-
terface. In a way, this is similar to how PBO was designed [11, 12, 45]; opin-
ion measurement interfaces that support comparison were also found beneficial
here. Kalloori et al. [65] discussed a few reasons for better-measured opinions us-
ing preference-based feedback: 1) Explicit rating utility suffers from calibration
of drift, for concepts with different types of interpretations might lead to differ-
ently rated results. 2) Users might change their opinion from time to time due
to anchoring [119]. 3) Relative questions might potentially be faster and easier
to answer. Due to the increased complexity of feedback types, ranking Uls are
rarely explored, although there is initial work in this direction [95, 104].

Interfaces used in the Real World Opinions are frequently measured in real
life for a variety of purposes. One can generally observe three genres of these
Uls: pointwise, pairwise, and listwise Uls, as shown in Figure 5.1.
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Figure 5.2: Examples of opinion measurement interfaces being used in human-
in-the-loop optimizations: a) A user chooses from a list of candidates to optimize
illumination [96]; b) A user is asked to choose items that are closer to a given
reference [157]; ¢) A user is required to decide which of the two given options
is closer to their desired material [12]; d) A user is asked to choose which of
two presented texts is more likely to be written on Wikipedia by a human [156];
e) A user is required to choose which trained machine’s back-flip is better [20],
note that the interface uses a “can’t tell”; f) A user rates four presented graphics
animations using a 3-step rating scale to show how close an animation is to what
they are looking for [11]; g) A user rates which of the given paired designs is
more preferred [80]; h) A user is required to select one target out of a list of
choice alternatives [82].

Interfaces used in Human-in-the-loop Optimization As shown in Fig-
ure 5.2, there are many designs for opinion measurement interfaces used in
human-in-the-loop optimization. Specifically, the presented examples can be
treated as a mix of pairwise and listwise comparisons, and the underlying feed-
back type that models the UI’s input form is either utility- or preference-based.
Because of this diversity, providing a taxonomy is helpful in categorizing them
and determining the study design in the next section.

5.2 Design Space and A Taxonomy

Table 5.1 provides an overview of the design space of opinion measurement in-
terfaces in terms of the number of judging options and the types of feedback. The
design space formally contains these two dimensions: the number of alternative
options and the underlying feedback type.
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Table 5.1: A design space of opinion measurement interfaces concerning feed-
back type, ordering type, and batch size. The numbers in bold are those of the
interfaces implemented in the study. All of them allow users to express incom-
plete preferences using an “I don’t know” checkbox.

Alternative Options (n € N)

Feedback Type Pointwise (n = 1) Pairwise (n =2) Listwise (n > 2)
Utility 1-RS (UI1) 2-RS n-RS (UI3)
Preferential (strict) N/A 2-AFC n-AFR (UI4)
Preferential (weak) N/A 2-ANFC (UI2) n-ANFR (UI5)
Hybrid (strict) N/A N/A n-AFRD
Hybrid (weak) N/A N/A n-ANFRD (UI6)

The number of alternative options encodes the complexity when measuring opin-
ion. With more alternative options, one can gather more feedback from a user
simultaneously. An interface is pointwise if it only measures the opinion regard-
ing one item. Similarly, interfaces that measure information about two paired
items are pairwise. With more than two options, the interface is listwise. For
example, in Figure 5.1a, all interfaces are pointwise as they measure opinions re-
garding a single instance. Conceptually, a listwise interface also covers interfaces
that potentially allow exploring infinite options (n=00, e.g., Koyama et al. [83]).
However, regardless of the involved number of options, since a user has to select
or mark a subset of preferential relations among all options, e.g., Wilber et al.
[157], a multiple-item selection can be considered a strict preference between
selected and unselected ones, whereas the preference order among (un)selected
ones remains unspecified. Note that although an interface presents paired op-
tions to measure human opinion, it could still ask humans to provide a distance
estimation between two options, which only conveys absolute distance utility as
a rating regarding one item to the reference. Furthermore, although Figure 5.2f
presents four alternatives and asks how close they are to what the user is look-
ing for, and this is an absolute rating only with respect to the user’s idea of an
optimum (which remains unknown to everybody else). These considerations im-
ply that the underlying feedback type, which the framed Ul presents as a usage
instruction, is also crucial for opinion measurement.

The underlying type of feedback can be either utility-based or preference-based.
Utility-based interfaces query a human to provide an absolute ordinal or cardinal
value regarding an option (The interpretation of the value can differ depending
on the context). Preference-based interfaces only measure relative information
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regarding paired options and, therefore, need further consideration to infer a
latent utility. On the one hand, since utility-based interfaces only provide nu-
meric information directly associated with the option, the relative information
between options may not be explicit. However, the utility value can be sorted.
On the other hand, preference-based interfaces only provide local information.
A hybrid feedback type provides a subtle design consideration to mix utility- and
preference-based information. Similarly, there are two design alternatives, either
strict or weak, depending on the type of preference.

One can place the previously presented examples into this design space. Fig-
ure 5.1a contains 1-RS and n-RS: Twitter and Tinder only utilize binary responses
regarding one option (like or not). The amazon by feature rating example is n-RS
but evaluates multiple dimensions using scales. In Figure 5.1b, there are two ex-
amples of 2-AFC or 2-ANFC. Figure 5.1c shows three listwise interfaces: n-AFR
(songs are ranked without allowing ties and without information about how they
are being ranked), n-AFRD (options ranked with a distance, items with the same
utility value are forced to be placed on different ranks).

Figure 5.2a and Figure 5.2b are n-ANFR because they require humans to rank op-
tions (permitting ties) without specifying a distance to other options, Figure 5.2¢
and Figure 5.2d are 2-AFC because they are judging two options and cannot tell
indifference through the UL, Figure 5.2e is 2-ANFC because it offers “can’t tell” to
its user, Figure 5.2f is n-RS, and Figure 5.2g is 1-RS because it is judging how far
one item is away from the other, and only judges one option. Lastly, Figure 5.2h
is n-AFR. In fact, Figure 5.2a and Figure 5.2h also use a meaningful 2D layout for
presenting the choice alternatives instead of a plain list. While this may improve
the efficiency and user experience in specific tasks, it does not change the general
structure and, therefore, the classification of the interface.

As shown in Figure 5.3, one can select six generic interfaces from this design space
(1-RS, 2-ANFC, n-RS, n-AFR, n-ANFR, n-ANFRD) to better facilitate the evalua-
tion of human-in-the-loop optimization, see subsection 5.3.1. More specifically,
regarding the exact behavior of these interfaces, 1) 1-RS uses a bipolar slider-
based Likert scale, similar to 7-RS; 2) n-AFR requires a full ranking of all options,
and the interface does not allow expressing indifference in this case, whereas
n-ANFR can, which characterizes strict and weak preferences; 3) To guarantee
a pure ranking behavior in the interface, n-AFR, and n-ANFR automatically ad-
just the distance between options. For example, if a user dropped two boxes
on the second and fourth choice container box. Then the fourth choice will au-
tomatically move up to the third choice and inform users that their ranking is
automatically aligned and normalized. 4) n-ANFRD is the most flexible listwise
ranking interface that permits users to place the option box in any given con-
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Figure 5.3: Different opinion measurement interfaces: UIl) Single item Rat-
ing Scale (1-RS); UI2) Two Alternative Non-Forced Choice (2-ANFC); UI3) n-
items Rating Scales (n-RS); UI4) n-Alternative Forced Ranking (n-AFR); UI5) n-
Alternative Non-Forced Ranking (n-ANFR); Ul6) n-Alternative Non-Forced
Ranking with Distance (n-ANFRD). The 1-RS and n-RS interfaces are rating scale-
based measurements, and the 2-ANFC, n-AFR, and n-ANFR are preference-based
ranking interfaces. As a combination, the n-ANFRD mixes absolute ratings and
preferential rankings, which permits expressing not only ranking orders but also
local ordinal ranking distance. All interfaces in this gallery also permit users to
express their incomplete preference through “I don’t know” and to signal when
a satisfactory result is achieved through “I'm satisfied”.

tainer box. 5) All interfaces include either checkbox options or container boxes
to allow users to express incomplete preferences.

5.3 Hypotheses and User Study

To answer our research questions regarding user interfaces in human-in-the-loop
systems, we discussed our hypotheses and then conducted a user study to inves-
tigate how different opinion measurement interfaces impact the overall human-
in-the-loop optimization performance.

5.3.1 Hypotheses

To compare the six classes of opinion measurement interfaces described above,
this thesis formulates four major hypotheses concerning the performance of
human-in-the-loop optimization when using such an interface. The details of
how to measure performance were described in chapter 3.
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Hypothesis 1: Baseline Early work on human-in-the-loop optimizations has
shown great performance when using 2-ANFC [11, 12, 13]. Their results showed
that 2-ANFC systems generally perform better than 1-RS and greatly support
human-in-the-loop systems. It is also helpful to use their initial findings as the
baseline comparison and to validate the experiment apparatus. Thus, it is reason-
able to hypothesize (H1) that the preference-based interface will outperform the
utility-based interface regarding performance measures (UI1 vs. UI2).

Hypothesis 2: Impact of Listwise Approach More, generally speaking, note
that if H1 is true, this would indicate that giving the user more options for com-
parison will improve the overall system performance. In fact, this is what findings
by Cao et al. [18] suggest. Thus, one can hypothesize that a listwise comparison
(n > 2), will outperform comparisons with fewer options. As Listwise is the
most flexible in terms of feedback, the next investigation is reasonable to un-
derstand the different strategies that emerged from related work [82, 83, 100].
Hence, this thesis investigates design variations in which the human can either
give preferential ratings (e.g., Koyama et al. [80]), provide a strict ranking selec-
tion (e.g., Koyama et al. [82]), a weak ranking selection (e.g., Marks et al. [96]), or
a combination of those (hybrid). Consequently, one can hypothesize (H2a) that
a listwise interface will outperform a pointwise interface when using utility-based
feedback (UI1 vs. UI3). And one can hypothesize (H2b) that a listwise interface
will outperform a pairwise interface when using preference-based feedback (UI2
vs. UI5).

Hypothesis 3: Impact of Listwise Design Variations Based on the initial
findings by Mikkola et al. [100] on, one can additionally hypothesize H3a and
H3b. In detail, one hypothesizes H3a that a preference-based listwise ranking
interface will outperform a utility-based listwise rating interface (cf. [11, 12, 13]),
while allowing for expressing indifference (UI3 vs. UI5). Further, regarding in-
difference, it is reasonable to hypothesize H3b that being able to express indif-
ference in the interface (weak preference) will be better than a forced choice (strict
preference) (Ul4 vs. UI5).

Hypothesis 4: Impact of Hybrid Approach Based on hypotheses H1-H3
and under the assumption that their outcome in this work is in line with prior
work, this chapter proposes a new hybrid feedback interface. For this, n-ANFRD
(UI6), as they consider best to support the human-in-the-loop optimization, thus,
getting the most amount of information from the user. Thus, it is hypothesized
that the hybrid listwise interface will outperform: H4a the pairwise interface
(U12), H4b the listwise rating interface (UI3), H4c the listwise strict ranking in-
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terface (UI4), and H4d the listwise weak ranking interface (UI5).

5.3.2 Participants

In order to validate the previously described hypothesis, an experiment that re-
flects the previously discussed study procedure and apparatus in chapter 4, was
conducted to recruit participants worldwide on Prolific2. To guarantee high-
quality responses, only consider participants must meet these requirements:
1) answered with consistent demographics, e.g., not more than five years of age
difference in the study compared to the platform registration information, and
2) provided their response in at least a reasonable amount of time, i.e., spent
longer than 3 seconds in each iteration to read the summarized text, longer than
1 second in each iteration to check the image and interact with the interface ac-
cording to a pilot study observations. Therefore, the results are reported based on
360 participants (171 female, 185 male, and four diverse; age u = 28.14, 0 = 8.39,
range 18-66), with varied self-indicated English proficiency (CEFR scale®: Al
0.55%, A2 0.55%, B1 3.89%, B2 21.67%, C1 43.33%, C2 30.00%) and varied self-
indicated photo color enhancement expertise (None 12.2%, Novice 46.7%, Inter-
mediate 30.0%, Experienced 10.6%, Expert 0.6%). Each interface on each domain
was tested by 30 participants.

5.3.3 Methodology

To analyze and discuss the collected data, we conducted a study on text sum-
marization and photo color enhancement domains. For the usage of the inter-
face, we measured participants’ interaction details in each interface as behavior
measures. Next, we recorded participants’ provided feedback and correspond-
ing system outcomes as feedback measures for the optimization loop. Lastly, we
measured their subjective experience with the system after each completion as
questionnaire measures. See chapter 3 for more details.

During the study, we measured participants’ expertise, their interaction behavior
with our developed system, subjective ranking feedback to the system outcomes,
objective quality of system outcome, and their subjective satisfaction and open
questions regarding their experience.

2https://prolific.co, last accessed 17.02.2023
Shttps://www.coe.int/en/web/common-european-framework-reference-languages/
table-1-cefr-3.3-common-reference-levels-global-scale, last accessed 17.02.2023
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In the subsequent analysis, we will present participants’ behavior regarding in-
terface interactions first, including their total iterations, decision time per iter-
ation, and how they express indifference and incomplete preferences. Then, it
shows the effectiveness of the feedback optimization loop concerning the ob-
jective quality and feedback utility. Lastly, subjective answers and comments
are presented from a questionnaire. Since the hypotheses H1 and H2 in sub-
section 5.3.1 compare two Uls, one can analyze normally distributed data using
a t-test or a Mann-Whitney-Wilcoxon test when normality is violated as indi-
cated by the Shapiro-Wilk test [126]. Using linear mixed models [5, 88] (LMMs)
is suitable to report the results for H3, H4 consistently and statistically quantify
the optimization loop. The models include participants as a random effect and
compare pairwise and listwise Uls between groups. For non-significant indepen-
dent two-sample tests, one can conduct either a Bayesian independent t-test or a
Bayesian Mann-Whitney test and analyze the Bayes Factor [131, 152] to quantify
the likelihood of hypotheses.

5.4 Behaviors and Interactions

Comparisons between all interfaces are shown in Figure 5.4 as visualization, and
detailed statistics can be found in Ou et al. [113]. The following content will
elaborate on the results regarding interaction behavior in all interfaces for both
studied domains (text summarization and image color enhancement) in light of
the hypotheses.

Decision Time For H1, for decision time per iteration, we found no signif-
icant difference between UI1l and UI2 in text summarization, but UIl caused a
significant increase in decision time compared to Ul2 in image color enhance-
ment. Regarding average decision time per item, there is a significant difference
between UIl and Ul2. This means that providing comparisons enables faster de-
cisions. For H2, UI3 results in a significantly longer decision time per iteration
than UI1, and UI5 has a significantly longer decision time per iteration than UI2,
which is true for both domains. This indicates that users need more decision time
to judge more given options. However, when checking decision time per item, UI1
takes significantly more time than UI3 in both domains, while no significant dif-
ference was found between UI2 and UI5. This indicates that the listwise approach
did not increase decision time per item. Finally, one can fit general linear mixed
models for H3 and H4 using the Gamma family with an inverse link [94]. None
showed significant differences in UI3-Ul6 regarding decision time, except H4a:
It compares UI2 to Ul6, and the effect of UI2 is statistically significant and posi-
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Figure 5.4: Comparisons between opinion measurement interfaces, from left to
right: 1) Decision time: Listwise approaches (UI3, UI4, UI5, Ul6) significantly in-
creased decision time per iteration. However, decision time per item in listwise
approaches does not differ from the pairwise (UI2); 2) Iterations: Participants it-
erate significantly more in the pointwise (UI1) than in a pairwise (UI2) or listwise
(UI3) approach; 3) Ranking interactions: There is a significant difference between
listwise interfaces, when indifference is not permitted (UI4 vs. UI6) in the text
domain, but not in the image domain; 4) Indifference: Participants express more
indifference in listwise approaches if they can (UI5 and UI6) than in the pairwise
approach (UI2.) Note that UI1 and Ul4 cannot express indifference; 5) Incomplete
preferences: Participants express incomplete preferences significantly more when
they cannot express indifference in listwise approaches (U4 vs. UI5 and Ul6.)

tive regarding decision time per iteration. Although the pairwise interface enables
faster total decision time when there are more options, it does not make per-item
decisions significantly faster than the listwise approach.

Interaction Behavior -Number of Iterations For the total iterations, par-
ticipants explored significantly more with UI1 than with UI2 (H1) and UI3 (H2a)
in both domains. However, there are no significant differences between UI2 and
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UI3 (H2b). One can fit Poisson mixed models for H3 and H4, and in total itera-
tions, there were no significant differences for most of the comparisons between
pairwise and listwise interfaces (UI2-UI6) in both domains. While the pointwise
interface (UI1) resulted in significantly more iterations than the other interfaces,

there were no significant differences across domains between pairwise and listwise
interfaces (UI2-UI6).

Interaction Behavior -Number of Ranking Interactions From Ul4 to Ul6,
listwise interfaces additionally recorded their ranking interaction for H4. In text
summarization, a fitted Poisson mixed model showed that compared to the total
ranking interactions in UI6 (8=1.627, SE=0.023, t=69.873, p<.001), the effect for
Ul4 is statistically significant and positive (5=0.065, SE=0.033, t=1.986, p=.047).
For UI5, the effect is statistically non-significant and positive (5=0.037, SE=0.032,
t=1.156, p=.248). However, in image color enhancement, compared to the total
ranking interactions in UI6 (3=4.700, SE=0.064, t=73.761, p < .001), the effects for
Ul4 (8=-0.001, SE=0.092, t=-0.008, p=.994) and UI5 (3=-0.001, SE=.092, t=-.008,
p=.479) are both statistically non-significant. In sum, with the same BO optimizer
under the hood, participants tend to produce fewer ranking interactions with Ul6
than with other listwise interfaces (Ul4 and UI5).

Preference Type —Expressing Indifference Following the study design, UI1
and Ul4 cannot express indifference for indifference preference. Thus, H2a and
H3b are not evaluated here. For preference-based feedback, UI5 prompted par-
ticipants to express significantly more indifference preference than UI2 (H2b).
However, there is no significant difference between UI3 and UI5 for expressing
indifference preference. For H4a, H4b, and H4d, one can fit a poisson mixed
model. Compared to Ul6. The effect of UI3 is statistically significant and nega-
tive compared to Ul6. The effect of UI5 is statistically significant and negative.
These results apply to both text summarization and photo color enhancement
domains. Hence, compared to all other Uls, participants express indifference signif-
icantly more often when using Ul6.

Preference Type —Expressing Incompleteness The Wilcoxon signed rank
test shows participants who moved their sliders and used the “I don’t know”
checkbox in UI1l and Ul4 because these interfaces cannot express indifference
preference. There is no significant difference between adjusting the slider to the
midpoint and clicking “I don’t know” (W = 239.50, p = .219; r = -0.24, Clg5, =
[—0.55,0.13], BF1p = 0.638). This result verifies the prior work regarding the
indifference between incomplete preference and midpoint rating [2] in a bipolar
Likert scale and hence validates the experiment apparatus.
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In text summarization, for H1, participants with UI2 did not express significantly
more incomplete preferences than with Ul1, similar when comparing UI1 vs. UI3
(H2a, and UI2 vs. UI5 (H2b). For H3, a fitted Poisson mixed model shows, when
compared to UI5, UI3 is statistically non-significant and positive, but the effect of
Ul4 is statistically significant and positive. Another fitted Poisson mixed model
for H4 shows that, compared to UI6, only Ul4 is statistically significant and posi-
tive. Similarly, in image color enhancement, results showed that Ul6 is expressed
significantly less than UI2, UI4, and UI5. Therefore, compared to all other Uls, par-
ticipants tend to express fewer incomplete preferences when using Ul6.

5.5 The Optimization Loop

The overall optimization loop produces three types of data: 1) user feedback (ab-
solute ratings or preferential rankings), 2) an optimizer-inferred (latent) utility
function, and 3) the optimized system outcomes based on the learned utility func-
tion. As the objective of BO is to infer parameters that maximize the system
outcome utility, if the optimization works for a metric, the system-proposed out-
comes would come closer to user expectations over iterations; hence users would
give higher utility responses. As an alternative verification of the optimization
loop, analyzing the actual system outcomes using different objective quality met-
rics can help to understand how system outcomes change progressively. Detailed
statistics are reported in Ou et al. [113].

Objective Quality of System Outcomes Since the user goal is to reduce the
text length while preserving the meaning of the text or enhance the image color
towards participants’ preference, for the text domain, one can measure objective
quality using ROUGE and BLEU, which compare the system outcome throughout
the optimization loop. ROUGE measures how many human-summarized words
appear in the machine-generated summaries, and BLEU measures precision re-
garding how many words in the machine-generated words appear in the human
reference summaries. For the image domain, one can compute how five different
metrics changed over iterations and look for consistent trends. Note the limita-
tion of these metrics: they do not measure the semantic meaning of text sum-
marization and only compare to one human writer’s ground truth, provided in
the CNN daily mail dataset. Similarly, the color metrics only correlate to human
judgment and do not measure individual color preferences.

In summary, the results of the objective quality validate that all interfaces can
optimize objective metrics with a consistent trend. In more detail, for the text
summarization domain, the measured objective quality using Length, ROUGE
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(ROUGE-1, ROUGE-2, and ROUGE-L) and BLEU, which compare the system out-
come throughout the optimization loop. One can show the progress of the HITL
optimization over time for the measurements in Figure 5.5a. Regarding summa-
rized text Length, Ul6 outperforms UI2 and Ul4, and the effect of PROGRESS is sta-
tistically significant. Moreover, UI6 outperforms UI3 with respect to ROUGE-1,
and the effect of PROGRESs is statistically significant for ROUGE-1. For the image
enhancement domain, the thesis computed how five different metrics changed
with ProGrEss and looked for consistent trends. Namely Brightness, Contrast,
Saturation, Temperature, and Tint are investigated, and the progress of the HITL
optimization over time for the measurements is shown in Figure 5.5b. Here, Ul6
outperforms UI3 in terms of Brightness. Moreover, the effect of PROGRESS is sta-
tistically significant for all color metrics except Saturation.

User Feedback and Optimizer Learned Utility of Preferences When using
UI1 and UI3, users were asked to provide absolute ratings of system-generated
solutions (for utility-based optimizers), which can be consider as a user feedback.
In contrast, in UI2, UI4, and UI5, users provide ranking responses (for preference-
based optimizers) that give local preference relations between system outcomes.
Based on this, the Bayesian optimizers then infer the learned latent utility. Lastly,
in Ul6, as it mixes absolute ratings and rankings, one can analyze both user feed-
back and the learned latent utility.

In total, four LMMs are fitted regarding user feedback and lerned latent utility in-
dependently from the DoMaIN. We used INTERFACE and PROGRESS as fixed main
effects to compare the performance between Uls; see Figure 5.6 and Figure 5.7.
In terms of user feedback: For the text summarization domain, the LMM results
showed the effect of iteration is statistically significant and positive, and UI6 out-
performs UI1 and UI3. For the image color enhancement domain, the results show
that Ul6 significantly outperforms the other Uls. Regarding the learned latent util-
ity: The results of the LMM for the text summarization domain showed the effect
of iteration is statistically non-significant and negative. However, UI6 is signifi-
cantly better than Ul2, Ul4, and UI5. For the image color enhancement domain,
UI6 significantly outperforms the other Uls.

In summary, Ul6 significantly outperforms the other Uls regarding optimizer
lerned latent utility and user feedback. These results show that through HITL op-
timizations, UI6 produced significantly higher utility than all other interfaces (Ul1-
UI5) in both domains.
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Figure 5.5: Comparing objective quality between interfaces. The blue line is the

average utility. The red line is a linear regression of the blue line, with each
individual slope indicated in red.
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Figure 5.6: The user feedback (user input rating utility through the Uls directly)
throughout the optimization loop. The blue line is the average user feedback, and
the red line is a linear regression of the blue line. An increasing user feedback
trends indicate the optimization goes more toward the users’ preferences. Thus,
increasing their feedback over time. Here, Ul6 outperforms UI1 and UI3 in both
domains after completing the optimization.
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Figure 5.7: The optimizer learned latent utility (inferred ranking utility through
preferential Bayesian optimization) throughout the optimization loop. The blue
line is the average utility, and the red line is a second-order polynomial regression
of the blue line. An increasing utility (either direct or latent) trend indicates the
optimized text is more toward users’ preferences. In latent utility comparisons
of the two domains, UI6 outperforms UI2, UI4, and UI5.
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Figure 5.8: Questionnaire results were collected using a bipolar slider-based Lik-
ert scale from text summarization and image color enhancement tasks. 100 means
“Strongly agree, and 0 means “Strongly disagree”. Participants answered six
questions per task. The results indicate significant differences between the point-
wise (UI1) and pairwise (UI2) approaches, and the hybrid approach (UI6) outper-
forms other listwise approaches (UI3, Ul4, and UI5) but produced no significant
differences compared to the pairwise interface (UI2). Participants considered ex-
pressing incomplete preference using “I don’t know” as less useful, and they all
thought they gave clear feedback.

5.6 Questionnaire Results

As an additional side verification, participants are asked to answer six questions
as shown in Figure 5.8.

In text summarization, for H1, participants did not report significantly higher
satisfaction in UI2 (M=63.75, SD=18.66) compared to UI1 (M=57.02, SD=20.32).
For H2a, also UI1 compared to UI3(M=59.01, SD=18.45) showed no significant
difference. Finally, for H2b, the results show a significant difference when com-
paring UlI2 to UI5 (M=73.67, SD=20.39). For H3 and H4, there are no significant
differences between all interfaces (UI2-UI6) in terms of satisfaction. Similarly,
allowing expressing incompleteness preference in UI6 is significantly less help-
ful compared to UI2-UI5 (all p<.050) but not when compared to UI1 in the image
color enhancement domain. For Q6, participants felt they gave more clear feed-
back when using Ul6 compared to Ul2 (5 = —13.933, SE = 3.851,t = —3.618,

p < .001) - H4a in image color enhancement domain.

These questionnaire results show that participants were significantly more satisfied
(Q1-Q4) with listwise interfaces than with a pairwise interface. They reported that
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Ul6 was clearer in expressing their preference and hence expressed fewer incomplete
preferences (Q5) and could give more clear instructions (Q6).

5.7 Discussion

Overall, a significant difference was found in all other interfaces to outperform
the pointwise interfaces in both studied domains, but there are subtle differences
between listwise and pairwise Uls. In this section, more structured results will
be discussed according to the initial hypotheses and summarize possible implica-
tions and tradeoffs when determining the use of an interface for human-in-the-
loop optimization.

5.7.1 Validating Hypotheses

H1: Baseline Apparatus Verification Based on the results, the 2-ANFC pair-
wise interface (UI2) outperforms the 1-RS pointwise interface (UI1) because it has
a significantly lower decision time per item and fewer iterations. The 2-ANFC
also helped participants to express indifference and their incomplete preference
for better system parameter exploration and exploitation. Subjects using 2-ANFC
also reported significantly higher satisfaction compared to 1-RS. This result ver-
ifies that the experimental apparatus is valid and aligns with discussions in prior
work [11, 12, 13].

H2: The Listwise Approach In terms of Ul interactions, the results showed
that listwise interfaces (n-RS/n-ANFR, UI3/UI5) provide the following advantages
(compared to 1-RS/2-ANFC, UI1/UI2): 1) they allow users to evaluate more op-
tions without increasing decision time and iterations; 2) users express more indif-
ferent preferences and less incomplete preferences; 3) they allow implicit compar-
isons among all given options. However, the direct use of the listwise approach
(i-e., using more sliders to rate more items than 1-RS or rank multiple items with-
out distance in n-ANFR) did not significantly improve the performance of the
optimization loop.

H3: Design Variations of The Listwise Approach When comparing design
variations regarding querying different feedback types for ranking (H3a: n-RS
vs. n-ANFR, i.e., UI3 vs. UI5), allowing expressing indifference and incomplete
preferences (H3b: n-AFR vs. n-ANFR, i.e., U4 vs. UI5) in listwise approach,
there is no enough evidence to show a difference in decision time, iterations, and
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the performance of the optimization loop. The subjectively reported satisfaction
also did not differ significantly from each other. However, n-AFR expresses sig-
nificantly more incomplete preferences compared to n-ANFR.

H4: A Hybrid Approach The results showed that the hybrid approach (n-
ANFRD, UI6) did not differ from 2-ANFC (H4a), n-RS (H4b), n-AFR (H4c), n-
ANFR (H4d) in terms of decision time per item and involved iterations, and sub-
jective satisfaction. However, the suggested interface let participants express in-
difference significantly more than other interfaces, resulting in fewer ranking in-
teractions. When checking the performance of the optimization loop, n-ANFRD
showed significantly higher directly measured utility throughout the loop and
higher latent preferent utility compared to pairwise and other listwise interfaces.

5.7.2 Interpretation and Implications

While the experiment initially assumed using the listwise approach that in-
creased the number of parallel comparisons could improve the overall perfor-
mance of the optimization loop, the results did not support this assumption.
Based on the validation of H3, neither n-RS (UI3, utility-based) nor n-ANFR (UI5,
preference-based) show a significant advantage and only increased the overall de-
cision time in the loop compared to 2-ANFC (UI2, preference-based). This might
be because neither n-RS nor n-ANFR provided enough support for participants to
reduce the overall noisy observations, and there is room for improvement when
using a BO optimizer specifically designed for listwise Uls. In n-RS, despite mul-
tiple given alternatives, participants might not notice the relative position be-
tween different sliders; in n-ANFR, the UI did not demonstrate enough absolute
cues to participants on how pure ranking can influence their input, and a pure
local ranking may not give participants information on a global overview.

Instead, the n-ANFRD hybrids collect utility-based and preference-based feed-
back by providing rating scales in the regular listwise ranking Ul Similar to
other listwise Uls, based on the validation of H4, although n-ANFRD increased
total decision time, the results show the general advantage of preference elicita-
tion (expressing more indifference, fewer ranking interactions, fewer incomplete
preferences, and better performance in the optimization loop). This could be in-
terpreted as the Ul starting to offer implicit recall support for participants to their
past ratings if their ranking positions are improving. In addition, n-ANFRD re-
sulted in fewer ranking interactions and made it clearer for participants to express
a ranking decision compared to other purely listwise ranking interfaces.

Furthermore, the results regarding designing Uls to support indifference and in-
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complete preferences offered implications for future modeling algorithms. In
Bayesian optimization, indifference could be an indicator to inform the acqui-
sition function to avoid exploiting these areas; incomplete preferences might be
another indicator to balance exploration and exploitation. Depending on the con-
text, one might design the algorithm to a) avoid exploring a space where people
had an incomplete preference to reduce input uncertainty, or alternatively b) ex-
plore it even more for creativity support and then integrate the measured prefer-
ences with more interaction behavior, such as interface features and overall task
completion time [32], to better support the optimization process.

5.7.3 Design Trade-offs

As validated in the hypotheses, there are many subtle differences between pair-
wise and listwise interfaces when permitting users to express indifference and
incomplete preferences. This gives us evidence of how they could impact human-
in-the-loop optimization performance. The following content discusses potential
tradeoffs when using these interfaces.

Guideline 1: Pointwise Approach The pointwise slider-based interface has
proven useful in many disciplines, such as psychology, subjective scale measures,
etc. It is useful to identify social agreement among populations and measure the
direct utility given by a human. The technique for processing these types of data
is also mature. But it is very unstable and problematic when directly applying
it to individual sequential measurements. Future human-in-the-loop optimiza-
tion systems or any sequential measurement should generally avoid using this
approach.

Guideline 2: Pairwise Approach A pairwise interface only requires a human
to judge based on comparing two given items. Since there is no measured utility
and it only gives relative information about two items, the modeling of the latent
utility function could suffer from a change of criteria and intransitive preference
when the anchoring point between two sessions is not chosen properly. When
an iteration receives an incomplete preference, the underlying optimizer cannot
receive much useful modeling information. However, when a design objective is
to optimize for fast decisions, the pairwise approach (2-ANFC) could be a winner
among other alternative listwise designs.

Guideline 3: Listwise Approach Listwise interfaces establish a comparison
by increasing the number of alternatives. Similar to the pairwise interface, a list-
wise interface without measuring ranking distance (n-AFR and n-ANFR in this
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thesis) requires a properly sampled anchoring option between iterations to estab-
lish a ranking function. Otherwise, there is no direct association between itera-
tions. Instead, a listwise interface that allows expressing ranking distance (n-RS
and n-ANFRD in this thesis) conveys an implicit association between different
iterations regardless of whether the human provides local or global judgments
it is more suited to use in a human-in-the-loop optimization context. Further-
more, n-ANFRD is better than n-RS because a concentrated participant may not
notice the relative slider position between parallel judging options in n-RS, but
n-ANFRD explicitly visualizes the ranking in the UI for users, which helps users
more clearly express their opinion in a sequential task. As design suggestions,
when there is a limited measuring budget, e.g., one can only query humans for a
very limited number of opinions, applying listwise interfaces is considered better
than pairwise because it provides more measurement of their opinion and does
not decrease the optimization performance. Furthermore, enabling users to ex-
press ranking distance (n-ANFRD) is the winner of all listwise variations (n-RS,
n-AFR, and n-ANFR).

Guideline 4: Measuring Indifference and Incomplete Preferences When
measuring more accurate user opinions, allowing them to express indifference
and incomplete preferences is crucial. For the pointwise interface, these two dif-
ferent types of preference were implicitly ignored and treated as being indicated
by centering the slider. This interpretation of a central slider position may be
true with proper task wording. Still, it may be easily misused and produce more
noisy input when a user does not know how to express their opinion with the
interface. Therefore, in the human-in-the-loop optimization scenario, it is better
to explicitly design these two functionalities to support users in expressing their
indifference and incomplete preferences. This information could also inform op-
timizers to avoid exploring these areas. This is particularly important when the
evaluation budget is very limited in the human-in-the-loop optimization context.

5.7.4 Limitations

This chapter examined a text summarization task and an image color enhance-
ment task to explore the impact of interfaces in human-in-the-loop optimization.
While these domains are common and make it easy to run a study online at scale,
and the results across these two domains are consistent with each other, it is not
verified in more domains.

Since the optimization context tightly relies on humans and modeled human feed-
back as objective functions, the system performance highly depends on the qual-
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ity of human input. The responses collected online may be influenced by par-
ticipants’ environments, such as slow decision time due to external distractions.
Moreover, for the preferential settings, depending on the underlying optimizer,
the decision time might be different if the system repeatedly returns the current
optimum (e.g., [12]).

The experiment in this chapter evaluated opinion measurement interfaces, not
optimizers. However, differently designed listwise interfaces could benefit from
dedicated Bayesian optimizers. Without a specialized BO optimizer, the sug-
gested n-ANFRD interface supports the user to express a ranking distance and
still outperforms other interfaces in various aspects, such as fewer ranking inter-
actions, more clearly stated indifference, and rarely expressed incomplete pref-
erences. This chapter also did not look into a detailed inspection of the cause of
indifference and incomplete preference.

Lastly, the discussion of this chapter focused on the design space for aggregated
preferences and used Bayesian optimizers that assumed one latent preference
function. However, the latent preference function could be limited by the human
preference aggregation process, where multiple criteria may not be expressed
simultaneously.

5.8 Summary

In summary, with an initial discussion of multiple opinion measurement inter-
faces, an experiment and corresponding analysis of the results showed the im-
pact of interface design on human-in-the-loop optimization performance. Both
n-ANFRD and 2-ANFC have their unique advantages, and the design decision
between them is a tradeoff of decision time, the precision of measured human
feedback, and overall optimization loop performance.

In the following chapters, this thesis will use n-ANFRD to narrow down the so-
lution space of design principles and continue to discuss other building blocks in
human-in-the-loop systems.
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6

Termination Condition

No other question has ever moved so profoundly the spirit of man; no other
idea has so fruitfully stimulated his intellect; yet no other concept stands in
greater need of clarification than that of the infinite.

— David Hilbert

When a human user starts to interact with an intelligent machine, the observable
behaviors between the user and the machine Ul are often intertwined in a com-
plex way. Based on a higher-level analysis of the interaction-optimization loop,
chapter 5 has explored the most effective user interface to measure a user’s opin-
ion regarding the machine’s proposed outcomes. However, the study presented
in chapter 5 configured a limited number of iterations and terminated automati-
cally when it exceeded the maximum allowed iterations. When will the interac-
tion loop terminate? Will the user always terminate the interaction proactively?
In this chapter!, a domain-specific example in 3D model processing showcases
and further discussion from the user’s perspective to reveal how human-in-the-
loop optimization systems can fail unexpectedly without carefully considering
implicit system assumptions. The overall results imply two different types of vi-
olations of underlying system assumptions: 1) the human’s judgment is highly
heuristic and inconsistent in a sequential decision-making context; 2) the ma-

The content of the chapter is partly based on Ou et al. [112].
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chine algorithms contain assumptions that are context-specific and fixed, which
may violate the applied reality.

6.1 Hypotheses and User Studies

To evaluate the effectiveness of human-in-the-loop systems from a user perspec-
tive, we present two studies in this chapter; first, a field study with an industrial
partner, and a lab study which verifies the effects of the field study. In the field
study, we used a 3D model processing system in a real-world setup with our in-
dustrial partner, who aimed to optimize their process in customer projects. Here,
we ran a field study where designers used the system in their daily workflow.
However, due to the uncontrolled environment of field study, making in-depth
assessments and conclusions on specific aspects can be hard. Thus, we addition-
ally ran a lab study to understand the failure cases of our system to verify our
findings further under controlled conditions.

6.1.1 Field Study

We first conducted small pilot experiments for the field study to fine-tune our
system’s parameters to fit the partner’s needs and customer projects.

In our designed workflow, an artist can first upload an original model. The server
then simplifies the uploaded model under different parameter settings in the
background. When it has computed all alternatives, taking between seconds and
minutes, they are downloaded back into the UL. When the artist indicates their
ratings of model quality, the system learns from these judgments and continues
the process again to generate more optimized models. The rating scale for judg-
ments is 0 (skip, meaning not considered due to faulty geometry), 1 (terrible) to
5 (excellent). Without loss of generality, if the human decided ratings for the four
variant models M; (i = 1,2,3,4) are 3, 4, 5, and 1, then this represents six prefer-
ential choice relations: M7 < Mo, M7 < M3, My < M3, My < My, My < Mo,
and My < M3 where < means “is less preferred.” 3D models in the next iteration
are optimized based on these relations using PBO, which made us expect [45, 100]
the system to converge to the desired outcome quickly.

The experts used our system almost daily to evaluate model quality during poly-
gon reduction. However, they were not restricted to our interface. They could
use further software aids (as in their previous workflow) for the model quality
inspection, e.g., for accessing more professional curvature visualizations. When



Hypotheses and User Studies 57

Figure 6.1: The UI for users to rate variant models. An artist can move each
mesh variant to the bigger, central view and activate a wireframe for detailed
quality inspection, which was considered necessary in previous work [8] because
the alignment of mesh edges is considered a quality metric. Artists must make
a professional choice between visual rendering quality and wireframe quality,
especially in cases that may sacrifice a bit of wireframe quality for substantial
gains in polygon reduction (lower number of triangles).

using our tool, the loaded 3D model was computed into four variants. After the
experts finished their evaluation (either inside or externally), they rated the mod-
els in our interface. These ratings were used for the next optimization iteration
to generate new variants (see Figure 6.2). The rating process terminated when
the experts found the results satisfactory or reset it.

6.1.2 Lab Study

As alab study, we conducted a within-subjects user study to further understand
our system’s use with specific assistance information and behaviors in a larger
user group with different backgrounds in 3D.

We first welcomed participants and explained the study, answering all open ques-
tions before they signed the consent form. Then, participants were presented
with different 3D objects in every evaluation session. The overall procedure in
terms of rating and termination process in each evaluation session was similar
to Figure 4.1. In detail, we asked participants to balance the trade-off between
polygon reduction and quality loss. Thus, they had to indicate their preference
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Figure 6.2: A human-in-the-loop 3D model processing system: A server gener-
ates differently processed variations of a complex 3D model and dispatches them
to a user interface, which presents those variants to a 3D artist, who in turn rates
them. Based on these ratings, new parameter settings are generated, and a new
set of variations is computed and evaluated again. The process repeats until a
satisfactory 3D model is found that minimizes the number of faces while main-
taining as much as possible of its overall appearance.

using ratings to optimize models iteratively.

We selected five different 3D models, as shown in Figure 6.3, and each model? was
rendered with and without wireframes (instead of allowing users to activate them
freely). We picked these five models with the two wireframe representations
to ensure our results generalize beyond this small set of objects. We displayed
the order of these 3D models and their wireframe display using a Latin square
design to avoid learning and fatigue effects. Therefore, we collected 5 x 2 = 10
evaluation sessions in total for each participant. On average, each participant
spent 90 minutes in the entire study.

6.1.3 Participants

In the field study, we recruited two full-time 3D technical artists from our in-
dustry partner to gain insights into the newly developed workflow involving our
interface. Both are male, aged 25 and 35, one has more than three years of expe-
rience, and the other has more than eight years of experience in the 3D industry.

During the three months of the study, we collected 549 evaluation sequences as a
field study dataset. This corresponds to 4.5 evaluations per expert and workday.
Of these, 415 sequences terminated in the first iteration without any preference

23D mesh artifacts are provided courtesy of WAY Digital Solutions, Jeff H, Jose Olmedo, kenik,
yarulesemel, and Stephan Thieme.
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Figure 6.3: Models that are selected in the lab study, from left to right: monkey,
teapot, rose, cow, pumpkin. Participants ranked each model’s variants in each
iteration regarding the quality of mesh simplification. Each model was presented
to the participant twice (with/without a wireframe).

optimization requested. The remaining 134 sequences (number of iterations: p =
4.1,0 = 4.2, range 1-23) contain sequential preference ratings. The 3D models
included various meshs, including organic, soft surfaces, hard technical surfaces
with sharper angles, and combinations, such as machinery parts (see Figure 6.1)
with both smooth, flowing lines and hard, mechanical edges.

In the lab study, we recruited 20 participants using convenience sampling (7 fe-
male and 13 male; age ;1 = 27.0,0 = 8.8, range 18-62). Four had more than a
year of industrial experience in 3D modeling, and all others had no experience.

We collected 200 evaluation sequences (number of iterations: p = 5.1,0 = 2.9,
range 1-11) by design, and all sequences involved at least one preference opti-
mization. The selected model covers a similar spectrum of models as the experts
had experienced in our field study. These models were also simpler than complex
real-world models to reduce the time of machine optimization and participation
waiting time.

Below, we report our analysis of the participants’ rating process using collected
data from the two studies, also in comparison to each other, and show that if par-
ticipants are not rated by pure random, they at least behave highly unstable and
inconsistent in the rating process. Then, we show selected example cases from
the collected data that were also discussed with experts in hindsight concerning
why they made a particular rating choice.

6.2 Human-Al Mutual Interventions

In the field study, from the 134 sequences with preferential ratings, only 16 se-
quences (11.9% = 16/134) produced a satisfactory outcome. In the lab study,
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Figure 6.4: Overview of the visual influences of polygon reduction and collected
rating data.

among the collected 200 sequences, only 97 sequences (48.5%) were terminated
with a satisfactory outcome. Both studies suggest a high failure rate in optimizing
human-in-the-loop outcomes.

Effectiveness of Human Judgments Figure 6.4a shows a second-order poly-
nomial regression between the human perceived quality of 3D models used in
our lab study and the overall reduced amount of polygons. We assess perceived
visual quality using an average of multiple structure simularity (SSIM) [153] that
compares the rendered visual quality between the reduced and original 3D model
in five different camera views. The reduction ratio represents the removed poly-
gon count of a resulting model divided by the total polygon count in the original
model. Figure 6.4b shows the rating distributions in the two studies regarding
the reduction ratio.

We used Kendall’s 7 coefficient to measure the ordinal association between the
reduction ratio and rating scale. The result shows a significant correlation (7 =
0.07,p < .001) in the field study, whereas no significance (7 = 0.004,p = 0.71)
in the lab study. This suggests that field study experts tend to give higher ratings
to highly reduced models, but lab study is more diverse. For a more fine-grained
measure between rating scales, we also used Mann—Whitney U tests to check
for dependencies between different rating scales and the reduction ratio: 1) We
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Figure 6.5: Comparing an ideal (far left) and actual (the others) rating distribu-
tions over time (from top to bottom), the bottom axis 0 to 5 represents the rating
scale. An expected rating distribution should move to the right side over time if
users are more satisfied with the results, but the actual preferences drift back and

forth between 0 (skip) and 5 (excellent).

found a significant difference between fair (M=74.88) and excellent (M=80.95) rat-
ings (U=8756.0, p < .001) and a significant difference between terrible (M=74.65)
and excellent (M=80.95) ratings (U=10219.0, p = .003), i.e., in cases where reduc-
tion ratio was positively correlated with rating. On the other hand, we found
no significant differences in reduction ratio between terrible (M=74.65) and poor
(M=72.93) ratings (U=19705.0, p = .62) or good (M=380.03) and excellent (M=80.95)
ratings (U=3602.0, p = .37), i.e., where there would have been a negative corre-
lation. In sum, this suggests that the collected ratings are effective to the highly
reduced models, and the reduction ratio is one of the effectively relevant factors
in human judgments. 2) We found no significant differences in highly reduced
models between good and excellent in the field study, but a significant difference
between good (M=60.03) and excellent (M=66.99) ratings (U=131031.0, p = .002)
in the lab study. Although the field study had fewer users, this could also be
interpreted such that experts in the wild use other quality metrics, which lab par-
ticipants with less expertise overlook. 3) Models rated as good and excellent have
higher mean reduction ratio in the field study (Mgooq = 81.68, Meycellent = 75.52)
than in the lab (Mgooq = 61.10, Mexcellent = 64.84, also see Figure 6.4b), which
suggests that lab study participants are easier to satisfy by the system outcomes
than expert artists.

Stationarity and Trends of Data Figure 6.5 compares how an ideal (far left)
and three actual rating distributions (the rest) drift over time: In our context,
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since the objective of using PBO is to search a polygon reduction configuration to
maximize the human ratings [45], ideally, in a successful exploring and exploiting
sequence of preferences, and the mean rating score should increase and drift from
low values with high variance towards higher values with lower variance (non-
stationary and with an increasing linear trend component). However, the actual
sequence shown (as most others) stagnates and fluctuates back and forth. From
the 200 sequences collected in the lab, 79 continued to at least four iterations
(required for the subsequent trend test), and we tested them using an Augmented
Dickey-Fuller test. Results show that 36 rating sequences are stationary (p < .05).
In the remaining 43 non-stationary sequences, a Mann-Kendall test found only
four significant increasing trends in the mean rating score (p < .001) and only
one significant decreasing trend of rating variance (p < .05). Another Mann-
Kendall test found that only three sequences had increasing and six sequences
decreasing trends regarding the machine-estimated optimal reduction ratio (p <
.05).

In summary, all these results imply the optimized process, that 1) on the human
side, the rating behavior does not improve over iterations; 2) on the machine side,
the optimized reduction ratio using preferential choices does not improve over
iterations. This suggests that the human-machine loop as a whole is kept from
terminating and fails.

6.3 Semi-structured Interviews with Experts

In the semi-structured interviews, we discussed with the two expert artists, case
by case, inconsistently judged models and why they made a certain (contradict-
ing) choice. Figure 6.6 shows three of the discussed models. Figure 6.6a contains
a head model and a more straightforward example of a CAD-converted cylinder
that is cut by a sphere. Below, we discuss three example cases in more detail:
Ironically, the two head models on the right are identical but received an entirely
different rating score of 4 and 1 from the same rater in the same round (case I).
The right middle cylinder (rated 3), compared to the middle (rated 4), contains
fewer polygons and better symmetries but received a lower rating (case 2). As a
slightly more complex case (Figure 6.6b), a wheel model with reduced variants
that all were rated a 5 in the same iteration, but the middle left one did reduce to
faulty geometry on the backside (case 3), which the artist had missed.

In case 1, artist A confirmed that his ratings strongly depended on what he had
seen before and admitted that he tended to give one model a terrible rating in each
iteration due to previous rating experience. He also mentioned that “...I some-
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(a) In the same iteration, the original (far left) and four processed models: 1) Head model:
the last two models are identical, ratings (left to right): 5, 3, 4, 1; 2) Cylinder model: the
middle two are almost identical. Ratings: 5, 4, 3, 2.

(b) Original (far left) and four reduction variants, all rated as 5 in the same iteration. The
bottom row shows the backside of the models. Objectively, the middle left wheel contains
faulty geometry and should receive a 0 (skip) rather than a 5 (excellent).

Figure 6.6: Selected examples that were discussed in the semi-structured inter-
views.
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times stopped giving a higher score because I had decided on a different objective”
in processing the model (e.g., to go for more visual quality but less reduction). In
case 2, artist B argued that he had scored the middle cylinder mesh higher than
the middle right one because “..the usually difficult inner hard edges were handled
better.” in that case. However, the right middle model has an objectively higher
reduction ratio, and both contain similar defects on the inner hard circular edge.
Their differences are only at a technical level. Furthermore, he explained that in
case 3, he did not notice the flaw at first sight and rated the wheel a five simply
because it was shown from the front. He had made a quick decision based on the
visible mesh quality of the tire and based on a similar experience, which is an ex-
ample of a reasonably simple oversight with potentially harmful consequences.
The artist also explained that after many iterations, “...it gets frustrating to see the
more flawed output after I already had seen a partially good result”

6.4 Discussion and Implications

Although our evaluation does not examine any entangled causality but only sta-
tistical correlation, it is likely that the observed system failure initially starts from
human error as the system was initialized with the same prior in each of the se-
quential evaluations (using a Matérn kernel (p = 2, v = 2.5) with the statistical
properties of being isotropic and stationary [125, 137]). Since errors are further
propagated and amplified to system outcomes, we combine theories regarding
human decision errors to reflect on and explain our findings.

6.4.1 Errors from Human

Based on our observed instability and expert feedback, we argue that human
cognitive errors, which either occur internally or are influenced by the system
outcomes, are a crucial part of the overall system uncertainty:

1) Heuristic biases. a) The anchoring bias explains that earlier experience influ-
ences human decisions, including earlier system output and other context
factors, such as background knowledge or expertise. In case 1 (see sec-
tion 6.3), the artist confirmed that his evaluation depended on meshes he
had seen before. b) The availability bias explains that judgments are based
on the quickly accessed memories of relevant examples. Case 3 matches
this bias as the artist decides based on his professional experience. c) Rep-
resentativeness shows that decisions made by substitution examples may



Discussion and Implications 65

2

3

)

~

occasionally be biased. Case 2 shows this behavior because the actual de-
cision used a mental shortcut and was made by judging another similar
case.

Loss aversion and endowment effect. a) Users may become more critical af-
ter observing several good results from an intelligent system. Users might
stick to what they know and are familiar with and reject newly proposed
and objectively good choices, which leads to more negative ratings later
in the process. This may explain (case 3) why artists stuck to mediocre
choices in intermediate stages instead of moving to a broader (but more
risky) range of variations. b) The software functionality (in our case, this
is the software pre-configured camera angle for displaying meshes) as a
task context may override information and influence the validity of human
judgment. This also explains the unexpected rating of the wheel model in
case 3. c¢) Human preferences change over time and may become incon-
sistent when interacting. A present rating choice also carries long-term
influences, in contrast to being just local. In our case, this is explained by
the anchoring bias. It was expected to be addressed in PBO, which uses
comparative judgments, but as the three discussed cases show, artists still
keep previous experience (either accumulated expertise or short-term out-
comes) in mind, which changes their preferential choices.

Diminishing returns. Judgments may lose precision and contain increasing
noise after humans have seen increasingly or partially good results. Hence,
preference exploitation may become less effective, and the human-in-the-
loop system can no longer benefit from human knowledge. In our case,
when artists had seen a certain number of increasingly better meshes, they
were less sensitive (case 3) to further improvements by the algorithm. In
contrast, they even gave more critical scores for the occasional poor results.

6.4.2 Errors from Machine

The other part of overall system uncertainty comes from the underlying algo-
rithm and is emphasized by user errors:

1) Stable preference assumption. The system performance in a human-in-the-

loop system suffers from the model assumption, and the outcomes may be
undesired due to an invalid optimization. We observed that human judg-
ments produce strongly local, partially global, time- and context-dependent
errors, even with permanent goal changes (case 1). This violates the pre-
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requisites of any optimization technique that assumes a unique and sta-
ble utility function, including PBO. More importantly, human judgment
is a fragile function to optimize for, and the commonly used independent
and identically distributed (ii.d.) assumption in these algorithms does not
hold in reality for humans. In turn, we need to generally rethink basic
assumptions and approaches in the design of human-in-the-loop systems.
We should be more explicit about under what circumstances they can be
applied appropriately to detect and exploit changes in latent user prefer-
ence distributions and systematic errors.

2) Complete preference assumption. The underlying optimization still implic-
itly assumes a user always has a complete preference, meaning that users
are deemed to be able to provide a rating to reflect their preference con-
sistently. In the current design, users rate four models instead of requiring
them to choose one of the best. This design can mitigate the completeness
assumption violation, as selecting the best might not be possible if com-
paring objects is not entirely comparable and involves multiple optimizing
objectives. However, as the optimization process continues, human raters
may lose their preference for rating different models due to bounded ratio-
nality.

6.4.3 Countermeasures

The heuristics are rather hard to detect by the machine since human ratings may
not be entirely judged for consistency (otherwise, the machine could provide rat-
ings on its own, entirely defying the idea of human-in-the-loop systems). Never-
theless, we propose several design guidelines to at least mitigate different types
of decision noise as discussed in section 2.3, thereby may be more parametrically
guiding users in further optimization steps:

Reduce level noise Provide a timeline to include intermediate results saved by
users and allow them to return to those earlier results for comparison. This could
help the user to compare new results to known ones and support a more objective
comparison across iterations. It could also reduce user frustration and fear of
losing the achieved quality, thereby mitigating problems from loss aversion and
violated system assumptions;

Reduce stable pattern noise Indicate the optimization intention to the user,
such as current system steps regarding exploitation and exploration. This could
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better frame the current context, therefore, mitigate representativeness and avail-
ability bias by keeping users from judging based on earlier examples.

Reduce transient noise One approach could be to occasionally present re-
sults from earlier iterations and check for consistency, although this would also
assume stable preferences and require more user iterations. Another approach
could provide more assistive visualization by highlighting the mesh difference
between iterations. This could further reduce user workload and help mitigate
simple oversight and obvious mistakes when distracted by unchanged parts or
overlooking changed parts.

6.4.4 Limitations

Our UI was consciously simplified to a minimum in order not to distract from
judgment and in an attempt to avoid usage complexity and improve overall us-
ability. In the field study, due to the limited number of users and to not further
confuse users by silently changing system behavior, we did not run any forms of
A/B testing. Although the subjects could explore the quality of the entire mesh
through features such as enabling the wireframe, this might still have been too
restrictive and lacked information about the changes. Highlighting the crucial
changes may be helpful, but it also lacks the ability to customize references to
show the difference between different proposals in a sequential optimized work-
flow. In hindsight, we learned that it might be useful to let users specify which
parts of the mesh led to a particular rating. Next, we wanted to ensure the gen-
eralizability of our results and, thus, selected five models with two wireframe
representations. On the other hand, our results may still suffer from a selection
bias in the models we used. Lastly, conducting a simulated user study [67] and
designing further statistically verifying the decision biases might also be helpful
to compare simulated human inputs with controlled noise and the actual decision
behaviors.

6.5 Summary

In this chapter, we discussed a human-in-the-loop system where an optimization
algorithm in the background exploits sequential user choices to adapt the sys-
tem’s future outcomes iteratively. Our case study provides evidence of challenges
to human-AI loops in practice produced by mutual negative influences. Based
on collected user interaction data and interview discussions with expert artists,
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we reflected on concrete influences that can break preference-optimized human-
in-the-loop systems, namely by 1) human decision biases and noise, 2) system
capabilities to deal with them, and 3) subsequent impact on future human inputs.

The findings suggest 1) The constraints of cognitive effects and the underlying
algorithm, such as heuristic biases, endowment effect, diminishing return, and
violated system assumptions, can be used to explain our empirical observations
that human-in-the-loop may not always meet the termination criteria. Optimize
polygon reduction tasks using the human-in-the-loop strategy requires resolving
these issues; 2) the observed constraints also apply in a similar human-in-the-
loop optimization context, and we proposed descriptive Ul design directions as
promising countermeasures to prevent human-in-the-loop optimization system
outcomes from being highly unstable and eventually non-satisfactory.



Expertise and Objective Alignment

Anything that gives us new knowledge gives us an

opportunity to be more rational.

— Herbert Simon

Suppose a human-in-the-loop system is bound to fail when the underlying ma-
chine algorithm assumption is strongly challenged. How can we improve the
overall situation and reach a successful outcome? How does user expertise im-
pact a human-in-the-loop system’s overall exploration and exploitation process?

This chapter! examine the objective alignment process between user and system,
and explore the relationship between human expertise and subjective satisfaction
regarding system outcomes in text, photo, and 3D mesh optimization contexts.
The results show that novices can achieve an expert level of quality performance,
but participants with higher expertise led to more optimization iteration with
more explicit preference while keeping satisfaction low. In contrast, novices were
more easily satisfied and terminated faster. These results mean that experts tend
to seek more diverse outcomes. At the same time, the machine reaches opti-
mal results, and the observed behavior can be used as a performance indicator
for human-in-the-loop system designers to improve underlying models. These
findings not only contradict the intuition that higher expertise will lead to better

The content of the chapter is partly based on [114].
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results but also informs future research, and practitioners should be cautious in
dealing with the influence of user expertise when designing human-in-the-loop
systems.

7.1 Hypotheses and User Study

To understand the impact of expertise on satisfaction, one can hypothesize that by
using human-in-the-loop optimization, participants with a higher level of exper-
tise will produce a better outcome quality and perceive higher satisfaction than
novice participants. To verify this, this chapter designed a between-group con-
trolled experiment in three problem contexts: text summarization, photo color
enhancement, and 3D model simplification. As dependent variables, the experi-
ment measured participants’ expertise in a domain context, interactions with the
system, and feedback from final questionnaires (individual rating scales and open
questions).

Figure 7.1 show our Uls in the human-in-the-loop optimization main task for
3D model simplification, text summarization, and photo color enhancement, re-
spectively. All interfaces collect a participant’s expertise at the beginning of the
study, then present four variants through the interface. When a task is over, the
interface presents six final questions and an open question regarding their satis-
faction and overall experience when interacting with the system. In all system
interfaces, users can express their ranking choices, and users provide a ranking of
the current four result variants on the interface’s right side. Additionally, in the
3D model simplification task, a user can rotate, zoom, and move the four models
simultaneously to inspect and compare the quality of the models.

With a detailed exploration of the interface design in chapter 5, we use a listwise
interface with four variants instead of two pairwise comparisons to increase the
collected feedback in each iteration without increasing system processing and
data transmission time. After the user submits the ranking data, the background
system will utilize this information and then optimize and infer the next optimal
set of variants. We also added an “I don’t know” container box to the ranking
Ul and allowed participants to express incomplete preferences. This design is
intended to prevent the violation of the completeness axiom.

7.1.1 Participants

Similar to chapter 5, the overall experiment procedure in this chapter was shown
in Figure 4.1. The involved participants were recruited worldwide on Prolific.
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(c) 3D mesh simplification based on users’ preferential feedback. The 3D model is a stan-
dard Blender Suzanne model. To inspect the rendered 3D models, participants can zoom
in/out, pan, and rotate all models simultaneously.

Figure 7.1: The ranking interface for a) text summarization, b) photo color en-
hancement, and c¢) 3D model simplification. In each iteration, the interface
presents four options. Participants can drag and drop the top right blocks to
a suitable rating region to provide a ranking of the options regarding the given
objectives. Each of the regions can contain multiple blocks. Blocks can be put
in the “T don’t know” region to express an incomplete preference or “skip” the
entire ranking iteration.
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Because participants had different median completion times in different experi-
mental conditions, they are paid between £3 to £9 upon completion, correspond-
ing to an hourly wage of €10.37/h ($11.47/h). Participants gave informed consent
at the beginning of the study; thus, the study adhered to European privacy laws
(GDPR). In total, the collected data were taken from 91 participants from 13 coun-
tries.

To guarantee high-quality responses, these criteria are considered: 1) a partici-
pant has an approval rate of 95%, 2) a participant completed the study only once,
3) a participant answered with consistent demographics, e.g., not more than five
years of age difference in the study compared to the platform registration in-
formation, and 4) a participant provided their response in at least a reasonable
amount of time, i.e., spent longer than 3 seconds in each iteration to read the
summarized text and interact with the interface according to our pilot study ob-
servations.

Therefore, this chapter will report results based on 60 participants (31 female,
29 male, and no diverse; age p = 26.92,0 = 6.44, range 19-52). Each domain
context includes 20 participants. Example iteratively optimized outcomes are
shown in Figure 7.2.

7.1.2 Inferring Levels of Expertise

Our participants reported varied experiences in different domains. They self-
indicated English proficiency on the CEFR scale?: B1 10.00%, B2 30.00%, C1
35.00%, and C2 25.00%. For self-indicated expertise in photo editing: none 25.00%,
novice 45.00%, intermediate 25.00%, experienced 5.00%, experts 0.00%. For self-
indicated expertise in 3D modeling: none 35.00%, novice 45.00%, intermediate
15.00%, experienced 5.00%, and none indicated themselves as experts.

Participants indicated their period of work experience. For text summarization:
No work experience 25%, less than one year of experience 30%, 1 to 5 years 25%,
more than five years 20%; for photo editing: No work experience 50%, less than
one year of experience 10%, 1 to 5 years 30%, more than five years 10%; for 3D
modeling: No work experience 60%, less than one year of experience 40%. Re-
garding the recent experience in these domains, for text summarization: Never
5%, in recent two weeks 20.0%, two weeks to 3 months ago 25.0%, 3 to 6 months
ago 10.0%, 6 to 12 months ago 20.0%, 13 to 36 months ago 5.0%, more than 36
months ago 15.0%. for photo editing: Never 10.0%, in recent 2 weeks 40.0%, 2
weeks to 3 months ago 30.0%, 3 to 6 months ago 5.0%, 6 to 12 months ago 10.0%,

’https://www.coe.int/en/web/common-european-framework-reference-languages/
table-1-cefr-3.3-common-reference-levels-global-scale, last accessed 17.02.2023
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Barcelona beat Atletico Madrid
3-0 to stay in touch with
Primera Liga leaders Real
Madrid. Lionel Messi scores
sixth successive goal of the
season as Barcelona win 4th
straight league game. Real
Madrid beat Recreativo Huleva
2-0 and Gonzalo Higuain
scored in the dying minutes.
Real have made their best start
since 1991 but coach Bernd
Schuster's rotation policy

(a) Al-based

3

text summarization.

reeeeee

(c) Al-based 3D model simplification.

Figure 7.2: Example outcome sequences from the a) text summarization, b) photo
color enhancement, and c) 3D model simplification. From left to right, it shows
how the objective was optimized progressively until the final satisfying outcome
(far right).
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13 to 36 months ago 5.0%; and for 3D modeling: Never 40.0%, in recent 2 weeks
15.0%, 2 weeks to 3 months ago 15.0%, 3 to 6 months ago 5.0%, 6 to 12 months ago
5.0%, 13 to 36 months ago 5.0%, more than 36 months ago 15.0%.

In total, using quantile-based discretization, we inferred participants’ level of ex-
pertise in the three contexts: text summarization (Novice: 7, Intermediate: 7,
Experienced: 6); photo color enhancement (Novice: 7, Intermediate: 7, Experi-
enced: 6); 3D model simplification (Novice: 7, Intermediate: 6, Experienced: 7).

7.2 Behavior and Subjective Satisfaction

number of incomplete preferences
number of ranking interfactions

o dd i e

'
Text  Photo 3D Model Text  Photo 3D Model Text  Photo 3D Model Text  Photo 3D Model Text  Photo 3D Model

Figure 7.3: Measured interactions of participants in different domain contexts.
Measurements are grouped by the level of expertise. The results indicate that ex-
perienced participants express their preferential ranking decisions more clearly
than novices. For example, they behave faster in decision time with more iter-
ations or decide slower with more ranking interactions (thoughtful indecision);
they also express fewer incomplete and more indifferent preferences.

7.2.1 Interaction Behaviors

To analyze the behavior and subjective satisfaction, we first group our partic-
ipants using quantile-based discretization to guarantee each grouped expertise
level has an evenly distributed number of participants. Then we assert the data’s
normality using the Shapiro-Wilk test. We use a t-test to compare the differ-
ence between novices and experienced participants for normally distributed data.
Otherwise, we report a Wilcoxon rank sum test as a non-parametric approach to
compare the differences between novice and experienced participants for mea-
sured dependent variables.

All measured interaction behavior indicators are visualized in Figure 7.3. In
terms of the decision time, we found a significant difference between novices
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and experienced participants both in text summarization (W = 8273.00, p = .051;
r = -0.14, C'ly54=[-0.27, -0.0006]), photo color enhancement (W = 22320.00, p =
.041; r = 0.12, C'ly54=[0.006, 0.23]), and 3D model simplification (W = 20999.50,
p < .001; r = 0.45, C'lg54=[0.34, 0.54]). This means experienced participants are
either more thoughtful (e.g., in the text summarization domain) or more effective
(e.g., photo color enhancement and 3D simplification) in forming their decision. For
the number of involved iterations, we did not find a significant difference between
novices and experienced participants in text summarization (W = 223.00, p = .953;
r = 0.01, Clgs4=[-0.33, 0.35]) and 3D model simplification (W = 199.50, p = .751;
r = 0.06, Cly54,=[-0.30, 0.40]). However, we found significantly more iteration in
photo color enhancement (W = 99.00, p = .008; r = -0.48, Clg55,=[-0.71, -0.15])
for experienced participants than novices. The results suggest that experienced
participants explore the solution space significantly more when the feedback loop is
more efficient.

When checking the expressed number of incomplete preferences, we found ex-
perienced participants rarely express an incomplete preference, and novices in
the 3D model simplification domain express incomplete preference significantly
more than experienced participants (W = 249.00, p = .023; r = 0.32, Clgss=[-
0.04, 0.60]) domains. However, we did not find a significant difference in text
summarization (W = 274.50, p = .081; r = 0.24, C'lg5,=[-0.10, 0.54]) and in photo
color enhancement (W = 144.50, p = .154; r = -0.24, C'Ig54,=[-0.54, 0.13]) contexts.
Similarly, we found experienced participants indicated indifference preference
significantly more than novices in the photo color enhancement domain (W =
102.50, p = .015; r = -0.46, C'I954,=[-0.70, -0.13]) but neither in the text domain (W
= 265.00, p = .255; r = 0.20, C'I954=[-0.15, 0.51]) nor the 3D model domain (W =
230.50, p = .242; r = 0.22, C'ly54=[-0.14, 0.53]). Regarding the number of rank-
ing interactions to express the preference in an iteration, we found experienced
participants express significantly more than novices in text summarization (W =
8439.50, p = .062; r = -0.12, C'I5,=[-0.25, 0.02]) but not in photo (W = 19405.50,
p = .590; r = -0.03, C'Tg55,=[-0.14, 0.09]) and 3D model (W = 14994.50, p = .516; r
=0.03, Clg5,=[-0.09, 0.16]) domains. These results show that experienced partici-
pants express their ranking preference more clearly. In contrast, novices might not
know if the machine outcome may not be good enough for them, resulting in more
incomplete and fewer indifferent preferences.

7.2.2 Subjective Satisfaction

As mentioned in section 3.2.1, we measured subjective satisfaction at the end
of every task, and from Q1 to Q4, are used to measure the satisfaction. Since
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Cronbach’s « is fairly high a=0.721, Cly5,=[0.648, 0.782] in our collected data,
we aggregate these questions as satisfaction indicators. See Figure 7.4.

We conducted an ART ANOVA [160], as the Shapiro-Wilk normality test showed
that the data are not normally distributed (W=.964, p<.001). This analysis revealed
that the overall satisfaction of the final system outcome is significantly influenced
by the involved expertise (Fs 51=7.56, p=.001, 7>=0.23) as well as by the domain
context (Fy 51=3.84, p=.027, n?=0.13). Moreover, no interaction effect was found
(F4,51=0.50, p=.733, n*=0.04).

Q1-Q4: Subjective Satisfaction Q5: The “I don’t know" option is useful Q6: | gave clear feedback to the Al
100 100 100

3 Novice
E Intermediate
80 _I_ 80 - HEE Experienced 80 JJ} {_
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Figure 7.4: Measured subjective satisfaction, the usefulness of providing incom-
plete preference option while doing the ranking evaluation. The results suggest
that subjective satisfaction significantly decreases when comparing novice and
experienced participants. All participants considered allowing expressing incom-
plete preference less useful, and they gave clear feedback to the AL

7.3 Interactions within the Optimization Loop

We analyze three aspects to quantify the overall optimization loop: 1) The directly
measured preference utility, i.e., ranking data, from participants. 2) The learned
latent utility of the underlying BO optimizer and 3) The system outcome quality
based on objective metrics. For the directly measured preference utility, a higher
value of utility represents participants considering the outcome quality is better
in the current evaluating options. The learned latent utility represents how the
underlying algorithms consider the human is satisfied with the current results
based on the ranking responses; a higher value represents BO optimizer considers
more satisfaction on the human side. Lastly, the objectively measured outcome
quality metrics measure how different an outcome is from the original task input.
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Figure 7.5: Directly measured preference utility: The utility are normalized from
rating labels (Terrible to Excellent). The results indicate regardless of the involved
expertise, participants behave consistently, and in later iterations, the final rank-
ing utility is higher than at the beginning of human-in-the-loop optimization.

7.3.1 Measured and Learned Preference Ranking Utility

As shown in Figure 7.5, for directly measured preference utility from ranking
data, we fitted a linear mixed model [5, 88] (estimated using REML and nloptwrap
optimizer) to predict preference utility with involved expertise and exploration
iterations. The model included participants as a random effect. Comparing to
novice participants (Clg55=[0.49, 0.56], t(3592) = 28.56, p < .001), we found that
in all domain contexts, the submitted preference utility from experienced partic-
ipants is statistically non-significant and negative (8 = -0.02, t(3592) = -0.69, p
= .489). The effect of iteration is statistically significant and positive (5 = .002,
Cly5,=[.001, .003], t(3592) = 3.32, p < .001). This means that regardless of the
involved expertise, participants behave consistently, and in later iterations, the
final ranking utility is higher than at the beginning of human-in-the-loop opti-
mization.

Regarding the learned latent utility from the BO optimizer, as illustrated in Fig-



78 Interactions within the Optimization Loop

ure 7.6, we fitted another linear mixed model (estimated using REML and
nloptwrap optimizer) to predict the learned latent utility with involved exper-
tise and exploration iterations. Comparing to novice participants (C'Ig54,=[0.42,
0.46], t(3592) = 42.97, p < .001), the effect of experienced participants is statisti-
cally significant and positive (8 = 0.03, C'I955,=[0.001, 0.06], t(3592) = 2.03, p =
.042). But the effect of iteration is statistically non-significant and positive (5
= 0.001, £(3592) = 1.32, p = .186). This result means that the provided ranking
data from experienced participants are more effective and consistent for the BO
optimizer than the ranking data from novices.
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Figure 7.6: Learned latent preference utility: The inferred utility from the ma-
chine side (i.e., Bayesian optimization). Our results indicate provided ranking
data from experienced participants are more consistent and effective in the learn-
ing process for the BO optimizer to learn than ranking data from novices.

7.3.2 Objective Outcome Quality

We normalized the iteration sequence and visualized the exploration progress
in Figure 7.7. For analyzing the progress, we fitted linear mixed models for all
metrics in the text summarization domain. For example, for length metric: com-
paring to the results produced by novices (C'Ig55,=[51.20, 54.43], t(1192) = 64.14) is
as good as the outcome produced by experienced participants (/3 = -0.20, C'Ig54,=[-
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2.48, 2.08], t(1192) = -0.17, p = .864), and there are no effects on the involved it-
eration (8 = -0.12, C'ly54,=[-0.26, 0.03], t(1192) = -1.55, p = .120). These results
hold the same as for other metrics. In summary, when comparing to outcomes
produced when engaging with novices, the effects of involving experienced par-
ticipants were statistically non-significant, and the effect of iteration was statis-
tically non-significant and negative. This means novices achieved the same level
of performance as experienced participants did. These results hold for all metrics
we used for measuring outcome quality.

In the photo color enhancement, except for the contracts (3 = -1.45, C'Ig54,=[-2.05,
-0.84], t(1192) = -4.71, p < .001) and temperature (3 = 0.19, Clg55,=[0.004, 0.37],
t(1192) = 2.00, p = .045) which are significantly influenced regarding exploration
iterations. The effect on brightness using experienced participants is statistically
non-significant and positive (8 = 0.76, t(1192) = 0.13, p = .894) and the effect of
iteration is statistically non-significant and negative (5 = -0.32, t(1192) = -1.37, p
=.172), when compared to novices (CIg54,=[-7.11, 8.02], (1192) = 0.12, p = .907),
and these results are the same for saturation and tint metrics.

Lastly, for 3D model simplification, we found that experienced participants (3
= 0.003, Clg55,=[0.0001, 0.007], t(1192) = 2.00, p = .046) outperformed novices
(Clg54=[-0.002, 0.002], t(1192) = 0.10) only in keeping surface distance low, mean-
ing better in maintaining surface quality. We did not find significant differences
in other metrics when comparing experienced users’ and novices’ outcomes. This
result means that experienced participants are better at identifying technical dif-
ferences as surface quality is less observable, as discussed in subsection 3.2.2.
However, novices can achieve expert-level performance under the human-in-the-
loop optimization context, similar to other contexts.

7.4 Discussion and Implications

The results in section 7.2 and section 7.3 can be summarized into two major ob-
servations: 1) Novices can achieve expert-level performance in objective quality
in all cases. 2) Participants with higher expertise show more explicit preferences,
dissatisfaction, and iterations, but novices are more quickly terminated and show
more satisfaction. Below, we will discuss what implications we think these ob-
servations might have.

7.4.1 Outcome Quality and Pareto Optimality

When we have a well-defined metric that can measure the quality of an out-
come, the optimization process could be done procedurally using a machine
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alone. However, in reality, the outcome quality is often characterized by a set
of metrics, and Pareto optimality [118] is a useful concept for discussing machine
rationality regarding its outcome quality. Pareto optimality describes a trade-off
situation where a system outcome is optimal if any improvements in one objec-
tive result in the deterioration of others. This trade-off is also called the Pareto
front, and outcomes on this front refer to Pareto frontiers.
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Figure 7.7: System Outcomes’ Objective Quality: Each context measured five
metrics to the outcomes. Experts can identify technical differences compared to
novices, such as minimizing Chamfer distance in 3D model simplification. Re-
sults indicate that novices produce expert-level performance in objective quality.

Conceptually, the Pareto optimality captures the measurable components when
evaluating an outcome, whereas non-measurable parts reflect more about the
subjective matter. Let P; be the system parameter space defined by [0,1]"(s €
N+), and O be the outcome space generated from the parameter space. Then,
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the rational component of a human-in-the-loop optimization is to explore the
outcome space O concerning a given set of objective metrics M, (¢t € N*). The
Pareto front F is determined by the outcome space and specified metrics, which
essentially depends on the parameter space and metrics, i.e., F(Ps, M), which
captures the boundary of machine rationality and human-in-the-loop optimiza-
tion could be considered as the exploration in this space to reach the Pareto front.

This concept avoids the aggregation problem of contradicted multi-objective ob-
jectives, such as in our user tasks, participants need to summarize the text while
preserving the meaning or simplify 3D models as much as possible while keep-
ing the overall appearance. However, note that converging to the true Pareto
optimal set has a technical challenge, and yet still in active research [28, 134], as
there might be an infinite amount of candidates, and metrics might interact with
each other. Instead of evaluating whether an outcome is a Pareto frontier, it is
more useful to discuss whether the optimization made any progress to guarantee
the final outcome is more dominant than the initial ones.

In our results, we showed that both novices and experienced participants im-
proved the objective measures and could achieve a similar level of quality, mean-
ing the final outcomes are Pareto dominant than the initial ones. Under the Pareto
optimality framework, the BO learns the underlying preference using users’ rank-
ing choices, which tend to converge to different non-Pareto optimal results. But
since the BO optimizer assumes human has a stable preference utility function
that will eventually converge, we argue that novice participants do not have
enough evaluation metrics in mind, and the system outcome does not necessar-
ily need to arrive at the front. In contrast, experts attempt to keep optimizing or
exploring other objectives when machine rationality already reaches the objec-
tive Pareto front. Hence, compared to experienced participants who potentially
evaluate more metrics than the machine, more flaws might be discovered in this
process, and cause either more uncertain in expressing its decision and causing
more decision time (e.g., in text summarization) or easier to form a decision and
cause less decision time (e.g., in the photo and 3D model contexts). Since experts
report significantly higher dissatisfaction than novices, we argue that this result
shows a mismatch of the Pareto front between the participants and machine ra-
tionality, and the source of the dissatisfaction comes from the involved expertise.

7.4.2 Expertise and Satisficing Decision Strategy

Based on the analysis of the outcome quality from the human-in-the-loop opti-
mization loop, we did not find enough evidence to indicate a significant difference
regarding the quality of the system outcome between different levels of expertise.
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However, with increasing expertise, overall user satisfaction decreases, and the
number of iterations increases. This observed behavior matches the maximizing
decision strategy since participants are asked to terminate at satisfaction, and ex-
perts attempt to explore the solution space significantly more than novices. Since
the involved expertise is increased, more flaws in the system may be discovered
in this process, resulting in more dissatisfaction. This observation suggests that
we could involve more expertise to identify more system flaws iteratively while
exploring the solution space. Although machine rationality would not be im-
proved without a reparameterization of the underlying algorithm, this observed
behavior could be used as an indicator in hindsight analysis to inform system
designers to 1) improve underlying machine rationality, 2) further improve the
human-in-the-loop optimization process, and 3) better support users to explore
desired solutions. For novices, using a satisficing strategy is good enough to get
to expert-level performance with the help of human-in-the-loop optimization.

7.4.3 'The Impact of Involved Expertise

The objective outcome quality might not depend on the involved human exper-
tise when a machine learner baked enough domain knowledge in its underlying
algorithm. What might be the “minimum” required expertise to obtain meaning-
ful machine outputs, then? What if a user constantly provides flawed random
choices? Intuitively, such a condition would not benefit a preference-optimized
human-in-the-loop system. Admittedly, to evaluate the behavior between “zero
expertise” and “novice,” we could program a random choice generator to test and
observe the results. Still, we are bound to a limited observation time and two
implicit assumptions. The first assumption is that the expertise level has a to-
tal order, and a random choice generator is a minimum element for all levels of
expertise. Second, a random choice generator can never produce a meaningful
outcome in the context of human-in-the-loop optimization.

These two assumptions might be considered true at first sight. However, we can-
not compare the amount of expertise from a random choice generator or an in-
telligent human being. Notably, the Borel-Cantelli lemma [22]3, states that with
an infinite number of events, the probability* of observing a meaningful result is
1. This theory explains that even with a random choice generator, as long as it
continues to generate choices, a meaningful sequence of choices eventually will
occur, such that the human-in-the-loop system can produce desired outcomes. In
other words, this theoretical fact endorses that a sufficient amount of expertise

3In proposition 10.2.2 (b).
4Strictly speaking, the event happens almost surely as the Lebesgue measure is 1.



Summary 83

could be beneficial to produce meaningful outcomes in a short amount of time
comparably, and our results complement that more involved expertise creates
increased iterations of interactions for explorations.

7.4.4 Limitations

Although we allowed users to express “I don’t know” as their incomplete prefer-
ence, a participant may still provide a sub-optimal ranking due to fatigue from a
long time of participation or other relevant reasons, resulting in the violation of
the incompleteness assumption. From an algorithmic perspective, although the
PBO handles ideal randomized choices, the provided ranking choices might even
be worse than assumed Gaussian distributed random choices due to subjective
reasons. Besides, the underlying preferences might change at every iteration.
For example, experts may further reason for using the system outcomes or try-
ing to make sense of the sequential outcomes. Instead, novice users judge locally,
making their behavior much more stable. The choice of objective quality evalu-
ation metrics may also impact the interpretation of the optimization process due
to their interaction effect.

One of the conventional motivations for developing an objective metric is to use
it to predict human judgments. The development of an objective metric implic-
itly assumes common sense among the crowd, and the metric may not be suitable
for measuring individual preferences. Instead of asking users for their judgment
to explore the solution space, it might be more interesting for future research to
utilize human judgment more in exploring dynamic solution spaces where the
human is only involved when the machine reaches its boundary of rationality.
Furthermore, instead of evaluating the impact of expertise on the exploration be-
havior of one static solution space, we could evaluate the interaction effect of
the involved expertise and the underlying human-in-the-loop optimizer. For in-
stance, one could design an experiment to understand the decision behavior on
the Pareto front where all machine-proposed options are objectively optimal. It
would be interesting to check how the involved expertise impacts the decision
behavior among all objectively optimal Pareto frontiers and, thus, better under-
stand the difference between subjective and objective Pareto fronts.

7.5 Summary

To zoom out from the detailed study and implications of the results, this chap-
ter revealed empirical observations on the impact of involved expertise on the
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human-in-the-loop optimization systems, compared by three domain-specific ex-
amples. The results presented in this chapter inform us that the overall outcome
quality is eventually not influenced by the involved user expertise in an opti-
mization context. As an interpretation, this thesis argues that the human-in-the-
loop system’s outcomes are bound to the underlying machine algorithm’s Pareto
front. Based on the concept of Pareto efficiency in the definition of rationality
and satisficing decision strategy in the definition of bounded rationality, one can
consider the user objective alignment process moves along the front depending
on the core values of the user. Combining with the observations in chapter 6,
increasing expertise contributed to the behavior of exploring the Pareto front of
the machine’s intelligence. However, exploring the front does not objectively
improve the machine outcomes and may even downgrade a user’s overall satis-
faction due to cognitive effects.

The observations reported in this chapter may be surprising, but they also leave
us huge room for reflection and open the door for future work. We will look into
them in the next final chapter.



3

Reflections and Outlook

The absurd is the essential concept and the first truth.

— Albert Camus, The Myth of Sisyphus, 1942

In the end, we reflect, starting with these questions: How reliable are our results?
Why do human-in-the-loop optimization systems remain exciting and worth in-
vestigating despite our observations? Can rational machine programs truly ben-
efit from bounded rational human feedback and align to achieve their objectives?
This chapter discusses the findings philosophically and then outlines concrete
future work.

8.1 Reflection

Behaviorism argues that objective decisions and judgments of a human can be
observed through their behavior. However, this observation can be limited by the
ambiguity of interpretation [144] due to a lack of observation and impermeable
states of mind [116].

Despite this limitation, in chapter 5, we overcame the challenge and explored
the opinion measurement interfaces as a complement to behaviorism [109] that
measures “tendencies to evaluate an entity with some degree of favor or disfa-
vor, ordinarily expressed in cognitive, affective, and behavioral responses” [34],
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which reflect human preferences or decisions under uncertainty. We showed in-
complete and indifferent preferences commonly exist in human-in-the-loop opti-
mization. These two indicators demonstrate unrevealed preferences and are often
overlooked when designing machine optimizers to align with users’ objectives.
Does it mean we can adjust the design of optimizers to align user preferences
inside a human’s mind better?

To answer this question. We can go through a thought experiment: We designed
and engineered a perfect machine optimizer based on all possible observations
of the user’s preferential behavior, and it can progressively and eventually align
with the user preferences in their mind precisely in a few finite steps. Then,
imagine a user who aims to trick the system and always provides random choices
regardless of the outcome to the machine. What kind of user preference will the
machine align to? What kind of outcome will the system generate? What does
this optimization really mean? Can we assume the observed preferential choices
are subject to true randomness even if the human user aims to provide “random
choice”? Where is the source of this true randomness? Are we certain that this
randomness is not influenced by their prior experiences subconsciousnessly?

Subjectively, as individual human beings, on request, we might always be able to
explain our own behavior in words. Psychological research interprets the choice
as a result of subjective confirmation bias [107] where people tend to rational-
ize their behavior. In turn, in a human-in-the-loop optimization system, the two
involved entities might consistently suffer from this chain of suspicion and in-
formation asymmetry because each of them is trying to interpret the other’s re-
sponse. From each other’s perspective, the behavior always encodes the freedom
of will and the uncertain nature of the mind; interpretation constantly meets am-
biguity, and the alignment process will continue.

Following this thought, even if we considered enough objective evaluating crite-
ria in the optimizer and support users to express on these different dimensions in
the UL the subjective judgment of an individual may prefer a different ranking
priority than another individual regarding concerning objectives. In a given con-
text, to express a decision, a decision maker can select a partial set of objectives
out of many objectives without informing any other objects. From the observer’s
perspective, one may interpret this decision-maker as having made an irrational
choice, as there is neither sufficient interpretation of a decision nor enough ob-
served information for the observer to infer the reasoning process within an ob-
jective mind. This essentially provides a counter-argument against the Laplace’s
demon [84] — a hypothetical superintelligent being could theoretically predict and
calculate the future and past of the entire universe — because a human-in-the-loop
optimization systems involves more than one intelligence and the interaction be-
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tween them is non-deterministic and cannot be fully inferred.

Is this a dead end if we believe that we are doomed to fail in designing rational
machines with perfect algorithms to optimize system outcomes and align them
with users? What else can we do? Beyond the provided design recommendations
in chapter 6 that mitigate the problem, a more general approach to end such an
objective alignment process efficiently is to meet the following: 1) a shared com-
mon goal and both parties need to adapt rather than unconditionally requiring
the adaptation of one to the other, especially if the other might not have concrete
and revealed preference. Otherwise, the optimization process does not have suf-
ficient feedback to optimize; 2) transparently sharing the same and complete in-
formation. Otherwise, when zooming out from a detailed inspection of different
concerning factors, the observation will also be limited by the central limited the-
orem, where their findings become uninterpretable or ambiguous because there
are too many confounding variables; 3) the involved two entities use sufficient
rationality to minimize to an optimal gap at every each step because optimization
errors can occur due to suboptimal strategy.

In this light, we also need to rethink the relationship between rationality and
our intelligence. Preference logic shows a definition by relying on assumptions
of completeness and transitivity, which is a way to describe rationality. Sim-
ilarly, the fundamental axioms of probability theory can also be considered as
a definition to address rationality (cf. Dutch book argument [122], a violation
of probability axioms license senseless and contradictory behavior). Therefore,
conventionally, rational assumption implicitly suggests that it presents our intel-
ligence. However, in the empirical observations of this thesis, we have seen users
often violating these assumptions when interacting with a system, not only by
pure mistakes but rather by being framed as a misalignment between machine
objectives and user objectives or pure creativity. Should we do a better design to
help humans be more rational and let machines understand us better? Is it our
objective to eliminate the “irrational” component? What does it mean for us if
we behave purely rationally and machines can quickly learn and adapt to it? Can
we consider the machine accumulated our intelligence? What can we interpret
if the individual user mismatches the machine’s intelligence? What truly shaped
their intelligence as well as ours?

Ultimately, physical time limits the freedom of our minds. We ask ourselves even-
tually: how can we better keep our intelligence in an interaction loop? The an-
swer I found is to seek unexperienced experiences. From this process, the in-
teraction of rationality that is learned from others and creativity that originates
from ourselves together shapes our intelligence and empowers us to further cre-
ate essence to existence.
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8.2 Future Work

Looking ahead, the above reflection contributes the following concrete ideas for
continuing the work on the research of human-in-the-loop systems.

Involving unstructured and unaggregated human feedback: Our considered design
space of opinion measurement interfaces in chapter 5 only covers structured hu-
man inputs bound to suitable optimizers, i.e., utility and preferential data. With
the increasing developments in large language models, it would also be interest-
ing and challenging to explore, quantify, and evaluate human-in-the-loop inter-
faces that permit unstructured inputs such as using a text prompt to alter media
data using diffusion models [129]. The results presented in chapter 5 provided a
starting point in this direction. In addition, all the empirical explorations in this
thesis ask humans to provide aggregated feedback, which may need to be more
clear from the interaction process. Another possible future exploration is to dig
more into a more granular level of feedback from different judging criteria.

Modeling indifference and incomplete preference: In our studies, we designed the
user interface to distinguish between two possible interpretations (ignorance or
uncurious) of incomplete preference. Still, the optimizers discarded the collected
indifference and incomplete preferences because the underlying optimizer did
not support them. However, indifference and incomplete preference are com-
mon in human decision-making [27]. In chapter 5 and chapter 7, we showed
that although users rarely express indifference and incomplete preferences, un-
derstanding them may help us better in the optimization process towards user
expectation. Although we have seen initial work (e.g., [105, 108]) from both the
machine learning community and economic research, A closer look into under-
standing and modeling indifference and incomplete preferences will be funda-
mentally challenging and interesting to go.

Simulating human priors and feedback: When conducting a research experiment,
creating a feedback simulator, either random or with a particular assumed human
prior [59], to interact with a human-in-the-loop system may be helpful for re-
searchers to understand whether the outcome based on human feedback is better
than a reproducible baseline. Yet, the simulation approach is not widely accepted
in the HCI community due to the complexity of humans. However, we have seen
promising trend advocates [103] for applying them, and we believe it will be a
promising and valid approach for future HCI research.

'https://openai.com/blog/chatgpt/, last accessed 17.02.2023
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Understanding human behaviors on the Pareto front: One of the essential ideas re-
garding human-in-the-loop systems is to adapt user expectations progressively.
Such an adaptation happens based on the measure of performance space and ob-
jective functions designed within an optimizer. Suppose a machine can measure
the objective and infer the next optimal based on simulated results with an op-
timization process. In that case, the outcomes towards more to the Pareto front
are determined by a set of fixed objectives when designing the machine. Does it
make more sense for the machine systems to jump to the front and produce opti-
mal outcomes without human inputs? Is the whole adaptation idea still sensible
to involve humans in the optimization phase? What would change if an involved
human constantly faces Pareto optimal results and the feedback loop only ad-
justs to the system outcomes on the front? Although one of the direct technical
challenges is to find the Pareto front, these questions are worth exploring.

Exploring mismatches between individual and collective intelligence: When indi-
vidual intelligence cannot compete with essentially embedded collective intelli-
gence in the loop, how can we discover the gaps and mismatches between indi-
vidual intelligence and the machine’s intelligence? How can we better support
individual users to explore the space created by collective intelligence? How can
we design a system to help users understand how well they have explored the
space fixed by the current machine system? This is also yet another interesting
direction to investigate.
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The Intelligence in the Loop:
Empirical Explorations and Reflections

For decades, engineering in computing systems has used a human-in-the-loop
servo mechanism. A conscious human being is usually believed, in a rational
manner, to operate, assist, and control the machine to achieve desired objectives.
Over time, researchers have started to use human-in-the-loop schemes in more
abstract tasks, such as iterative interface design problems. However, with the
observations and developments in social science, the underlying rationality as-
sumption is strongly challenged, and humans make mistakes. With the recent
advances in computer science regarding artificial intelligence, data-driven algo-
rithms could achieve human-level performance in certain aspects. The human-
in-the-loop mechanism is being reconsidered and reshaped towards an extended
vision to assist human decision-making or creativity in the human-computer in-
teraction (HCI) research field.

This dissertation explores the boundary for human-in-the-loop optimization sys-
tems to succeed and be beneficial, focusing on understanding an iterative inter-
action loop where machine agents are designed to interact with human beings
that may behave using bounded rational policies, align objectives iteratively, and
optimize the machine outcomes. We analyzed the building blocks in a human-
in-the-loop optimization system and then designed three studies to assess each
element, including user interfaces, preference optimizers, human expertise, cog-
nitive effects, satisfaction, termination condition, etc. The presented observa-
tions and results eventually approached more fundamental questions regarding
the definition of intelligence and suggested an answer on how we could succeed
in keeping our intelligence in the loop.
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