
Integrating Authoring Tools into Model-Driven
Development of Interactive Multimedia

Applications
(Preliminary Version)

Andreas Pleuß, Heinrich Hußmann

Department of Computer Science, University of Munich
Munich, Germany

{pleuss, hussmann}@cip.ifi.lmu.de
http://www.medien.ifi.lmu.de

Abstract. The Multimedia Modeling Language (MML) is a platform-
independent modeling language for model-driven development of interac-
tive multimedia applications. Using models provides several advantages
like well-structured applications and better coordination of the different
developer groups involved in the development process. However, the cre-
ative tasks – like graphical design of the user interface and the design
of media objects – are better supported by traditional informal methods
and tools. In particular multimedia authoring tools such as Adobe Flash
are well established for multimedia application development. In this pa-
per we show how MML and authoring tools can be integrated by the
example of Flash. Therefore we transform the MML models into code
skeletons which can be directly loaded into the Flash authoring tool to
perform the creative design tasks and finalize the application. In that
way, the strengths of models and authoring tools are combined. The pa-
per shows the required level of abstraction for the models, introduces
a metamodel and a suitable code structure for the Flash platform, and
finally presents the transformation.

1 Introduction

Through the growing pervasion of every day life with computers, many applica-
tion areas appear where rich and comfortable and eventually entertaining user
interfaces become more and more natural. In this paper we deal with “multi-
media user interfaces” which make intensive use of different kind of media –
like audio, video, graphics, and animation – and provide sophisticated user in-
terfaces adapted individually to the user’s tasks and information. In particular,
we address highly interactive systems which may include complex application
logic. Classical examples are e-learning or training applications, simulation or
computer games. New additional application areas are for instance home enter-
tainment systems or infotainment systems in cars.

2 Andreas Pleuß, Heinrich Hußmann

Such interactive multimedia applications are often developed using author-
ing tools such as Adobe Flash, which includes the programming language Ac-
tionScript. Such tools provide excellent support for the creative development
tasks. However, they lack of support for structuring the application. The Ac-
tionScript code can be scattered all over the application and is very difficult to
maintain. Furthermore, there is very low support for teamwork and for coordi-
nation between the different developer groups for user interface design, software
design and media design. The need for a better support of software engineering
principles into multimedia application development is clearly stated by various
publications in this area (e.g. [1]).

To address this issues, we propose in [2, 3] a modeling language for model-
driven development of multimedia applications called Multimedia Modeling Lan-
guage (MML). Our idea is to combine this approach with the advantages of the
existing tool. Therefore during the design phase only the overall structure and
behavior of the application is specified in the MML models. Detailed behavior
and concrete visual design should however be created in the authoring tools.
We achieve this by generating code skeletons from the MML models which can
be directly loaded into the authoring tools for the implementation phase. The
code skeletons contain placeholders which have then to be filled out and arranged
within the tool. In this paper we demonstrate the feasibility of this concept using
as target platform the Flash authoring tool.

The paper is structured as follows: In section 2 we briefly summarize MML.
Section 3 introduces the target platform, Adobe Flash, and presents an overview
on the main ideas of the approach. Section 4 elaborates a suitable code struc-
ture for Flash applications, summarizes the transformation and shows how the
resulting documents are processed within the authoring tool.

2 MML

The Multimedia Modeling Language (MML) is a platform-independent language
for model-driven development of multimedia applications. It supports a design
phase for multimedia applications and allows generating code skeletons for dif-
ferent platforms. The language bases on UML 2.0 and integrates concepts from
different approaches in user interface and multimedia modeling. Based on the
results of requirement analysis - like user task models [4] and storyboards – four
kinds of models are provided: structural model, scene model, abstract user inter-
face model (which is enhanced to a media user interface model) and interaction
model. In the following we briefly summarize the MML models referring as ex-
ample to a Jump’n Run gaming application like those at [5]. For further details
on MML please see [2, 3].

The structural model describes the structure of the application logic (domain
model) in terms of an extended UML class diagram. The classes from the domain
model are referred to as application entities. They can be associated with media
components. For example a character in a Jump’n Run game is represented by
an animation. If required, the inner structure of the media components can be

Integrating Authoring Tools into Model-Driven Development 3

defined. This is only necessary when its inner structure is relevant for other parts
of the application. An example is a character in a Jump’n Run game: its legs
should be animated when the character moves. Thus, the legs have to be realized
as moveable parts of the animation and in some cases it must also be possible
to access them from the application logic. As such issues often concern different
developer groups – usually the software designer and the media designer – it is
important to define them in the model.

The scene model defines the scenes of the application and the transitions be-
tween them in terms of an adapted UML state chart. A scene represents a specific
state of the application’s user interface and is an abstraction of the screen con-
cept in graphical user interfaces. Scenes in a Jump’n Run game are for instance
the menu, the game and the highscore. Through their dynamic character caused
by temporal media objects, multimedia scenes have an inner state specified by
attributes as well as operations to affect their state. In particular, they have
so-called entry-operations to initialize the scene and exit-operations to clean it
up.

The abstract user interface model describes for each scene the user interface
in terms of abstract user interface components (AUI components). For the AUI
components in MML we reuse the concepts provided by user interface modeling
approaches (e.g. [6, 7]). The set of AUI components currently supported in MML
includes input component, output component, action component, and different
specializations of them. The AUI components required within a scene can be
derived for instance from task models and are usually specified by the user
interface designer.

As a core concept of MML we enhance the abstract user interface with rela-
tionships to the media components from the structural model: some of the AUI
components could be realized by one or more of the media components. Ob-
viously, often output components are realized by media components. But also
input components can be realized by media components as e.g. an animation
can be clicked or dragged and dropped. Furthermore, the abstract user inter-
face model is enhanced with sensors. A sensor represents an event caused by a
temporal media component, like collision sensors for animations (triggering an
event when an animation is moved over another object on the screen) or a time
sensors for a videos triggering an event when the video has reached a specific
point on its timeline. The enhanced abstract user interface model is referred to
as media user interface model.

Finally, the interaction model describes for each scene how the AUI compo-
nents and the sensors from the media user interface model trigger operations
from the structural model. This model is an adapted UML activity diagram
where the actions are restricted to operations calls.

3 General Approach for the Target Platform

For the transformation from MML models to Flash code skeletons we consider
the concepts from model-driven development (see e.g. [8]), such as explicit meta-

4 Andreas Pleuß, Heinrich Hußmann

VideoItem

BitmapItem

SoundItem

FontItem Shape TextInstance

ComponentInstance

Element
depth : Integer
height : Double
left : Double
name : String
top : Double
width : Double

MovieClip

Layer Frame

0..n

1

+element0..n

+frame
1

0..n

1

+frame
0..n

+layer
1

Timeline

1..n

1

+layer
1..n

+timeline
1

ASScript
0..1

0..1

+actionScript0..1

+frame
0..1

SymbolItem

1

0..1

1

+symbolItem
0..1

SymbolInstance

0..1

0..1

+actionScript0..1

+symbol
0..1

1
+libraryItem
1

FlashDocument
backgroundColor : String
frameRate : Double
height : Integer
width : Integer

1..n0..1

+timeline

1..n

+document

0..1

Library
1

1

+library 1

+document

1

ClassItem
name : String

0..n

1

+item0..n

+library 1

0..1
+actionScript

0..1

timeline

File: C:\repository\mml_2\hcii_2007\Flash_0_4_reducedView_3.mdl 12:33:10 Mittwoch, 14. Februar 2007 Class Diagram: Logical View / Media Page 1

Fig. 1. Extract of Flash metamodel including the main elements of Flash documents.

models (to define the models) and explicit, modular transformations between
them. MML is defined using a MOF-compliant metamodel. We use the Eclipse
Modeling Framework (EMF) for its implementation. The transformations are
defined using the Atlas Transformation Language (ATL), a declarative language
close to the OMG standard QVT (Queries, Views and Transformations) [9].

The transformation is performed in two steps: first, the MML models are
transformed to Flash models. Therefore we specify a Flash metamodel which is
presented in this section. The actual mapping from the platform-independent
MML concepts into the platform-specific concepts of Flash is performed during
this transformation. In a second step, we transform the Flash model into the
final code skeletons. This is mainly a straightforward transformation. However,
it is more complex than conventional code generation (like transformation from
a Java model into Java code), as we aim to generate files for the Flash authoring
tool. The resulting files can be directly loaded and processed in the tool using
its sophisticated support for the creative design tasks. This requires on the one
hand strict compliance to the authoring tool’s internal document structures and
on the other hand a solution how to produce the corresponding binary files.

In this section we summarize the capabilities of the Flash authoring tool and
the resulting general structure of Flash applications. The main concepts (in the
following denoted in italics) are reflected in the simplified extract of our Flash
metamodel in figure 1. Afterwards we explain our general approach for creating
code for the authoring tool. On that base we propose in section 4 a mapping
from MML models to a suitable Flash application skeleton.

The Flash authoring tool was originally developed for the creation of graph-
ics and animations. The tool is timeline-based, i.e. the temporal dimension of
animations and behavior is represented by a timeline consisting of several frames.

Integrating Authoring Tools into Model-Driven Development 5

A frame owns a two-dimensional space (called stage, not part of the meta-
model) where 2D vector graphics (shapes and text) and other media objects
can be placed. A third dimension (z-axis) is realized by layers to define which
object is the topmost when several objects overlap each other on the stage. An
animation means that some graphics changes (e.g. its position) over the time,
i.e. over the frames in a timeline. A symbol is complex graphical object (often
the term movie clip is used as synonym as movie clip is the most important
type of symbol). A symbol contains a timeline which can contain (in its frames)
any content as the main timeline. This means that a symbol may contain any
complex content, even symbols and animations. Thus, symbols and animations
can be hierarchically nested in arbitrary depth. Each Flash document contains
a library which contains all media objects of the document. When a symbol is
created or any media object is imported into the authoring tool, it is automati-
cally added to the library. The items in the library can be instantiated multiple
times in one or more frames on the timeline. An instance usually has an instance
name and a location within a frame.

Since version 4 a scripting language is included in Flash, called ActionScript
which continuously evolved. In Flash MX 2004 ActionScript 2 was introduced
which supports the object-oriented concept of classes. Classes have to be speci-
fied in separate ActionScript class files. In particular, it is now possible to attach
ActionScript classes to symbols in the library of a Flash document. This is a
very interesting opportunity, as symbol and associated code then build together
a complex object consisting of programming logic and a (possibly very complex)
visual representation. The associated ActionScript class has automatically ac-
cess to all properties of the symbol, as if they were class properties, including
visual elements nested inside the symbol. Furthermore events on the symbol
(e.g. mouse clicks) can be processed in the class by just specifying corresponding
event handler operations. Such a connection between symbols and ActionScript
classes is an important concept which we intensively use in our generated code
(see section 4).

The file format for the flash documents is a proprietary binary format with
the file extension FLA. For execution the files are compiled into SWF files which
run within the Flash player available as plugin for Browsers. SWF is an open
format, but as it is a complied format SWF files can not be edited comfortably
within the authoring tool. Hence, for our purposes we aim to generate FLA files.

To solve the problem of creating the proprietary FLA files, we use the mech-
anism of extensions for the Flash authoring tool. They must be specified in
JavaScript and allow to automate every action, which can be done manually
in the authoring tool, e.g. creating symbols. For that purpose the tool provides
a kind of document object model, similar to that in browsers for HTML doc-
uments. These scripts must have the file extension JSFL and can be executed
either within the authoring tool or from the command line (if the Flash author-
ing tool is available in the system). We use this mechanism to generate FLA files
by generating a JSFL file which can be executed on the command line and then
creates the FLA content according to the Flash model (figure 2).

6 Andreas Pleuß, Heinrich Hußmann

MML
Model

JSFL File

Flash
Model

FLA FilesMML ModelFLA Files

FLA FilesMML ModelActionScript
Class FilesATL

Transformation

Execution of
JSFL file

Fig. 2. Approach for the overall transformation

A core problem in Flash is the low support for structuring the applications.
The program flow of the application can be determined for instance by Action-
Script code, by the timeline or by a combination of both. ActionScript code can
be attached to symbols, symbol instances, and frames. The sources on Flash
in the literature and in the web provide various frequently used patterns for
many different problems in small scale, but it exits no common solution for the
overall structure of Flash applications. An important contribution into this di-
rection is provided by [10] who applies several object-oriented patterns in Flash
– e.g. the Model-View-Controller pattern (MVC) – and presents a framework
for the overall application structure. However, this approach is restricted to Ac-
tionScript code and completely omits the usage of the authoring tool, and is
hence not suitable for our purposes. On the other hand, the feedback in the web
(e.g. in forums like http://flashforum.de) on books like this as well as the
latest changes in Flash provided by Adobe show the general demand for a better
support of software engineering principles in tools like Flash.

4 Transformation and Resulting Flash Code Skeletons

In this section we describe how to transform the platform-independent MML
models into useful code skeletons in Flash. As described in section 3, the lit-
erature on Flash provides various different patterns, but there is no common
solution for an overall structure of Flash applications which includes both: Ac-
tionScript and the features of the authoring tool. Thus, two issues have to be
addressed: first we need to identify a suitable structure for Flash applications.
Then, the concrete mapping from MML model elements into this structure has
to be defined.

Our proposed structure is based on the following considerations: The most
important requirement for the Flash application structure is the usage of the
authoring tool for creating and editing visual objects. Hence we generate FLA
files which contain placeholders (annotated rectangles, see figure 5) for the me-
dia components and the AUI components. Besides, the application structure

Integrating Authoring Tools into Model-Driven Development 7

modelsharedMedia

<<FLA File>> Scene1

<<FLA File>> Media1
<<AS Class>>

ApplicationEntity1

<<AS Class>>
Scene1

<<AS Class>>
AUI_Component1

<<MovieClip>>
Scene1

<<MovieClip>>
AUI_Component1

<<MovieClip>>
MediaComponent1

references
(only if realized by
a media object)

attached

attached

for each scene in
the application

once for the
whole application

Fig. 3. General structure of Flash applications resulting from the transformation. The
names of the artifacts indicate the MML model elements which they result from.

should be well-structured using common concepts, to avoid restriction to spe-
cific purpose or specific size and to enable an easy understanding of the generated
code. Thus, we use object-oriented ActionScript code for the non-visual parts
of the application. We make use of the ability of ActionScript 2 and place all
ActionScript code into separate class files. As proposed e.g. by [10], we use the
MVC-pattern to structure the ActionScript code. For the connections between
the visual elements in the authoring tool and the corresponding ActionScript
code we apply the ability to attach ActionScript classes to movie clips. User in-
terface objects of others kinds are just encapsulated into movie clips. To support
teamwork, we divide the FLA part of the application into many small FLA files.
Efficient version management of a single FLA file is usually not possible as FLA
is a binary file format. To support development of large applications we provide
a package structure for the ActionScript classes and a folder structure for the
FLA files. Figure 3 shows an overview on the resulting structure.

The element names in figure 3 indicate the MML model elements where they
are derived from during the transformation. The ActionScript classes for the
application entities contain the class properties derived from the MML class di-
agram. For operations we generate only the operation signature, as the operation
body is not specified in MML. We believe that the operation bodies are specified
more efficiently directly in the target language manually, using the platform-
specific constructs and libraries. The classes generated from application enti-
ties correspond to the ‘model’ in terms of the MVC-pattern. The ActionScript
classes for the scenes contain operations which perform the transitions between
the scenes according to the MML scene model. The ActionScript classes for the
AUI components contain event handler operations (depending on the type of
AUI). They correspond to the ‘controller’ in terms of the MVC-pattern.

For each media component in MML we generate a separate FLA file con-
taining a movie clip in its library which encapsulates a placeholder. The movie

8 Andreas Pleuß, Heinrich Hußmann

(a) Placeholder in
the library

(b) After double-click (c) Replacing with custom
content

Fig. 4. Replacing the movie clip generated for the media component heroAnimation.

Fig. 5. Screenshot from the Flash authoring tool showing a FLA document generated
for the scene Game. (The window is reduced to the most important elements.)

clip has attached a name which can be used to refer on it from other files. This
ensures that media component can be reused multiple times within an appli-
cation, as this is possible in MML. If the media component is kind of graphics
or animation the placeholder will usually be filled out directly in the Flash au-
thoring tool. For instance, for an animation heroAnimation in a Jump’n Run
application a FLA document heroAnimation is generated which contains in its
library a movie clip heroAnimation containing a placeholder (figure 4(a)). The
generated movie clip can be edited in the authoring tool as easily as any other
manually created movie clip: a double-click on the movie clip opens its content
on the stage (figure 4(b)) where it can be replaced by any graphics or animation
using the authoring tool’s various editing capabilities (figure 4(c)). Other media
objects (which can not be created in Flash) will be imported from the file system
into the movie clip.

The FLA files generated for the scenes contain the actual user interface of
the application (the different ‘screens’). They contain the elements generated
for the AUI components from the MML model. Figure 5 shows as an example
a screenshot of the Flash authoring tool after loading the FLA document gen-
erated for a scene Game of a Jump’n Run application. Each AUI component is
represented by a movie clip (in the library and on the stage) which encapsulates

Integrating Authoring Tools into Model-Driven Development 9

its specific content. This allows us to directly associate it with the corresponding
ActionScript class.

AUI components which are not realized by media components are mapped
to conventional Flash widget components (located into the encapsulating movie
clip). In this case the encapsulating movie clip has no own visual representation
on the stage beside the contained widgets. The widgets are labeled with the
element name. In figure 5, there are three (invisible) movie clips: one for the
output component playerName containing a generated text label, one for the
output component playerScore also containing a generated text label, and one
for the action component exit containing a generated button. The movie clips
representing the AUI component can encapsulate multiple widgets if necessary,
for example a text field and a related text label. As explained in section 3 the ele-
ments nested into a movie clip can be accessed from the associated ActionScript
class as if they were class properties.

If the AUI component is realized by a media component (in the MML model)
the generated code uses another ability of the Flash authoring tool: to reuse a
movie clip in multiple documents it can be referenced by other movie clips in
other FLA documents. In this case the destination movie clip retains it original
name and properties, but its contents are replaced with those of the referenced
movie clip. Changes in the referenced movie clip appear also in the referenc-
ing movie clip. We use this mechanism to reuse the movie clips generated for
the media components (e.g. heroAnimation in figure 4) in one ore more scenes.
For instance the scene Game in figure 5 contains a movie clip heroAnimation
which references the heroAnimation from heroAnimation.fla. In the screen-
shot, the referenced heroAnimation has already been edited while the refer-
enced enemyAnimation and platformGraphics currently still contain their de-
fault placeholder rectangles.

5 Conclusion

In this paper we present a transformation from MML, a language for model-
driven development of interactive multimedia applications, to code skeletons for
the widespread and professional authoring tool Adobe Flash. Further technical
contributions of the paper are the MOF-compliant Flash metamodel and the
proposed general structure for Flash applications. As they are independent from
the modeling approach, they can be reused for other projects which aim to make
use of the Flash authoring tool, e.g. web-engineering approaches which aim to
generate rich internet applications (e.g. [11]). Currently, approaches in this area
usually use e.g. frameworks like Flex, but they do not support individual user
interfaces created in the Flash authoring tool.

Our approach bases on existing concepts from the literature where possible.
In particular, we use the abstract user interface model which is common to many
approaches in the field of user interface modeling [12]. Thus, it is possible to
combine the multimedia-specific aspects from our approach e.g. with concepts for
context-sensitive user interfaces as presented e.g. in [6]. Our work also bases on

10 Andreas Pleuß, Heinrich Hußmann

concepts from [13], an existing modeling approach for multimedia applications.
However, to our knowledge none of the approaches aims for generation of code
skeletons for an authoring tool like Flash.

MML and the Flash metamodel are implemented using the Eclipse Modeling
Framework (EMF). Currently no custom MML editor exists but there is an
extension for the UML tool MagicDraw which allows creating MML models.
The transformations are specified with ATL (see section 3). First user test with
the presented concepts were performed in several student projects, mainly in
the lecture “multimedia programming” where students developed in teams of 5
to 6 persons (relatively complex) multimedia applications with MML (see [5]).
The lessons learned from these practical projects are already integrated into the
current version of MML and the Flash code structure.

In all, the paper provides a general proof of concept for the integration of
models and authoring tools and shows the required level of abstraction for the
models. This results in a combination of the strengths of both technologies:
well-structured applications and better coordinated cooperation of developers
through models as well as excellent support for the creative design by established
authoring tools. In general, the idea of integrating modeling with more informal
techniques and tools for the creative development tasks might be another step
towards a better integration of software engineering and human-computer inter-
action.

References

1. Hirakawa, M.: Do Software Engineers Like Multimedia? In: IEEE International
Conference on Multimedia Computing and Systems (ICMCS). IEEE (1999)

2. Pleuß, A.: Modeling the User Interface of Multimedia Applications. In: MoDELS
2005. Volume 3731 of LNCS, Springer (2005)

3. Pleuß, A.: MML: A Modeling Language for Interactive Multimedia Applications.
In: 7th IEEE International Symposium on Multimedia (ISM 2005). IEEE (2005)

4. Paternó, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic Nota-
tion for Specifying Task Models. In: Interact’97. Chapman & Hall (1997)

5. University of Munich: Lecture Multimedia-Programmierung, Summer Term 2006,
http://www.medien.ifi.lmu.de/studiengang-neu/galerie/mmp-ss06/ (2006)

6. Van den Bergh, J., Coninx, K.: Towards Modeling Context-Sensitive Interactive
Applications. In: SoftVis 2005. ACM Press (2005)

7. Constantine, L.L.: Canonical abstract prototypes for abstract visual and interac-
tion. In: DSV-IS. Volume 2844 of LNCS, Springer (2003)

8. Kleppe, A., Warmer, J., Bast, W.: MDA Explained. Addison-Wesley (2003)
9. Jouault, F., Kurtev, I.: On the architectural alignment of atl and qvt. In: Proceed-

ings of the 2006 ACM Symposium on Applied Computing (SAC), ACM (2006)
10. Moock, C.: Essential ActionScript 2.0. O’Reilly Media (2004)
11. Bozzon, A., Comai, S., Fraternali, P., Carughi, G.T.: Capturing RIA concepts in

a web modeling language. In: WWW 2006, ACM (2006)
12. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Souchon, N., Bouillon, L.,

Florins, M., Vanderdonckt, J.: Plasticity of user interfaces: A revised reference
framework. In: TAMODIA, INFOREC Publishing House Bucharest (2002)

Integrating Authoring Tools into Model-Driven Development 11

13. Sauer, S., Engels, G.: Uml-based behavior specification of interactive multimedia
applications. In: HCC’01, IEEE (2001)

