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Abstract: In Cinematic Virtual Reality (CVR), the viewer of an omnidirectional movie can freely
choose the viewing direction when watching a movie. Therefore, traditional techniques in filmmaking
for guiding the viewers’ attention cannot be adapted directly to CVR. Practices such as panning
or changing the frame are no longer defined by the filmmaker; rather it is the viewer who decides
where to look. In some stories, it is necessary to show certain details to the viewer, which should
not be missed. At the same time, the freedom of the viewer to look around in the scene should not
be destroyed. Therefore, techniques are needed which guide the attention of the spectator to visual
information in the scene. Attention guiding also has the potential to improve the general viewing
experience, since viewers will be less afraid to miss something when watching an omnidirectional
movie where attention-guiding techniques have been applied. In recent years, there has been a lot of
research about attention guiding in images, movies, virtual reality, augmented reality and also in
CVR. We classify these methods and offer a taxonomy for attention-guiding methods. Discussing the
different characteristics, we elaborate the advantages and disadvantages, give recommendations for
use cases and apply the taxonomy to several examples of guiding methods.

Keywords: Cinematic Virtual Reality; 360◦ video; attention; gaze; guiding; subtle gaze direction;
off-screen indicators; forced guiding; stylistic rendering

1. Introduction

Omnidirectional movies (360◦ movies) are attracting widespread interest and have many possible
applications, e.g., telling stories about exciting experiences and locations in the world, or documenting
places of historic interest. Even though the term 360◦ video is widespread, it does not accurately
reflect this media. On the horizontal level, there are indeed 360◦ to explore, however, in full-surround
videos, there are also vertical angular extents of ±90◦ to be observed. Therefore, we use the term
omnidirectional video, which is often used in scientific literature [1,2].

In Cinematic Virtual Reality (CVR), the viewer watches omnidirectional movies using
head-mounted displays (HMD) or other Virtual Reality (VR) devices. Thus, the viewer can feel
immersed within the scenes and can freely choose the viewing direction. It is possible that important
details are outside the viewer’s field of view. For some CVR experiences, this proves to be
unproblematic—no additional guiding is necessary: The user discovers a storyline as constructed by
the author [3]. In other story constructs, it can be important not to miss some elements. Guiding can
prevent the user from becoming lost or confused. Often viewers express a fear of missing out (FOMO)
because they do not know where to look [4,5]. In such cases, they wish to be guided in an unobtrusive
way, for relaxing enjoyment without the fear of missing something.

The purposes of movies cover a wide range: entertainment, art, education, marketing or even
instructions. How much guidance is needed depends to a large extent on the movie content. In some
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cases, guiding is advisable for the continuity of the story, for interaction cues, subtitles, education
information, and for social viewing applications. Cinematic VR is not a clear lean back media [6]
and several key aspects motivate guiding the viewer: Choosing the frame by looking around is a
very natural way of interaction which can be enhanced by other interaction possibilities, such as
interactive scene changes. Drawing attention to interactive cues can be supported by guiding methods.
Another motivation for guiding arises by subtitling. Since the viewer can freely choose the viewing
direction, it is difficult to identify the speaker belonging to the subtitle. Here, the viewer can be guided
towards the speaker [7]. Furthermore, VR can be used for education [8–11], for example in museums
or classrooms. Since guiding techniques can increase the recall rate [12,13], such methods can support
the learning process. Additionally, suitable guiding methods are needed if teachers, museum guides
or students want to draw attention to something. Since viewers can feel isolated watching movies via
HMD, techniques are needed to support social awareness and communication. For example, guiding
techniques can visualise a region of interest or the own viewport to the co-watchers [14].

Even if viewers often do not notice it, filmmakers direct the gaze and attention of the viewer to
relevant aspects in the movies. Cinematic tools such as sounds, lights and movements redirect the
attention of the viewer. Studies have shown that the pattern of gaze fixations is often consistent across
viewers of Hollywood-style movies [15,16]. In Hollywood-style movies, filmmakers use narrative and
editing techniques to strongly guide the viewers to important aspects of a scene, often at the expense
of more peripheral details [15]. Since the viewer has more freedom in CVR, most of these methods are
less effective.

Images in traditional movies are framed, and in the frame the filmmaker arranges elements for
the story. Investigations using eye trackers showed that viewers seldom explore the periphery of the
movie image [17] if there are no subtitles. People are likely to look at the central area of a frame or
screen. In reality, such a frame does not exist, in Cinematic VR, the position of the frame is determined
by the viewer.

To understand how gaze and attention can be guided, we inspected several models from other
research fields, such as psychology and biology. We explain the terms used in these models in Chapter 2.
This knowledge is important for exploring guiding methods for the field of CVR.

In the last few years, several approaches for guiding in Cinematic VR have been published [18–22].
Since Cinematic VR is a relatively new field of research and since it is very close to virtual and
augmented reality, we also looked into concepts of these fields, as well as methods for audio–visual
content on flat screens (TV, monitor) and mobile devices. There are several techniques used in other
areas which are adaptable to CVR. In Chapter 3, we give an overview of published work.

Each of the techniques is focused on one or two attributes of the guiding techniques. More
research is expected in the next years, and this needs consistent terms for discussing these techniques.
Clarifying the concepts is also helpful for finding new approaches. To discuss which attribute of
a technique was relevant for the success or failure of a method, a single overarching terminology
is required. With our taxonomy in Chapter 4, we contribute structure and clarification to work on
guiding in CVR.

Applying this taxonomy on known guiding methods we distinguish between 2D and 3D media.
Methods used in traditional filmmaking or for images can be applied in CVR to guide the viewer in
the current field of view as described in Chapter 5. VR and Augmented Reality (AR), as well as CVR,
have additional needs for guiding the viewer since objects can be outside of the screen. These guiding
methods are described in Chapter 6.

At the end of this work, we discuss how the introduced taxonomy provides support for the design
process of guidance in Cinematic VR. The taxonomy fosters understanding of the various attributes
of guiding techniques, to find new methods and support filmmakers to select the right methods for
their projects.
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2. Terms and Insights from Various Research Fields

Researchers of different areas, such as psychology, biology and computer sciences, are working
on topics about attention and gaze directing [23]. Basic knowledge of these areas is necessary to
understand guiding methods.

2.1. Attention Theory

There are several factors responsible for where someone is looking. On the one side, there are
bottom-up factors that characterize the scene. Bottom-up factors are stimuli which attract attention
due to their properties such as color or shape and are normative. Methods are normative if they are
working in the same way for all people, unless a person has a specific condition such as color blindness.
On the other side, there are top-down factors such as task or goal. The performance of such factors can
vary between individuals. Depending on the goal, the attention can be space-based (position of an
object), feature-based (features of an object) or object-based [23,24].

Movie parts can be explored in a bottom-up (stimulus-driven) or top-down (task-driven) manner.
Viewers can be guided by staging and compositional techniques by using lights, colors, and focal
depth. Especially the bottom-up process is responsible for the fact that viewers often do not perceive
the cuts in a movie. The task, following the story, causes edit blindness [25]. This effect could be also
useful for some of the guiding methods.

Cues are able to direct the attention to a target. They can have various properties and positions.
Posner [26] showed that viewers detect a target faster if the cue is a feature of the target (e.g., a colored
border) than a cue positioned not on the target (e.g., an arrow). He introduced the terms exogenous
and endogenous. Exogenous cues are stimulus-driven and work automatically, for example, a flash
that attracts attention. They cause an unintentional orientation. Such cues are positioned on the target
and can also be auditive or haptic [27]. They are working in a bottom-up manner. Since the reaction
to such cues is reflexive, they act fast. However, if there is no interesting target cue, the attention is
transient. Endogenous cues are goal-driven and work voluntarily [27]. Often, they are based on a sign
that tells where to look or to listen and require first an interpretation, e.g., an arrow. Even if goal-driven
attention works slower, it enhances the processing of the event [26] and can be sustained at a location
for longer periods. Yarbus [28] showed that eye movements depend on the task. In his experiment,
participants watched the same scene after having been asked different questions. The eye movements
differed significantly.

One of the most influential models of human visual attention, the feature integration theory,
was developed in 1980 by Treisman and Gelade [29]. It explains the role of visual attention for
object recognition. Perceiving a stimulus, features are registered early, automatically and in parallel.
Objects are identified later in a separate process. In the first step, called the pre-attentive stage, parts of
the brain automatically gather information about features such as color and shape. During the second
step, the focused attention state, the whole object is perceived by combining the individual features.

Exogenous and pre-attentive processes are mostly memory-free, subtle and caused by cues at the
target (direct cues). In contrast, endogenous and attentive processes are memory-bound, overt and
caused by indirect cues, which have to be interpreted (e.g. an arrow). Direct cues can be outstanding
features of an object. Healey et al. [30] published a list of two-dimensional outstanding features
complemented by literature which describes tasks using these features. Some examples relevant for
CVR are: color, size, curvature, line orientation, intensity, flicker, direction of motion, lighting direction,
and intersection. Wolfe and Horwitz [31,32] also described target attributes which can efficiently guide
attention: color, orientation, size, depth, motion, and luminance.

The above-mentioned terms are all relevant for characterizing the process of drawing attention.
They describe related but different aspects of attention directing and are not orthogonal to each other.
Table 1 gives an overview without claim of completeness. For our taxonomy, we chose the cue property,
since it best complements our other extracted dimensions considering their use in informing practical
design choices.
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Table 1. Attributes of attention-guiding techniques used in literature.

process bottom-up top-down
attention exogenous endogenous
impulse stimulus-driven goal-driven

automatism automatically/reflexive voluntary
attentiveness pre-attentive attentive

cognition memory-free memory-bound
awareness subtle overt

cues direct cues indirect cues (symbolic)

Knowing about work in psychology on explaining attention directing is fundamental to
understanding the various guiding methods in HCI and filmmaking. Depending on the movie
genre, other guiding methods can be suitable.

2.2. Basics about Physiology of the Eyes

For studying gaze directing, knowledge about eye physiology is essential. Signals such as colors
or flickers are perceived differently depending on the eye region. In the periphery, rod cells are located,
which are responsible for seeing in the darkness and are very sensitive for illumination and motion.
This means guiding cues at the periphery could be flickering lights or moving elements. The cone cells
in the fovea are needed for seeing colors during the day. They are less responsive to light. Colors could
be used for drawing the attention to an object, over which the viewer lets wander the gaze.

The diverse characteristics of periphery and fovea are the reason for the differing perception of
flickers depending on the viewing direction. The critical flicker fusion frequency (CFF) is the rate,
at which the flickering fuses and is perceived as continuous. The CFF is about 22 to 25 Hz for low
lights (rod cells). For higher light intensity (cone cells) the CFF increases to the logarithm of the light
intensity (Ferry-Porter law) [33] and increases up to 80 Hz depending on the area of the light intensity
(Granit-Harper law) [34]—the larger the flickering stimulus, the higher the CFF.

This is the reason for different critical flickering fusion rates (CFF) in different regions of the eye.
Thus, a high-frequent flicker can be visible in the periphery but fused in the fovea. Additionally, the
temporal resolution acuity increases for larger flickers ([35]). This property can be used for subtle gaze
direction. However, the CFF is a very sensitive attribute and depends not only on the regions of the
eye but also on [34,35]:

• the frequency of modulation
• the region on the retina perceiving the modulation
• the amplitude/depth of the modulation
• the luminance (Ferry-Porter law) [33]
• the size of the modulation (Granit-Harper law) [34]
• color
• contrast
• the person (age, fatigue)

CFF can be used for creating stimuli cues and developing guiding methods. Some research has
been done which used the CFF for gaze directing in images [36]. However, such methods cannot be
easily adapted to movies, since alteration in the movie image can make the flickering stimuli ineffective
and the threshold has to be increased, making the method no longer subtle [13]. Even if it is difficult to
consider all the mentioned parameters at once and to find CFF thresholds valid for each person, the
knowledge about this behaviour has to be taken into account when analysing and developing guiding
methods. Flickers can not only be designed as an artificial part of the method, but they can also be
included in the movie (e.g., flickering lights).
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3. Guiding Methods in Literature

There is a lot of research about gaze guiding in images, traditional movies, VR, AR, and
CVR. Table 2 gives an overview of the methods and the environments in which they were tested.
We inspected not only the methods evaluated in CVR environments since techniques of other fields
could be adaptable to CVR, even if it needs closer inspection and adjustments. Some of them we
have already evaluated in previous work, such as diegetic methods [22] and Subtle Gaze Directing
(SGD) [13]. It depends on the type of movie, whether guiding methods are needed and how strong or
subtle the guiding should be. More obvious methods perform better but decrease the experience [19].
Since gaze guiding can increase the recall rate of target objects [12,13] also, the aim of the movie is
relevant for finding the most suitable technique. A guiding method can be important in an educational
CVR application, but disturbing in a meditative movie.

Table 2. Overview of guiding methods from research projects and the environments for which they
were tested. The last column indicates the name of the method in the paper. In some of the studies,
eye-tracking (ET) was used additionally.

Project/Literature Environment Display Method Name

(Rothe and Hußmann,
2018)[22] CVR HMD diegetic

(Brown et al., 2016)[18] CVR diegetic

(Nielsen et al., 2016)[21] CVR HMD
diegetic

forced

(Y.-C. Lin et al., 2017)[20] CVR HMD
forced Autopilot

sign Arrow

(Gugenheimer et al.,
2016)[37] CVR HMD forced SwiVRChair

(Danieau et al., 2017)[19] CVR HMD effects Desaturation
Fading

(Chang et al., 2018)[38] CVR HMD haptic FacePush

(Sassatelli et al., 2018)[39] CVR HMD forced Snap-Changes

(Gruenefeld et al.,
2018b)[40] CVR HMD, LEDs off - screen RadialLight

(Y.-T. Lin et al., 2017)[41] omnidirectional
video mobile device off-screen Outside-In

(Cole et al., 2006)[42] 3D models monitor, ET modulation stylized rendering

(Tanaka et al., 2015)[43] omnidirectional
images mobile device angular shift

(Mendez et al., 2010)[44] images monitor SMT

(Veas et al., 2011)[45] video monitor SMT SMT

(Hoffmann et al., 2008)[46] desktop windows large screen on-screen frame, beam,
splash

(Renner and Pfeiffer,
2018)[47] AR HoloLens arrow

flicker SWave. 3D-path

(Perea et al., 2017)[48] AR mobile device off-screen Halo3D

(Gruenefeld et al.,
2018a)[49] AR, VR HMD off -screen HaloVR

WedgeVR

(Gruenefeld et al.,
2017b)[50] AR HMD off -screen EyeSee360

(Bork et al., 2018)[51] AR HMD off - screen Mirror Ball
sidebARs u.a.

(Siu and Herskovic,
2013)[52] AR mobile device off - screen SidebARs
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Table 2. Cont.

Project/Literature Environment Display Method Name

(Renner and Pfeiffer,
2017a)[53] AR HMD screen-referenced

word-referenced
sWave,

arrow, flicker

(Burigat et al., 2006)[54] maps mobile device off - screen Halo, arrows

(Henze and Boll, 2010)[55] AR mobile device off -screen Magic Lens
Peephole

(Schinke et al., 2010)[56] AR mobile device off -screen Mini-map
3d arrows

(Koskinen et al., 2017)[57] VR HMD, LEDs off - screen LEDs

(Zellweger et al., 2003)[58] desktop windows monitor off -screen CityLights

(Bailey et al., 2012)[12] images monitor subtle SGD

(Bailey et al., 2009)[59] images monitor subtle SGD

(McNamara et al.,
2008a)[60] images monitor, ET subtle SGD

(Grogorick et al., 2017)[61] VR HMD, ET subtle SGD

(McNamara et al.,
2012)[62] images monitor, ET subtle Art

(Weiquan Lu et al.,
2014)[63] AR, video monitor subtle subtle cues, visual

clutter

(Waldin et al., 2017)[36] images High-frequent
monitor subtle SGD

(Smith and Tadmor,
2013)[64] images monitor blur

(Hata et al., 2016)[65] images monitor subtle, blur

(Hagiwara et al., 2011)[66] images monitor saliency editing

(Kosek et al., 2017)[67] lightfield video HMD visual, auditive,
haptic IRIDiuM+

(Kaul and Rohs, 2017)[68] VR/AR HMD haptic HapticHead

(Rantala et al., 2017)[69] image monitor haptic Headband

(Stratmann et al., 2018)[70] cyber-physical
systems monitors haptic Vibrotactile

Peripheral

(Knierim et al., 2017)[71] VR HMD haptic Tactile Drones

(Sridharan et al., 2015)[72] VR HMD, ET subtle modulation

(Kim and Varshney,
2006)[73] image monitor saliency adjust

(Jarodzka et al., 2013)[74] video monitor blur EMME

(Lintu and Carbonell,
2009)[75] images monitor blur

(Khan et al., 2005)[76] images large display highlighting spotlight

(Barth et al., 2006)[77] video GCD, ET saliency adjust

(Dorr et al., 2008)[78] video GCD, ET saliency adjust

(Sato et al., 2016)[79] video
monitor subtle saliency

diegetic robot gaze

(Vig et al., 2011)[80] video GCD saliency adjust

(Biocca et al., 2007)[81] AR AR-HMD non-diegetic funnel

(Sukan et al., 2014)[82] AR AR-HMD non-diegetic ParaFrustum

(Kosara et al., 2002)[83] text, images monitor, ET blur, depth-of-field

(Mateescu and Bajić,
2014)[84] images monitor color manipulation

(Delamare et al., 2017)[85] AR HMD gaze gestures

“GCD” = “Gaze-Contingent Display”; “ET” = “eye-tracking”.
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Some of the most important guiding methods of different research fields we inspect deeper:

3.1. Diegetic Methods

Some research in recent years has focused on diegetic methods for guiding the viewer in CVR [18,
21,22,86]. Diegetic cues are part of the movie, for example moving characters, lights or sounds. The
concept of diegesis in film theory was developed by Souriaus [87] and afterwards adapted to other
fields, e.g., literary theory. Diegetic elements belong to the narrative world. The term diegetic is
well-known in film theory and is mostly used for music and other sounds. Diegetic music in a movie
is part of the story. It can be heard not only by the viewer (like film music) but also by the characters.
Examples are: music from a radio in the movie or music played by musicians which are movie
characters. For guiding the viewers’ attention, the authors can use diegetic cues which are included in
the story world: moving protagonists, lights or sounds.

On the other side, there are non-diegetic cues which are not part of the story, such as arrows, focus
assistant tools or forced rotations methods [88,89].

3.2. Salience Modulation Technique (SMT)

Mendez et al. [44] described a Salience Modulation Technique (SMT) for directing the viewer’s
attention to a target object. For analysing the original images, saliency maps were used and the material
was modulated depending on the results of the analysis. A saliency map shows the saliency values on
each region in the image [90,91]. Thus, it was possible to apply minimal changes. This method works on
video in real time. However, it can only be used if the target is in the viewer’s field of view. Additionally,
the method is less strong in environments with moving and blinking objects. Veas et al. [45] investigated
SMT regarding modulation awareness, attention, and memory. They showed that SMT can shift the
attention to selected targets without the viewer noticing the modulation. Moreover, SMT can increase
the recall rate.

There are promising approaches in other fields of research. Gaze-Contingent Displays (GCD)
reduce the resolution of peripheral areas to decrease the amount of data [92,93]. The region where the
user is looking is determined by eye tracking and shown in high-resolution quality. Since saliency
modulation techniques can guide the gaze [1,45,66,77,80,94], the techniques could be transferable to
Cinematic VR. However, saliency modulation can only be effective if the modulated region is in the
field of view (FoV) of the viewer.

3.3. Blurring

Another method is using blurred regions in the images. Smith et al. [64] investigated blurred and
non-blurred regions for guiding the viewer’s attention. They showed that the viewer tends towards
regions with little or no spatial blur if the rest of the image is more blurred. This approach is very
similar to methods used in traditional filmmaking. Hata et al. [65] extended this method for visual
guidance with unnoticed blur effects for images. A threshold was found at which the viewer notices
the blur and could be guided below it.

3.4. Stylistic Rendering

Guiding the viewer in a movie can also be done by stylistic elements: depth of field, colors,
brightness, and sharpness. Cole et al. [42] investigated gaze direction in 3D models with stylized
focus. They used local variations in shading effects (color saturation and contrast) and line qualities
(texture and density) for drawing the viewer’s gaze to the emphasized area. Additionally, they applied
a dynamic technique: stylized focus pull. Focus pull is a creative camera technique in traditional
filmmaking where the focus changes during the shot and so the attention switches from one area to
another. In digital editing, focus-pulling can also be added in the post-production by an animated
filter effect.
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3.5. Subtle Gaze Direction (SGD) with Eye Tracking

Subtle gaze direction can guide the gaze without the viewer noticing it. The concept of subtle
gaze direction (SGD) was first presented by Bailey [59]. The core of this concept is to modulate
the target region if it is in the peripheral area for inducing the viewer to look there and to stop the
modulation when the viewer is watching in this direction. In this way, the viewer’s gaze can be
guided without perceiving the modulation. In the research of Bailey et al. [59], two options were
investigated: luminance modulation and warm-cool modulation, both with a rate of 10 Hz in a circular
region of approximately 1-cm diameter. An eye tracker was used to observe the viewer’s gaze and the
modulation stopped when the viewer changes the view in the direction of the target region. It was
shown that this technique can effectively guide the user’s gaze in still images without the user noticing
the modulation.

In the experiments of McNamara et al. [60] modulation of the luminance was more effective
than warm-cool modulation. They showed that SGD improves the performance for search tasks in
images without the participants noticing the modulation. The same method was investigated for
guiding in narrative art, with static images [62]. Grogorick et al. extended this method to virtual
environments [61]. A luminance modulation was used and a circle shape was dynamically adapted
to ellipses for the wide FoV in VR. Additionally, the stimulus was dynamically positioned, so the
method could be used also for targets, which are not in the FoV at the beginning of the stimulation.
The experiments showed that results of search tasks can be improved for hidden objects.

3.6. Subtle Gaze Direction (SGD) with High Frequent Flickers

There is some research on how SGD can be used without an eye tracker. Waldin et al. [36] took
advantage of the fact that the peripheral vision is more sensitive to highly frequent flickering than
the foveal vision. Therefore, the critical fusion frequency (CFF) is different in these areas. A signal
flickering in the periphery is no longer flickering when the viewer is looking at it and the signal is
in the fovea. If the viewer is looking in the direction of the flicker, the flicker fuses to a stable image.
In this way, no eye-tracking is necessary for stopping the modulation. The experiments used flickers of
60 Hz and 72 Hz, so a display of 120 Hz and 142 Hz was needed. In the first experiment, images with
cycles where used, in the second experiment a highly complex image. The method worked effectively
in both cases. It seems to be necessary to execute a personal calibration routine to find the size and
luminance of the flicker modulation. At the moment, this method cannot be adapted to VR and CVR
since the frequency of the HMD displays (90 Hz) are not high enough. Additionally, flickers are less
effective in environments with dynamic changes. As mentioned in Chapter 2, the CFF does not only
depend on the region of the eye region, and the thresholds are difficult to find.

3.7. Off-screen Indicators (Halo, Edge)

Since the viewer in CVR observes only an extract of the film image via HMD, the above methods
are not always effective. Depending on the viewing direction, cues can be missed since they are not in
the viewer’s FoV. Therefore, methods are needed to indicate targets beyond the screen.

One way of visualizing off-screen objects on flat displays is the halo technique [95], where
off-screen objects are surrounded by circles the size of which is sufficient to be visible at the edge of
the display. From the curvature of the circle, the user can infer the position of the object. The halo
method is not directly transferable to CVR because the CVR screen is a sphere. To ensure that a
circle is still visible on the edge of the display, the center must not be more than 90◦ away. For points
outside this region, for example on the opposite side of the gaze cursor, the circle cannot be made
visible in the display. EdgeRadar [96] and Wedge [97] are modifications of this technique to avoid
overloading and overlapping. These techniques were adapted to mobile AR [48] and for HMDs [49].
Gruenefeld et al. [98] compared several off-screen object visualization techniques (Arrow, Halo and
Wedge) for out-of-view objects in Augmented Reality. In their experiments, the halo and wedge
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technique performed best. However, the implemented methods were limited to a 90◦ area in front of
the user and need further adaption to 360◦. EyeSee360 [50] is a visualization technique for out-of-view
objects in Augmented Reality which could be adaptable for CVR.

3.8. Forced Rotation of the user (SwiVRChair)

Gugenheimer et al. [37] developed a chair which automatically rotates the viewer to look at
predefined regions of interest. In their experiment, simulator sickness was very low. This may be
caused by the fact that the viewer was turned around and so the rotation in the virtual world matched
with the rotation in the real world. Additionally, the participants needed lower head movements for
enjoying the VR experience in a more “lean back” way.

3.9. Forced Rotation of the VR world

Another possibility of forced guiding is to rotate the scene in a way that the region of interest (RoI)
is in the field of view of the viewer. Nielsen et al. [21] compared forced rotation with diegetic guiding.
In their experiments, the diegetic method was more helpful and caused higher presence. Lin et al. [20]
compared forced rotation (called autopilot) with an arrow which points to the direction of the RoI
(called visual guidance). The results depended on the type of movie, but no generally higher sickness
was observed for the forced rotation. One reason for simulator sickness is the discrepancy between
movements in the real and virtual world [99,100], and so rotating the VR world in front of the user
often provokes sickness. There is no consistent opinion if rotating a scene causes simulator sickness or
not [20].

3.10. Forced Rotation via Cutting

In traditional filmmaking, cutting can be used to show important details to the viewer. After the
cut, the RoI is displayed. The same can be done in CVR: Independent of the viewing direction, the
viewer will see the RoI after the cut [39,101]. However, it needs to be investigated if this can cause
disorientation in case both scenes are in the same location and the viewing direction changes with the
cut—similar to the crossing the line problem [102] in traditional movies.

3.11. Haptic Cues

Kaul et al. [68] developed HapticHead for guidance in virtual and augmented reality.
Chang et al. [38] introduced FacePush, a system for haptic signals using HMDs. Their system generates
forces on the face of the viewer and was tested for two VR experiences (boxing, diving) and for CVR
guiding. In contrast to HapticHead or a vibrotactile headband [69], FacePush indicates the advised
direction of rotation (left/right) and not the absolute direction of the RoI. For integrating haptic cues
in a story as diegetic cues, it needs haptic stimulus on other parts of the body beyond the head. Drones
can provide such haptic stimuli [103,104].

Summarizing all these methods, we found several properties of guiding techniques investigated
in the literature: subtle, off-screen, forced, diegetic, haptic, and some others. Not all of them are
comparable to each other, since they highlight different aspects of the guiding method. It is important
to classify these attributes for finding the most relevant and qualified characteristics for guiding
methods in CVR. We will do this in the next chapter.

4. Taxonomy

To find the appropriate techniques for guiding in CVR, we inspected methods for various media:
images, movies, virtual and augmented reality (Chapter 3). Inspired by the large amount of papers
about guiding methods and several taxonomies in Virtual Reality [21,105,106], we analysed these
methods and classified their properties, also taking into account that they might be combined across
papers: For example, even if one paper emphasised the subtleness of a method, that method might
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also potentially address visual/auditive/haptic senses in future work, or might be investigated for
on- or off-screen targets. Even if a paper emphasizes the subtleness of a method, the method can be
additionally visual/auditive/haptic and on-screen/off-screen. In this process, we took into account if
a dimension is needed in CVR.

With our classification, we found seven orthogonal dimensions. Nielsen et al. [21] described
three dimensions for attention guiding. One of our dimensions (diegesis) is consistent, two others
correspond to their taxonomy (directness and freedom).

Our taxonomy describes the most important attributes which we discovered in the literature and
which are relevant in our own work without claim of completeness. It is conceivable that in the future
new components should be added depending on the focus of research. Table 3 presents our taxonomy
of important dimensions. They will be explained in the following subsections.

Table 3. The table shows the different dimensions of guiding methods and possible values.

Dimension/Property Option 1 Option 2 Option 3

Diegesis diegetic non-diegetic
Senses visual auditive haptic
Target on-screen off-screen

Reference world-referenced screen-referenced
Directness direct indirect
Awareness subtle overt
Freedom forced by system forced by reflex voluntary

4.1. Diegetic and Non-Diegetic

Research results show that diegetic methods perform well in Cinematic VR [18,21,22]. For visual
diegetic methods, the cue has to be in the field of view, e.g., movements, light, colors. In most cases,
the location of the cue (e.g., the color of the target) will be identical to that of the target. One exception
is: a protagonist looks or points into a certain direction.

However, one can imagine story parts where no suitable cues in the story world exist. If it
is nevertheless necessary to guide the attention to a detail, non-diegetic methods can be applied.
Depending on the use case, the method either has to be designed to be noticed easily or to avoid
disturbance. Some advantages and disadvantages of diegetic and non-diegetic methods are listed in
Table 4.

Table 4. Advantages and disadvantages of diegetic and non-diegetic methods. The third row indicates
for which requirements the methods are suitable.

Diegetic Non-Diegetic

+ high presence and enjoyment [21,22] easily usable and noticeable
- depends on the story, not usable for all cases [18,22] can disrupt the VR experience [21]

-> suitable for visual experiences and wide story structures suitable for important information

4.2. Visual, Auditive and Haptic

It is obvious to discuss visual methods for attention-guiding in CVR. Movements, lights and
characters are well known for drawing attention in traditional movies [107]. However, these cues can
only be used if they are in the field of view. If the viewer is looking in another direction, the cues will
not be discovered. For motivating the user to change the viewing direction, sound coming from the
direction of the Point of Interest (PoI) is a considerable method, since it can be used out of the field of
view. Even if the source of a sound is not visible, it is possible to hear it—including the direction of
the sound. In real life, a source of noise can get someone to change the viewing direction. The same
is true for CVR [22]. Also, haptic cues can cause this behavior and it is worthwhile to discuss it as
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a guiding method. Some advantages and disadvantages of visual, auditive and haptic methods are
listed in Table 5.

Table 5. Advantages and disadvantages of visual, auditive and haptic methods. The third row indicates
for which requirements the methods are suitable.

Visual Auditive Haptic

+ can be easily integrated works also for off-screen RoIs novel experience

- not always visible, depending
on the viewing direction

difficult to distinguish between
diegetic and non-diegetic

difficult to realize
needs additional devices

-> suitable for visual experiences
and wide story structures

suitable for changing the
viewing direction suitable for public application

4.3. On- and Off-screen

Depending on the viewing direction, a PoI can be in the FoV of the viewer or outside of it. To guide
the attention to an object on the screen, methods can be discussed which are already investigated for
images or traditional movies. We call this on-screen guiding. However, in CVR it can happen that
the viewer first has to change the viewing direction for seeing the PoI on the screen. For this case,
off-screen methods are needed.

Which of both methods is used does not depend on the author, rather on the viewing direction.
The author has to decide if both are needed. Visual methods such as saliency modulation of the RoI
can only work if the region is in the FoV. If the viewer should not miss it, an off-screen technique has
to be added.

4.4. World- and Screen-referenced

Cues in VR can be differentiated between screen-referenced and world-referenced indicators [108,109].
Screen-referenced items are connected to the display and move along with it in case the viewer
is turning the head. World-referenced items are connected to the virtual world, in our case to
the movie. They stay fixed at their place in the movie world, even if the viewer turns the head.
The term “screen-referenced” corresponds to the notion “in-view” used in augmented reality and
“world-referenced” matches ”in-situ” (e.g., Reference [110]).

Even if diegetic cues are world-referenced, the opposite is not true. A cue added on top of
the movie for guiding the viewer, which cannot be seen by the movie characters, is non-diegetic.
Screen-referenced cues are always non-diegetic since they cannot be part of the story world (movie).
They are well suited for menus. Some advantages and disadvantages of world-referenced and
screen-referenced methods are listed in Table 6.

Table 6. Advantages and disadvantages of world-referenced and screen-referenced methods. The third
row indicates for which requirements the methods are suitable.

World-Referenced Screen-Referenced

+ integrated in VR world, higher presence always visible
- not always visible disrupt the VR experience

-> suitable for experiences where presence is
important

suitable for off-screen guiding and important
information

4.5. Direct and Indirect Cues

There are two main types of cues: direct and indirect cues [111]. Direct cues are at the target,
e.g., outlines, colors or lights. Indirect cues are based on symbolic information and have first to be
interpreted, for example an arrow. The cues do not have to be visual. For example, a sudden bang can
work as an auditive direct cue and a voice, that says what can be seen, as an indirect cue.
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Direct cues work mostly stimulus-driven and are based on the characteristics of the scene
(exogenous, memory-free), e.g., an abrupt light or sudden movements and working in a bottom-up
manner. For that, regions of interest have to be sufficiently different from the surroundings. Direct cues
act fast, transient and spontaneous [24,112].

Indirect cues involve a conscious effort (endogenous, memory-bound), e.g., interpreting a sign.
They work in a top-down manner by cognitive properties such as knowledge, expectations and tasks.
Indirect methods are slow, sustained and voluntary [24,112,113]. Some advantages and disadvantages
of direct and indirect cues are listed in Table 7.

Table 7. Advantages and disadvantages of world-referenced and screen-referenced methods. The third
row indicates for which requirements the methods are suitable.

Direct Cues Indirect Cues

+ fast sustainable
- transient, not always visible must be interpreted

-> suitable for on-screen guiding suitable for recallable RoIs

4.6. Subtle and Overt

In case the user is not aware of a method, the method is called subtle. In contrast to this, overt
techniques will be noticed by the user [106]. There are several subtle guiding techniques, which are
based on the physiology of the eye, and the term Subtle Gaze Guiding (SGD) is already established for
these methods. However, the term subtle is not used consistently in the literature. The term subliminal
is also common for stimuli, below the threshold for conscious perception [65]. As already mentioned,
such thresholds (e.g., CFF) depend usually on several factors and vary between people. Thus, a cue
can be subliminal for one person, but supraliminal for another.

Subtleness can also be achieved otherwise. Examples are diegetic methods, where elements of the
movie guide the gaze. The user notices the cue but is normally not aware of the guiding property. Even
if subtlety of techniques can be defined as a continuum, we agree with Suma et al. [106] in choosing a
dichotomical categorization (subtle vs overt), whereby subliminal is included in subtle.

Some advantages and disadvantages of subtle and overt methods are listed in Table 8.

Table 8. Advantages and disadvantages of subtle and overt methods. The third row indicates for which
requirements the methods are suitable.

Subtle Overt

+ no disruption [59] easily noticeable [106]
can increase recall rates

- not always effective [13] can be disrupting
-> suitable for wide story structures suitable for learning task [12,13]

4.7. Forced by System, Forced by Reflex and Voluntary

Most of the discussed methods are voluntary: Viewers can freely decide if they follow any guiding
cues or if they explore the scene on their own. However, also forced methods can be applied [20,21,37,70].
There are different ways of forced guiding. On the one hand, the viewer can be rotated, as in
SwiVRChair [37]. This has the advantage that the viewer can feel the rotary motion. On the other hand,
the VR-world/movie can be rotated [20]. These methods force the user to change the viewing direction
in a technical way. This can also be done by using the methods based on the physiological models
described in Chapter 2. Stimuli can provoke the viewer to change the viewing direction reflexively in a
fast way. Some advantages and disadvantages of forced and voluntary methods are listed in Table 9.
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Table 9. Advantages and disadvantages of voluntary and forced methods. The third row indicates for
which requirements the methods are suitable.

Forced by System Forced by Reflex Voluntary

+ RoI always shown fast, can be integrated in the story remains the freedom of viewing
direction

- can disrupt the VR
experience [21] not always usable RoIs can be missed

-> suitable for important and
fast direction changes

suitable for visual experiences and
fast reactions

suitable for visual experiences
and wide story structures

(world narratives)

4.8. Usage of the Taxonomy for CVR Guiding Methods from Literature

The previous section described our identified dimensions. Now, Table 10 shows methods from
literature for guiding in CVR and their attributes in the introduced taxonomy. It shows that less subtle
methods have been studied so far. We could find only one haptic guiding method for CVR likely due
to the state of technology. Most literature about guiding in CVR is concentrated on off-screen guiding
since this is one of the challenges of this medium. It is expected that methods from traditional movies
work if the RoI is in the field of view. However, it needs some effort to find the best way to implement
them in CVR.

Table 10. Guiding methods evaluated for CVR and the attributes of the taxonomy.

Literature Diegesis Senses Target Reference Directness Awareness Freedom Name

(Rothe and
Hußmann,
2018)[22]

diegetic visual on-scr.
off-scr. world dir. subtle voluntary

audio off-scr. world dir. subtle voluntary
(Brown et al.,

2016)[18] diegetic visual on-scr. world dir.
indir. subtle voluntary

(S. Rothe et al.,
2018)[13] non-dieg. visual on-scr.

off-scr. world dir. subtle
overt voluntary SGD

(Nielsen et al.,
2016)[21]

diegetic visual off-scr. world dir. subtle voluntary

non-dieg. / off-scr. screen dir. overt forced
sys

(Y.-C. Lin et al.,
2017)[20]

non-dieg. / off-scr. screen dir. overt forced
sys Autopilot

non-dieg. visual off-scr. world indir. overt voluntary Arrow
(Gugenheimer et al.,

2016)[37] non-dieg. / off-scr. world dir. overt forced
sys SwiVRChair

(Danieau et al.,
2017)[19] non-dieg. visual on-scr.

off-scr. world dir. overt voluntary Fading,
Desaturation

(Chang et al.,
2018)[38] non-dieg. haptic off-scr. screen indir. overt voluntary FacePush

(Sassatelli et al.,
2018)[39] non-dieg. / off-scr. screen dir. overt forced

sys Snap-Changes

(Gruenefeld et al.,
2018b)[40] non-dieg. visual off-scr. screen indir overt voluntary RadialLight

“dieg.” = “diegetic”; “scr.” = “screen”; “forced sys” = “forced by system”; For “forced sys” methods, no sense is
assigned (/) since this method cannot be influenced by the users’ sense.

5. Methods for CVR Adapted from Guiding in Traditional Movies and Images (2D)

In this chapter, we present well-known guiding methods used in traditional movies or images
and classify them according to the taxonomy of chapter 4. These methods can be used as on-screen
methods in CVR. Using the taxonomy, differences and similarities of methods could be found and
unique characteristics identified.
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5.1. Diegetic Methods Diegetic, Visual/Auditive, on-Screen/off-Screen, World-Referenced, Subtle, Voluntary

In traditional filmmaking, movements, sounds or lights included in the story can guide the
viewers’ attention [107]. Such diegetic techniques can guide the gaze also in Cinematic VR if they are
in the field of view (on-screen). Even if most diegetic methods are on-screen techniques, there are some
exceptions, where such methods can be applied to off-screen guiding:

• Diegetic visual cues: If a person is looking in a direction out of the screen, the viewer will mostly
follow it [18]. The same is true for moving objects [22].

• Diegetic auditive cues: Sounds motivate the user to search for the source of the sound and
therefore to change the viewing direction [22].

Diegetic cues are subtle and the viewer is free to follow them. Due to the nature of diegetic
methods, they are always world-referenced. Non-diegetic methods can be both world-referenced or
screen-referenced. Diegetic cues are mostly direct, however, exceptions are conceivable, for example a
person speaking about an object in the room.

5.2. Image Modulation non-Diegetic, Visual, on-Screen, world-Referenced, Subtle/overt, Voluntary

Image modulations, such as changing color, saliency or saturation, are mostly non-diegetic,
visual, on-screen, world-referenced, and voluntary. If the modulation is subtle or overt depends
on the degree of modification. Salience modulation, as well as blurring, are effects which are used
in traditional movies for guiding viewers’ attention. Danieau et al. [19] applied them to CVR and
compared four video effects for CVR: (1) fading-to-black for the area out of interest, (2) desaturation
(like SMT), (3) blurring, and (4) deformation by displaying a wavelike effect on the side of the
viewer’s field of view. In an informal user study, blur and deformation were not successful in
guiding. Comparing fading-to-black, desaturation, no guiding, and forced rotation in the main
study, they found a trade-off between the efficiency and noticeability of the effects. They were either
disturbing (fading-to-black) or ineffective (desaturation). In some of our user studies, we made similar
experiences [13]. Deformations were either not subtle or not working. We think that for blurring
methods, the resolution of movies and displays are not high enough for noticing a relevant difference
between the blurred and non-blurred area.

5.3. Overlays non-Diegetic, Visual, on-Screen/off-Screen, World/Screen-Referenced, Overt, Voluntary

Overlays, such as arrows, are indirect indicators. It requires interpretation to find the right
direction. Such methods are well-known on flat-screens, but also available in VR environments.
Lin et al. [20] compared an arrow with a forced rotation (autopilot). Both methods are very obvious
and were evaluated for a sports video and a city tour. Forced rotation is suitable in cases where the
viewer needs to see a detail in time whereas an arrow indicates something or gives hints.

5.4. Subtle Gaze Direction non-Diegetic, Visual, on-Screen/off-Screen, World-Referenced, Subtle, Voluntary

Subtle methods for gaze direction (SGD) were investigated for static images on flat displays [12,60].
Such methods can improve the success in search tasks [60] and reduce the error rate in remembering
regions and their locations [12]. To extend these methods to CVR or VR, there are several issues
to consider:

• A method developed for images works in a static environment. The remaining part of the picture
does not change. This is not the case for videos.

• A method developed for clear test environments sometimes might not work for complex images
or videos with a lot of objects competing for attention.

• A method developed for a monitor has to be extended for the case where the target object is not
in the FoV.

• A method using flickering must take into account the frame rate of the movie and the HMD.
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We tested subtle gaze directing for CVR [13] and achieved similar results as Danieau et al. for
video effects [19]: searching the right parameters for the method resulted in a technique which either
was not subtle or did not work well. SGD which is working well for still images is difficult to adapt
to CVR. That may be because of the available hardware. Depending on the used type of SGD, high
display frequencies or a wide field of view are necessary. For using the different sensory perception of
fovea and periphery of the eye, the FoV of an HMD does not seem to be large enough. To adapt high
frequency subtle flickering methods, the frequency of the HMD display needs to be higher. On the
other side, movements in the movie might render subtle cues ineffective. However, we could find a
higher recall rate with (non-subtle) flickering.

6. Methods for CVR adapted from VR and AR (3D)

Following the above taxonomy, we present several known methods from VR and AR and classify
them according to the taxonomy. For each method, we discuss if and how it can be adapted to CVR.

6.1. Arrows and Similar Signs non-Diegetic, Visual, on-Screen/off-Screen, World-Referenced/Screen-Referenced,
Overt, Voluntary

Arrows are well known (Figure 1a) and often used for showing directions in real life. In several
papers, they were compared with other guiding methods [20,51,53,54]. They work well but can be
disturbing. Augmented Reality methods such as attention funnel [81,114] or ParaFrustum [82] could
be suitable for instruction or education application. Both are realized by drawing augmented elements,
which start at the viewer’s eyes and lead to the region of interest. The methods are overt and usable for
only one PoI. Since the overlay partially covers the RoI, it is less suitable for CVR movie experiences.

6.2. Stylistic Rendering non-Diegetic, Visual, on-Screen, World-Referenced, subtle/Overt, Voluntary

Stylistic rendering methods [42] for 3D models are similar to image modulation methods described
in 5.2. and can be adapted to CVR. To find the perfect rendering style for each target can be a creative
part of CVR filmmaking. However, for noticing such an effect, it has to be in the field of view
(on-screen).

6.3. Picture-in-Picture Displays non-Diegetic, Visual, off-Screen, Screen-Referenced, Overt, Voluntary

All methods described so far indicate the direction of the RoI. In contrast, showing the RoI in a
small inline-window (Figure 1b, example from our work) at the screen offers the advantage that the
viewer knows what to expect and thus can decide if the viewing direction should be changed. One
disadvantage of this method is that the window covers a part of the content. The other drawback, the
missing information about the position of the RoI, can be solved by placing the display on the side
near the RoI.

Lin et al. [20] evaluated this method for omnidirectional movies on mobile phones. The method
outperformed arrow-based guidance for most aspects, even if it occupied more space.
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6.4. Radar non-Diegetic, Visual, off-Screen, Screen-Referenced, Overt, Voluntary

Methods used by sailplanes for collision avoidance systems could be used to show the RoI. Such
systems show from which direction another sailplane comes. We implemented a method to indicate
the direction of the PoI (Figure 2a). The bar at the bottom shows if the PoI is on the right or on the left
side. The bar on the right shows if the PoI is higher or lower than the own viewing direction. Another
example can be seen in Figure 2b, where the direction is shown by a circle and the height by a bar.
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7. Practical Considerations when Applying the Taxonomy

The introduced taxonomy supports researchers and practitioners in designing guiding methods
for Cinematic VR. This chapter connects the dimensions with the design questions of the filmmaker.
When developing a CVR experience, filmmakers know their material and can think about the desired
effect of a guiding method and about its attributes. To make decisions about the most appropriate
guiding technique, various aspects are relevant and are captured by answering the following questions:

• How fast should the method work (tempo)?
• Is presence more important than the effectiveness of the method (effectiveness)?
• Is it important that the viewer remembers the target (recall rate)?
• Are there more than one RoI simultaneously (number of RoIs)?
• Is there a problem if indicators (arrows, halo) cover movie content (covering)?
• How complex is the content (visual or auditive clutter)?
• Should the guiding method be part of the CVR movie (experience)?

Answering these questions is the first step in finding the right technique.
Tempo: In traditional movies, the filmmaker can determine the pace by cutting and showing image

sections for a short or long time. In CVR, the user explores the scene by changing the viewing direction
in its own tempo. The filmmaker can influence this process by choosing the right guiding method.
To affect the pace of a movie, one can choose between slow- and fast-acting methods. For example,
forced methods work very fast, but they can destroy the experience. However, there are CVR movies
imaginable, where a forced rotation is part of the experience.

Effectiveness: It depends on the purpose of the movie if effectiveness is more important than
presence. More obvious techniques often are more effective, but they can destroy the movie experience.
For a relaxing movie event, it might be less important to ensure that viewers always follow the guiding.
In that case, diegetic, voluntary methods should be preferred. In contrast, for a sport event, it can be
substantial to see the details at the right moment. Here, forced or stimulus-driven methods could be a
good choice. For instructional movies, an arrow fits perfectly. It is an overt technique using an indirect
cue, hard to overlook, but viewers remain free to follow it or not.
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Recall Rate: In case the CVR movie is used for learning applications, the recall rate can be important,
and more obvious methods can be applied, such as overt, non-diegetic ones. Also, for other genres,
it can be relevant that the viewer remembers details of the story, but the indicator should not be so
obvious. Based on attention theory, voluntary processes are memory-bound, keep the attention longer,
and thus increase the recall rate. Also, modulation techniques (e.g., stylistic rendering, SMT) are
applicable since they influence memory [45].

Number of RoIs: The above methods are mostly evaluated for a single RoI. Especially for nonlinear
storytelling, more than one RoI may be required at the same time. Not all of the mentioned methods
are able to handle this case. Although some methods are able to manage more than one RoI, this
can lead to overcrowding the display and overtaxing the viewer. It needs more research for finding
methods and adjustments to handle more than one RoI simultaneously.

Covering: Diegetic or modulation methods do not cover movie content. When using indicators,
such as arrows or halos, parts of the movie are not visible. This can be disturbing. However, purposes
are conceivable where the indicator is more important than complete visibility, e.g., for instruction
videos. Choosing the right parameters (size or color) can make the cue more obvious/effective or
subtler. World-referenced overlays (e.g., arrows) stay at the same place in the movie and cover an area
permanently. Screen-referenced overlays (such as signs at the display edge) change the covered area if
the head is moving.

Clutter: To be able to assess whether a method will be suitable, the complexity of an image must
be considered. Cluttered images with a lot of details require clear and obvious techniques. If the image
is clear, more subtle methods can work. The same is true for audio: If there are a lot of sounds in the
movie, it can be difficult to follow a spatial audio signal which should guide to a RoI.

Experience: It is not always necessary to make guiding imperceptible, it can be also part of the
experience, in the same way, as scene transitions influence the movie. The technique can affect the
style, the pace and the atmosphere of a movie.

Overall, the taxonomy above provides support in the process of finding the most suitable
technique to address these practical questions.

8. Conclusions

Since in Cinematic VR the viewer can freely choose the viewing direction, the selection of the
visible image section is no longer defined by the filmmaker, but by the viewer. This can cause problems
if the viewer misses an important detail of the story. Also, the viewing experience can suffer because
the viewer is afraid to miss something. Additionally, an important aspect of influencing style and pace
rests no longer exclusively in the hands of the filmmaker. On the other hand, CVR provides a lot of
new opportunities. With the added space component, non-linear, interactive stories, intuitive for the
viewer, can be realized. Guiding the viewer in such experiences is not only a requirement, but it is
also a chance for the filmmaker to influence the style and pace in novel ways. It may be used like
transitions in traditional movies—the filmmaker chooses the best fitting techniques for each Region of
Interest. Also, changing between the methods within a movie could be useful, e.g., for changing the
pace of certain movie sections.

Based on previous literature, we described a taxonomy for guiding methods. Our focus was on
CVR, yet most dimensions are transferable to augmented and virtual reality. Classifying these methods
corresponding to the taxonomy assists researchers and practitioners in finding the right technique for
different requirements. We listed the advantages and disadvantages of attributes along an identified
set of key dimensions. We illustrated each such dimension with concrete examples of guiding methods.

This taxonomy can help to understand the various characteristics of guiding techniques, to find
new methods which have not yet been analysed and support filmmakers to find the right methods for
their projects.
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