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Figure 1. Our BrainCoDe approach utilizes Electroencephalography to assess users’ second-language vocabulary comprehension during text reading
on screen and listening to narrated audio content. In the future, our approach may be applied for comprehension analysis during subtitle reading in

movies (left) as well as for audiobooks (right).

ABSTRACT

The pervasive availability of media in foreign languages is
a rich resource for language learning. However, learners are
forced to interrupt media consumption whenever comprehen-
sion problems occur. We present BrainCoDe, a method to
implicitly detect vocabulary gaps through the evaluation of
event-related potentials (ERPs). In a user study (N=16), we
evaluate BrainCoDe by investigating differences in ERP ampli-
tudes during listening and reading of known words compared
to unknown words. We found significant deviations in N400
amplitudes during reading and in N100 amplitudes during
listening when encountering unknown words. To evaluate the
feasibility of ERPs for real-time applications, we trained a clas-
sifier that detects vocabulary gaps with an accuracy of 87.13%
for reading and 82.64% for listening, identifying eight out of
ten words correctly as known or unknown. We show the poten-
tial of BrainCoDe to support media learning through instant
translations or by generating personalized learning content.
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INTRODUCTION

With the rise of the internet, the availability of media con-
tent in a variety of languages has increased tremendously.
This content is often used inside and outside the classroom
to learn and improve second-language skills [14,45]. Users
can choose movies or audiobooks along with their interests
and proficiency level, making media content an efficient tool
for second-language learning [18]. Encountering unknown
vocabulary during media consumption tempts users to look
up the respective translation, hence ensuring the overall com-
prehension of the content. However, looking up translations
while watching movies or listening to audiobooks causes inter-
ruptions and decreases comprehension, leading to a negative
user experience [51]. To support interruption-free language
learning during listening and reading, we propose to implicitly
assess the gaps in learners’ vocabulary knowledge without
requesting active user intervention. This implicit assessment
is a first step towards the implementation of proficiency-aware
interfaces, which could offer real-time support for foreign lan-
guage learning during media consumption in diverse contexts.

Our approach utilizes Electroencephalography (EEG) to assess
users’ vocabulary comprehension. EEG has been used to eval-
uate language processing (cf. [25,26]) and proved its potential
as implicit input for HCI applications (cf. [17,48]). In the last
decade, EEG has become increasingly robust and easier to
handle with the availability of prototypes embedded in caps or
glasses to enable evaluation in real-world scenarios [6,9,52].

Our contribution is BrainCoDe, an EEG-based approach for
second-language comprehension detection. BrainCoDe classi-
fies the users’ neural responses to detect known and unknown
vocabulary during English reading as well as listening. Prior
work utilized EEG to differentiate between meaningful and



pseudo-words [57] and presented text as individual words on
the screen (rapid serial visualization presentation) [47], while
BrainCoDe enables the evaluation of full-sentence text pre-
sentation. In comparison to prior work, this paper assesses
language comprehension during reading and listening and
compares the accuracy of BrainCoDe for both modalities.

We present the results of a user study (N=16), showing that
we can detect vocabulary gaps during second-language read-
ing with 87.13% accuracy and during listening with 82.64%
accuracy, respectively. For our analysis, we only use one elec-
trode centrally located on the scalp, highlighting BrainCoDe’s
potential for replication with consumer EEG devices, such as
NeuroSky MindWave' or a single electrode attached to regular
headphones. We discuss BrainCoDe’s applicability to provide
real-time or post hoc feedback in real-world scenarios, for
example, by extracting unknown vocabulary to create a per-
sonalized vocabulary list or recommending content according
to users’ language proficiency.

RELATED WORK AND BACKGROUND

Language Learning

The prevalence of the internet gave rise to a steady growth
of media content available for everyone in a variety of lan-
guages. Especially for studying English, movies, TV series,
or audiobooks which are available at streaming services such
as Netflix?> or Amazon? are a common tool to improve one’s
language skills. By changing the audio track of a movie and
enabling subtitles, media content can support effective learn-
ing [18,56].

Besides being a convenient tool for learning, which is accessi-
ble anytime and anywhere, media content also represents the
user’s interest and hence can increase learning motivation [36].
This is in contrast to the concept of language learning classes,
which predetermine learners’ schedules and learning content.
Media content ensures a high degree of language exposure and
can provide interactivity as in pausing and rewinding certain
scenes [44]. This interactivity is, in particular, necessary when
learners encounter vocabulary they do not understand. How-
ever, requesting translations during reading or listening, even
within the application, interrupts the task and leads to “media
multitasking”. When engaging with more than one medium at
once, the effort of multitasking can lead to a decreased recall of
the presented content and a worse understanding due to higher
cognitive load [51]. Thus, it is likely that unknown words are
skipped to continue watching the movie or listening to the
audiobook, trying to ensure the overall text comprehension.

If we want to support learning of new vocabulary with me-
dia content, it is necessary to implicitly assess a person’s
knowledge gaps [35] without active user intervention. We can
assess those knowledge gaps and use them to provide effective
learning support by monitoring a user’s understanding while
engaging with second-language content. Through adaptations
in the interface (e.g., lowering the speed of a speaker in an
audiobook) we could provide technical support to facilitate
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comprehension and learning. Moreover, by evaluating a per-
son’s comprehension, we can generate personalized learning
content for additional post hoc repetition, targeting exactly
those vocabulary the user is struggling with.

In the last two decades, the implicit assessment of comprehen-
sion by the use of physiological sensing became increasingly
researched [3, 4, 12]. For the estimation of comprehension
during reading, eye tracking can give insights on people’s
understanding. In the context of HCI, eye-gaze analysis has
been previously evaluated to assess a learner’s language pro-
ficiency (cf. [1,3,46]). Although eye-gaze analysis already
presents a feasible approach for language proficiency assess-
ment [22], this method is limited to visual content presentation.
Hence, the evaluation of comprehension during the perception
of audio content is not possible. A mechanism that gained
popularity in the last decade and has the potential to be ap-
plied for implicit assessment of comprehension across multiple
modalities is EEG.

Electroencephalography in HCI

By measuring electric potentials through electrodes on the
scalp, EEG can give insights on a plethora of users’ internal
processes, such as engagement, workload, attention, fatigue,
emotions, flow, or immersion [2, 11]. The evaluation of EEG
signals can be performed based on frequency bands or Event-
Related Potentials (ERPs) [31]. The latter refer to changes
in signal amplitudes occurring at a precise and consistent
time after the presentation of a stimulus [8, 16]. The stimulus
triggering an ERP can be motory, visual, auditory, or of any
other sense (e.g., hand movements or perceiving audio).

Although EEG has been initially developed for medical appli-
cations and required high precision and accuracy, technologi-
cal advancements within the last decade of both software and
hardware have made it attractive for HCI applications [33].
While we still rely on medical-grade hardware and software
to explore the feasibility of EEG for specific problems or
approaches, researchers have already built a variety of increas-
ingly small, wireless, and low-cost sensing devices for specific
applications in everyday scenarios [10]. With research pro-
totypes using printed electrodes connected to portable EEG
devices such as the ones used by Debener et al. [9] or Bleich-
ner et al. [6], the integration of EEG in users’ everyday context
does not seem out of reach anymore. For example, Bleichner
et al. showed that they could achieve reliable measurements
of specific ERPs. They were able to detect P300s, negative po-
tentials that are reactions often occurring after surprising and
unexpected events [38] and related to memory and attention
processes [37]. To achieve this, they integrated miniaturized
EEG electrodes into a baseball cap and an additional cus-
tomized earpiece [6]. In a different approach, Vourvopoulos
et al. modified a regular pair of glasses to include a low-cost
EEG device, the OpenBCI4, for future use in head-mounted
displays. Their work shows promising first results in the in-
vestigation of cognitive and sensorimotor tasks by evaluation
of frequency bands [52]. Finally, Kosch et al. [24] investi-
gated the efficiency of EEG frequency bands for interface
evaluations.
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ERPs for Language Processing

The application of ERPs to analyze problems during language
processing has already been researched extensively in the
neuroscience community. Syntactic and semantic problems
during reading characteristically elicit N40O ERPs, whereas
the N'100 ERP is often indicating responses to auditory stimuli.
Changes in amplitudes of these ERPs provide insights on
various language processing problems based on individual
words or sentence structures.

N400

An ERP component that is interesting for the evaluation of
language processing and semantic relationships of words is
the N400 component. An N400 is a negative deflection of the
EEG signal around 250-500 ms (i.e., peaking at about 400 ms)
after the presentation of a stimulus [26]. The N400 has shown
to reflect on problems during semantically integrating a word
into a sentence during reading (cf. [15,25, 32]) during both
visual and auditory word pair and sentence processing [19,20].
Kutas & Hillyard showed participants reasonable sentences,
containing either a word fitting the context or a word that was
syntactically correct but semantically incongruous Examples
included “They wanted to make the hotel look more like a
tropical resort, [...] so they planted [tulips/ palms].”. When
reading the word “tulips”, the authors report higher N400 in
participants’ neural responses [26]. Additionally, Holcomb
& Neville showed higher N400 amplitudes for the processing
of non-words or pseudowords (e.g., “jank”, “grusp”, “kcsrt”)
as compared to regular words. For the evaluation of foreign
language reading comprehension, Schneegass et al. [47] em-
ploy N400 analysis and show significant differences between
known and unknown words during reading. However, this
approach is limited to presenting one stimulus at the time and
to visual text presentation.

N100

The N100 component is frequently evaluated for the process-
ing of auditory stimuli [43]. It is a typical component respond-
ing to the onset of a perceived sound with a negative deflation
around 100 ms after the stimulus. It can occur in combina-
tion with a P200, an increased amplitude of the signal around
200 ms after a stimulus [43, 54]. The N100 is known to be an
indicator of the auditory “oddball” phenomenon, which occurs
when participants are presented with a set of familiar stimuli,
followed by an unexpected stimulus [34]. Zhang et al. [57] in-
vestigated the N100-P200 complex for the audio presentation
of pseudowords and were able to show significantly stronger
negative responses as compared to regular words.

EVALUATING BRAINCODE

We hypothesize that the ERP components evaluated in related
work can be transferred to second-language vocabulary com-
prehension assessment. When encountering an unknown or
non-translatable word, we expect to measure similar N400
potentials during reading as Holcomb & Neville were able
to show for non-words or pseudo-words [20]. We will focus
on the evaluation of N100 as an indicator of unexpectedly
presented stimuli during listening [34].

The objective of this work is to show that we can assess second-
language vocabulary incomprehension while reading and lis-
tening using EEG. We conduct a user study, presenting partici-
pants with foreign language content using (1) text on screen
(i.e., visual presentation) and (2) verbal narrations (i.e., audi-
tory presentation). Participants read and listen to English texts
which we manipulated to contain several potentially unknown
words while recording their neural responses. We hypothe-
size that this manipulation will provoke a measurable neural
reaction through greater amplitudes in the N400 reading and
N100 while reading or listening, respectively. Furthermore,
we show our process of classifying the neural responses we
collected while participants encountered known and unknown
words. By applying this classifier to a subset of our data, we
calculate the accuracy and assess the potential of BrainCoDe
for further use as a real-time comprehension detection tool.

Apparatus & Setup

We placed participants in a quiet, dimly lit room to reduce
the risk of potential distractions. Participants sat at a fixed
distance in front of a 24-inch desktop screen and we recorded
their neural activities with a 32-channel EEG. We presented
the text content on the screen and used a supplementary eye-
tracker to assess the users’ focus of attention for the reading
trials. Thus, we were able to match the EEG responses to
individual words on the screen. We manipulated the texts
carefully to contain several potentially unknown words. Af-
ter each condition, we confirmed the manipulation (i.e., the
comprehension of the vocabulary) using comprehension and
translation questionnaires.

EEG & EOG Recording

To record the electric potentials generated by participants’
brains, we used a Brain Products Live AMP?, an EEG device
with a 32 channel wireless electrode setup. The sampling rate
was set to 500 Hertz (Hz) and the signal was automatically
bandpass filtered between 0.1 and 1000 Hz. The electrodes
were placed according to the 10-20 layout [21] (ground elec-
trode: Fpz; reference electrode: FCz; see Figure 2). Conduc-
tive gel was used to reduce the impedance between electrodes
and scalp. We ensured that the impedance was set to below
10 kQ before starting the experiment.

For the evaluation of the EEG signals, we set four differ-
ent markers in the software during the EEG recording to
map the neural responses to the particular word shown on
the screen. Those markers encoded the beginning of a text
(marker “1”) and a word’s estimated difficulty. We differenti-
ated known words (marker “2”), potentially unknown words
(marker “3”), and words that were excluded from the analysis
(marker “4”). The latter category contained words to be ex-
cluded from our evaluation for two reasons: (A) words that are
shorter than three characters as users often skip them during
reading [41,42] and (B) proper names that do not necessarily
have a translation since these are difficult to understand in
the audio presentation. All markers were encoded into the
EEG signal as a simulated keyboard input with a frequency of
8000 Hz.
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use of a head-mounted eye-tracking device). Our implementa-
tion tracked participants' gaze and annotated the EEG signal
accordingly.

Text Presentation

In the rst part of our study, we assessed the participants'
comprehension duringgadingon a computer screen. Texts
were presented as a single centered line of black text on a
grey background with a font size of 25. We set the maximum
number of characters presented in a row to 40 to approximate
subtitles in a movie while still being easily readable. If a
sentence exceeded the character limit, the sentence was split.
If a word would have been split due to the character limit, we
pushed the whole word to the next line presentation instead.
The system was designed to adapt to participants' reading
speed: The next sentence was presented on the screen as soon
as the eye-tracker recognized a short xation of every word
with at least three characters. By choosing a xation time
of only 1 ms, we ensured the recognition of each word while
maintaining a natural reading ow.

Figure 2. For the analysis, we used the Cz electrode (red) as positioned .
in the 10-20 layout [21]. For the measurement of EOG, we utilized the In the second part of our study, we analyzed comprehension

FT9, FT10, O1, and O2 electrodes (blue) and placed them around the  duringlistening For the listening trials, we created narrated
participants' left and right eye. speech les using the Google Cloud text-to-speech (TTS) en-
gin€. In contrast to a human reader, the engine ensured the
creation of comparable texts and easy manipulation of individ-
From our 32-channel EEG setup, four electrodes were usedual words. For the speech presentation, we chose the default
for Electrooculography (EOG). EOG is used to record elec- options suggested by Google's TTS engine, namely a female
tric signals caused by muscles around the eye and works asoice and American pronunciation. We reduced the speaking
an indicator of eye movements. Since eye movements arespeed to 90% of the default for easier comprehension and less
inevitable during reading, EOG enables us to lIter the noise overlap across the neural reactions in the EEG signal. After
generated by muscles to create a clean recording of the actuatiownsampling the data to 1000 Hz, we analyzed the ampli-
brain responses. To record EOG, the electrodes were placedudes of the resulting audio le to detect the beginning and
on the right and left canthi as well as above and below the left end of the spoken words and list their timestamps. The result-
eye as suggested by prior work [13] using adhesive tape foring le format contained a list of all words, a timestamp for
medical use. We chose four electrodes from our setup (rightstart and end, and the duration in ms (e.g., “cucumber”, 2.258,
eye: FT10; left eye: above: FT9, side: 02, below: O1), which 2.954, 0.696). In analogy to our process of encoding word
are least likely to show responses to language processing, i.emarkers into the EEG signal for the reading materials, we
with the great distance to the central parietal area [25]. The annotated the narrated words also in the list of spoken words,

remaining 28 electrodes were used for EEG recording. with the markers 1 (start of text), Rfownword), 3 (ilnknown
word), and 4 (excluded from analysis). To validate the ac-
Gaze Tracking curacy of the timestamps, we visually analyzed the resulting

The EOG enables us to lter signals generated by muscles dur-audio le with an open-source audio software. During the lis-
ing the reading movements of the eye. However, it does nottening trials, the screen displayed a red dot for participants to
tell us the user's focus of attention. Knowing which word the focus their gaze on to reduce unnecessary eye movement [50].
user is focusing on is necessary to precisely map the resultingWe used consumer earbud headphones to deliver the narrated
EEG response to the word that caused it. When presentingtexts.

more than one stimulus at the same time, such as when pre- , ) _

senting multiple words on the screen, eye-tracking can be used!€xt Materials & Manipulation N _

to map the gaze and, thus, the brain's focus to an individual To ensure the comparability _of the two modalltl_es readlng and
word. In our setup, we used an EyeLink 108@vhich uti- Ilstgnlng, we used ;tandardagd textual materlal_s by Ql_Jlnn &
lizes a video-based recording of eye gaze at 1000 Hz and wad\ation [39,40]. Besides a native language baseline, which we
calibrated for each participant. A chin-rest is used to avoid uUsed to familiarize participants with our setup and text presen-
re-calibration of the eye-tracker and maintain a uent reading tation, we assessed neural responses to individually presented
experience. Considering real-life settings, we expect readingEnglish words and four English full texts, two for each modal-
to generate few to no head movement and are con dent thatity (further explained in section “Procedure”). All texts used

valid gaze detection can be achieved without a chin-rest (e.g. N this study were taken from a corpus designed for English
Second-Language (ESL) Learners that includes 15 texts on

Bwwgr-research :com/products/eyelink-1000-plus ~, last ac- Thttps://cloud  :google :com/text-to-speech , last accessed January
cessed January 8th, 2020 8th, 2020



Table 1. We evaluated two native texts, a set of individual words, and four full texts. This table outlines the number of words and sentences per condition
as well as the number of dif cult words we induced.

Total Number Total Number Total Number of Duration Audio

Language Trial Phase of Sentences of Words Dif cult Words ~ Narration (in min)
Native Baseline Ge 1 15 214 0 1:42
German  \ative Baseline Ge 2 15 238 0 1:28
Individual Words IW1 - 30 15 3:18
Individual Words IW2 - 30 15 3:13
English Full Text En 1 41 514 15 3:12
Full Text En 2 46 517 15 3:24
Full Text En 3 46 542 15 3:21
Full Text En 4 44 540 15 3:10

various topics and complementary multiple-choice comprehen-For the Native Baselingswe translated one text carefully
sion questionnaires [39]. The texts are designed to have easynto German, the participants' native language. This text was
grammar and feature frequent words [40]. Therefore, they later split into two shorter parts, Ge 1 and Ge 2, with each
are supposed to be easily understandable by participants withl5 sentences to serve as baseline for both the reading and
low-level English skills. For the listening trials, the written listening condition and familiarize the participants with the
texts were transformed into narrations with a TTS engine astext and auditory presentation. We decided to split the text to
explained above. create two short comprehensive texts to not strain the user's
attention before starting the presentation of the English content.
The native baseline was presented as the rst condition in both
‘modalities and did not include any manipulations.

To evaluate vocabulary gaps during reading and listening, we
manipulated the texts to include a number of rare and poten
tially unknownwords. Hence, we incorporated words from
lists containing rare or uncommon words in the English lan- Furthermore, we presented the participants with 60 random
guage, which are dif cult even for a native speaker (e.g., Ox- Individual Wordsto assess the neural reaction time on a single
ford Lexico's “Weird and Wonderful Words” Li§tor the “Ar- word basis without in uences of overall text comprehension.
chaic Words” Lis?). Whether a word was actualiynknown The individual words can provide insights on potential offsets
to the user was later con rmed through translation question- of response time induced by our setup. The words include
naires as explained in our procedure. With our setup of easily verbs, nouns, and adjectives, half of them easily understand-
comprehensible texts we aim to eliminate potential word or able, and half of them supposedly dif cult (cf. procedure
grammar dif culties that could interfere with our study's ma- full-text manipulation).

nipulations. . . . .
Comprehension Questionnaires and Translations

We randomly chose foufull Textsfrom the ESL corpus [39].  We assessed the participant's text understanding using 10 pre-
Two texts were used for the visual presentation (En 1, En 2)validated multiple-choice comprehension questions provided
and two for the auditory evaluation (En 3, En 4). The texts had in the corpus by Quinn & Nation [39] (ve for the native

a mean of 44.24 sentencedl= 2:05) and 528.25 words per  baselines). For example, for the text “Life in the South Paci ¢
text (SD= 12:81) (cf. Table 1). We manipulated 15 sentences |slands”, the following question is given:
(i.e., one out of three) of each text to contain one potentially

unknowrword. The following sentences are an excerpt of the Thousands of years ago, people came to the Paci ¢
English text En 1, including two manipulated words: Islands from
“They want to remember their culture and teach their a) South America.
progenythe old ways.” b) Asia. .
c¢) Australia.
“Sometimes the Inuiseethedheir food but often it was d) Europe.

not cooked at all.” . . .
In addition to the comprehension questions, we asked the par-

The percentage of manipulations remained low so that they didticipants to translate the manipulated and potentially dif cult

not affect overall text comprehension and created a realisticwords. After each full text and the individual word presen-
scenario as it could occur during the use of media content. Wetation, we provided the participants with a translation test,
randomized the presentation of texts within the conditions, to containing a list of the dif cult English words with blanks

avoid content-related effects. next to them to Il in the correct translation.

Procedure
8 wwulexico :com/en/explore/weird-and-wonderful-words , last After Welcommg the partu:lpants and explalnlng the .proce.ss
accessed January 8th, 2020 of the user study, they gave informed consent for participation

9 wwulexico :com/en/explore/archaic-words , last accessed Jan- Qn_d data handling following the European GDPR. Next, par-
uary 8th, 2020 ticipants chose a random ID from a sheet of prepared user IDs



Figure 3. After welcoming our participants and preparing our study Figure 4. Amount of correct answers in the comprehension question-

setup, the participants took part in the evaluation of four reading and naires for German (Ge) and English (En) texts across participants of
four listening trials. Each trial consisted of the presentation of a native the randomized groups A and B. We compare the results for listening
baseline, a set of individual words, and two full texts. (orange/dark blue) and reading (red/light blue).

to ensure the anonymization of the data and we introducedRESULTS
them to the EEG and eye-tracking setup. Participants lled In the following, we elaborate on the evaluated sample and
in a questionnaire asking about demographic data, includinginvestigate differences in the ERP amplitudeskioownand
age, highest education level, gender, vision impairment, andunknown words Furthermore, we assess the feasibility of
history of neurological diseases. We assigned the participantsclassifying ERPs to detect vocabulary gaps in real-time.
randomly to two conditions, resulting in a changed sequence
of text presentation within the two modalities. Afterward, they Sample
passed through the reading and listening phase, each includingve recruited 16 participants (nine identifying as female, seven
one native baseline text, a condition presenting 60 individual as male) through our university's internal mailing lists, Face-
words, and two full texts with additional questionnaires (cf. book page, and Slack channel. The age range of our partici-
Figure 3). Following the text presentation, the participants pants was 20 to 53 = 24:25, SD= 8:09), with 13 partic-
were asked to Ilin the respective comprehension and vocabu-ipants having a high school degree, two having a master's
lary translation questionnaire. Overall, the participation in our degree, and one having a secondary school degree. Five partic-
user study took around 110 minutes (including electrode setup,ipants stated to wear glasses. They were asked to remove the
debrie ng, and cleaning the electrode caps). As a study com-glasses to increase the eye-tracking accuracy for optimal recog-
pensation, participants could choose between@ 20nazon nition of reading behavior. All participants reported being able
voucher or study participation points offered by our university. to read the text shown on the screen without any problem. Due
to an issue in the study setup, the rst four participants had to
EEG Data Processing _ be excluded from the reading trials since the EEG signal was
To analyze the recorded data, we used the Python MNE li-incorrectly mapped to the words the participants were reading.
brary® and resampled the raw EEG data to 250 Hz. Afterward, The mapping worked accurately for the subsequent twelve
the data was high pass Itered at 1 Hz and low pass Itered at participants after resolving this issue. This error did not have
125 Hz. The data was then re-referenced to the average of allany in uence on the listening trials. Thus, the full sample size
channels which included the original reference electrode FCz for the listening trials remained 16.
To clean our data, we used a notch Iter to remove the 50 Hz
powerline noise. We then extracted the epochs and rejectedrext and Vocabulary Comprehension

every epoch with an amplitude of higher th2@0mv around  The evaluation of theverall comprehension questionnaires
the EOG electrodes to remove ocular artifacts from the analy-showed a medium to high text comprehension rate across all
sis. Afterward, the data was low pass ltered with 0.2Hz and texts. Figure 4 sums up the results for the two conditions. Ran-
high pass Itered with 35Hz. Finally, we sliced the epochs  gomization group A included seven participants from which
into blocks of -0.3ms and 0.7 ms, where 0.0 ms denotes theyyo had to be excluded from the reading trials. Randomization
onset of the stimulus. We automatically extracted the ERP group B contained nine participants, excluding two from read-
negativity peaks and their latencies. For detection of the N100 jng. For the German baseline, participants achieved a median
during listening, we located the minimum peak ina 50 ms to of four correct answers out of ve questions during listening

150 ms time window after stimulus onset, using a 10Hz low an( a slightly lower median of three correct answers during
pass lter. For the N400 ERP detection during reading, we reading for all comprehension scores.

chose a 350 ms to 450 ms time window, respectively. _ ) ) _ )
For the English full texts, we notice only minor differences in

10 vumnetools/stable/index  :html, last accessed January 8th, 2020 comprehension scores between the four texts and the modal-




p <:001 see Figure 7a). The results indicate that there are
measurable differences in the auditory processinknofvn
andunknownwords.

A Shapiro-Wilk test does not indicate a deviation from nor-
mality when reading sentencgsX : 05). Therefore, we sub-

mit the N400 amplitudes of the reading trials to a t-test for
statistical analysis. We nd a statistically signi cant differ-
ence in the N400 amplitudes when reading individual words
(t(15) = 14:327, p<:001, d = 1:531; see Figure 6b) as well

as full texts {(23) = 23:307, p<:001, d = 0:758 see Fig-

ure 7b) with a large effect size. These results suggest that there
are measurable differences in N400 amplitudes, indicating dif-
ferences when processikgownandunknownwords during

Figure 5. Amount of false, blank, and correct answers in the vocabulary reading.
translation questionnaires for both modalities.

Predicting Vocabulary Gaps

ities. For text En 1, participants achieved a median of ten The results from our study show signi cant differences be-
out of ten correct answers in both modalities; for En 2, they tween the N400 and N100 ERPs when reading and listening
reached eight correct answers for reading and 6.5 for listening to knownor unknowrwords. We investigate the performance
Within texts En 3 and En 4, participants scored a median of Of peyson-dependent classi cation based on the extracted ERP
eight correct answers for listening, seven and nine for reading@mplitudes.

respectively. The minimum amount of correct answers across _

all participants for the English text comprehension question- Féatures, Instances, and Classi er Performance _

naires was ve. Thus, we can assume an appropriate level of'We apply the same data processing as in the analysis men-

comprehension for all study participants across the English tioned before to extract the ERP amplitudes. Thereby, we
language texts. focus on the N400 amplitude to detect word comprehensions

- ) during the reading of sentences and on the N100 amplitudes
Additional to the overall comprehension, we presented par-when detecting vocabulary gaps in auditory narrated text. Sep-
ticipants withvocabulary translation testsasking to Il in arately for reading sentences and audio listening, the N400
the German word for the potentialljnknownEnglish words  amplitudes were used for the reading trials and N100 ampli-
we used as manipulation. The participants were able to transtydes for auditory trials. We labeled words afterward as a
late 7.76% of all dif cult words Correctly. The majority of knownword Orunknown/vord_ If unknowrwords were trans-
questions were left blank, as can be seen in Figure 5. Basedated correctly after each trial, they were labekewnwords.
on the translation tests, we excluded all potentially dif cult The number of epochs was different for each participant since
WOI’dS, which the partICIpantS were able to translate, from our a different number of epochs was rejected_ Therefore, per par-
analysis. Thus, we can clearly differentiate betwkeown ticipant between 450 and 510 epochb$ 48275, SD= 18:9,

andunknownwords. N = 11586 with knownwords and between 12 to 15 epochs
(M = 13,SD= 1:3, N = 312 with unknownwords were taken
Evaluating Event-Related Potentials into account during the reading trial. Between 487 and 509

We statistically analyze the amplitudes of the ERPs gener-(M = 4985, SD= 16:3, N = 11964 epochs foknownwords
ated byknownandunknownEnglish words. Accordingly, we  and 13 to 15 = 14:2, SD= 1:2, N = 341) epochs foun-
investigate ERPs across both text presentation conditions, indiknownwords per participant were considered for further anal-
vidual words, and the full texts for the respective reading and ysis for the auditory trials. According to the remaining epochs,
listening trials. We focus our evaluation on the electrode Cz.the N400 and N100 amplitudes were labeled for classi cation
It is frequently reported in related work that the N40O is larger and were the only features used.

over the central region of the scalp [2Z8]. For the N100,
the Cz electrode also shows higher amplitudes for unexpecte
stimuli and is also called “vertex potential” [49].

dTo sustain a natural scenario, the number of the attributes with
the labelknownword is much higher than the number of at-
tributes with the labelinknownword. Therefore, we slice the
Using the extracted negativity peaks for the N400s and N100s,number of attributes with the labkhownword to the same
we average the resulting amplitudes for the full-text conditions number asinknownwords for each participant. Using scikit-
of reading and listening. A Shapiro-Wilk test shows a devia- learn'?, we train a Support Vector Machine (SVM) with a
tion from normality when listening to narrated sentences or radial kernel. We perform a cross-validation on the trained in-
individual words @ < : 05). Thus, we proceed with the non- stances wittk = 5, wherek 1 folds were iteratively used for
parametric Wilcoxon-Signed rank test for the analysis of the training while the remaining fold was used for evaluation. This
listening trials. The test reveals a statistically signi cant dif- process was repeated urktilownwords were evaluated with
ference in the N100 amplitudes betwderownandunknown an equal set afinknowrnwords. Finally, we calculate the mean
words for individual narrated wordZ & 78, p<:001; see
Figure 6a) as well as listening to narrated full text( 300, Mywuscikit-learn  :org, last accessed January 8th, 2020




@) (b)
Figure 6. ERP responses measured at the Cz electrode for hearing individual narrated words and reading written words. (a)ilnknownwords generate
greater N100 amplitudes during auditory presentation as compared t&nown words. (b): For visual presentation,unknown words elicit greater N400
amplitudes asknown words.

from the resulting classi cation scores to aggregate an over-Exploring Language Learning Modalities

all accuracy. The average overall accuracy in discriminating In our study, we focused on reading and listening as modalities
knownwords andunknowrwords during reading we7:13% important for language learning. We achieved a classi cation
(SD= 4:5%). Auditory trials resulted in an overall accuracy accuracy of87:13% when differentiating between reading
of 8264% (SD= 9:6%). In both modalities, the majority of  knownandunknowrnwords on screen. This can be used for
wrongly classi ed words were false positives (FP) compared situations such as reading an e-book in a new language on
to false negatives (FN) (listening FP = 10.96%, FN = 6.4%, a tablet. The analysis of EEG responses in such a situation
reading FP = 9.35%, FN = 3.52%); see Figure 8). Hence, in would still require eye-tracking to be able to pinpoint the exact
case of wrong classi cation, words are more likely to be clas- word the user is looking at at the moment. However, this
si ed asunknownwords, although the word is alreaéiown technology is currently nding its way to commodity tablets,
during both listening and reading. PCs, and smartphones [23, 53].

S TheBrainCoDeapproach achieved a classi cation accuracy
Limitations of 82.:64%for the listening modality. This approach can be
Like many EEG-based studies, our evaluation was done in aysed in a real-world learning scenario, such as listening to an
quiet environment with no distractions. This was suitable to audiobook in a second-language with slow narration speed
obtain data with limited noise from outside sources to be able or listening to recorded conversations in an online language
to explore the EEG data. However, the discrepancies betweerc|ass. However, nding comprehension problems using our
the experimental conditions applied in our study and real-life approach in more complex media such as movies that contain
situations can not be neglected. We need further evaluation tomultiple stimuli and modalities would require further investi-
explore the feasibility oBrainCoDeto detect comprehension  gation. Fortunately for these scenarios, a perfect classi cation
problems in everyday scenarios with potentially in uencing accuracy is not necessary to build successful learning applica-
environmental factors such as noise or complex media such asjons, since including false positives, thus, repeating already
movies. knowncontent, does not hinder learning.

DISCUSSION

In this work, we investigated the neural responses during vo-Person-dependent Learning

cabulary comprehension. We found signi cant differences in Currently, the evaluation of ERP data only creates expres-
the size of amplitudes in N400 ERPs during reading and in sive results through averaging over many trials and is highly
N100 ERPs during listening as neural responsesitaown user-speci ¢ [30]. In order to use EEG responses as input
words. The classi cation of the responses performed with an for applications, a training phase is required [29]. Similar
accuracy of above 80%. THarainCoDeconcept worked ef-  to most state-of-the-art systems utilizing physiological sen-
fectively for the detection of vocabulary comprehension prob- sors,BrainCoDerequires a user-dependent training phase to
lems in second-language reading and listening. We discusse able to detect vocabulary incomprehension due to unique
the opportunities of our approach to be utilized in real-world manifestations of ERPs for every individual user. Single-trial
scenarios. ERP classi cation is currently advancing and shows promising



@) (b)
Figure 7. ERP responses measured at the Cz electrode fanown and unknown words perceived during narrated full texts and during reading full
texts. (a): Unknownwords generate greater N100 amplitudes during auditory presentation as compared tknownwords. (b): For visual presentation,
unknownwords elicit greater N40O amplitudes aknown words.

results [5] that would make our approach feasible for real-time of the media content, or repeat a section of the audiobook to
classi cation ofunknownvocabulary in the future. increase exposition to the new vocabulary and enhance learn-
ing ef ciency. As a post hoc analysis tool, tlB¥ainCoDe
approach easily facilitates the extractionuolknowrnvocab-
ulary to create a personalized list of contents for the user to
fearn. Based on a continuous monitoring of the users' lan-

In addition to inter-person variations of ERPs, the momentary
cognitive and physiological state of each user may have an
effect on their neural responses per session. The respons
to repeatecknownandunknownwords over time may also : : : -
be different as the user starts to learn the language. Relate uage comprehensioBrainCoDecould be applied to provide

work in the use of ERPs for language learning also suggests (_acommendatlons on media contents adapted o ug;ers‘ pro -
, . DS ciency as explored by Yuksel et al. for learning the Piano [55].

that the neural responses (e.g., N400) of listening stimuli are

susceptible to habituation effects, for example, when the userlntegrating our approach into applications such as Duofifigo

listens to an unexpected stimulus frequently [7]. These factorswe could implement a tool to adapt the content according to

must be taken into consideration when designing a languagethe user's knowledge. Thus, the app could present content,

learning application utilizing neural responses. which is currentlyunknownto the user, with higher frequency

In this work, we focused our analysis on the N400 and N100 to support learning.

ERP components based on prior work. Nonetheless, the close
investigation of other ERP features or potential feature interac-
tions can yield further insights into comprehension problems
during listening and reading and improve the classi cation
accuracy.

CONCLUSION AND FUTURE WORK

The detection of gaps in a learner's vocabulary knowledge is
a critical step to facilitate effective second-language learning.
Since media consumption in different languages is nowadays a
common tool to learn and improve on a language, such as in the
form of movies, e-books, or audiobooks, the implicit detection
of comprehension problems becomes increasingly important.
Avoiding interruptions and distractions while consuming me-
Yia helps to improve the user experience. Understanding what
words areunknownto the user allows proactively presenting
translations or explanations without interrupting the media
consumption.

BrainCoDe Application Scenarios

We envision a personal learning application that provides
both real-time and post-hoc personalized feedback. The user:
would start by wearing a brain-computer interface (BCl) head-
set, such as the Emotiv EP&Cor the OpenBC], both of
which have support for the used electrode setups veri ed by
BrainCoDe. The users would go through a training session
by reading and listening to phrases witmownandunknown In this work, we present BrainCoDe, an EEG-based method
words to assess their current language level and collect trainingto implicitly detectunknownwords during foreign language
data, then the media content (e.g., audiobook, movie, e-bookyeading and listening. In a user study £ 16), we show

or language learning chat session) would be started. The applithe feasibility of evaluating N100 and N400 event-related po-
cation can provide real-time or post hoc feedback. Real-time tentials using the single Cz electrode, to detect participants'
feedback could recommend the user to pause, rewind a scen&nglish vocabulary knowledge gaps. By building a classi er

12 vemotiv :com/epog, last accessed January 8th, 2020 13ymmduolingo :com last accessed January 8th, 2020
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Figure 8. Normalized confusion matrix of classifyingknownwords and unknown words between the (a) auditory trials and (b) reading trials.

trained to identify those gaps, we can successfully recognize [3] Yevgeni Berzak, Boris Katz, and Roger Levy. 2018.
unknownvocabulary in eight out of ten situations. Thereby,
the accuracy of readin@{:13%) exceeds the accuracy of de-
tectingknownandunknowrwords during listening to narrated
content (8264%).

For future work, we plan to further evaluate two components
of our approach: (1) we aim to test the feasibility and ro-

bustness of our approach when deployed with low-cost EEG

[4]

5]

sensors. We imagine using consumer-grade hardware such as

the OpenBCI kit for augmenting headphones and analyzing
the Cz electrode for the occurrence of the N400s and N100s.

Furthermore, we (2) aim to develop our approach further to
be applicable for real-time user support. After a short training

phase, we expect that our classi cation can support live de-

tection ofunknownwords, thus aiming to makBrainCoDea
promising tool for being integrated into learning applications.

With the help oBrainCoDg we envision to use EEG-based im-
plicit comprehension detection to build language pro ciency
aware interfaces. With only a minimum number of electrodes,
we see great potential for the identi cation of vocabulary gaps
during everyday media consumption. With our evaluation of
BrainCoDewe take the rst steps toward enabling vocabulary

learning while users can enjoy their favorite media contents.

We believe that in the long run, progress in BCI research will
transform learning tasks into a joyful experience.
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