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ABSTRACT
Avatars in virtual reality (VR) increase the immersion and
provide an interface between the user’s physical body and the
virtual world. Thus, avatars enable referential gestures, which
are essential for targeting, selection, locomotion, and collabo-
ration in VR. However, players of immersive games can have
another virtual appearance deviating from human-likeness and
previous work suggests that avatars can have an effect on the
accuracy of referential gestures in VR. One of the most im-
portant referential gestures is mid-air pointing. It has been
shown that mid-air pointing is affected by systematic errors,
which can be compensated using different methods. Thus, it is
unknown if the avatar must be considered in corrections of the
systematic error. In this paper, we investigate the effect of the
avatar on pointing accuracy. We show that the systematic error
in pointing is significantly affected by the virtual appearance
but does not correlate with the degree to which the appearance
deviates from the perceived human-likeness. Moreover, we
confirm that people only rely on their fingertip and not on their
forearm or index finger orientation. We present compensation
models and contribute with design implications to increase the
accuracy of pointing in VR.

CCS Concepts
•Human-centered computing→ Virtual reality; Pointing;
•Computing methodologies→ Virtual reality;

Author Keywords
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INTRODUCTION
Virtual reality (VR) provides immersive experiences and even
allows users to take on and control virtual bodies. The virtual
body ownership illusion occurs when the avatar is rendered
according to the user’s pose and movement in the real world.
Such avatars are fundamental design elements of games and
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Figure 1. User with the marker set of rigid bodies for finger, forearm,
upper arm, head, left, right shoulder, and head (HMD).

other immersive applications in VR. Therefore, it is important
to understand how virtual avatars and the user’s own body can
be used as gaming controllers and how the virtual avatar is
integrated into the own body scheme.

Previous work found that the appearance of the avatar impacts
the illusion of virtual limb ownership. The human-likeness of
an avatar increases the degree of limb ownership and the user’s
sense of agency and behavior in VR [3]. Thus, the similarity
of the avatar with the human appearance can increase the illu-
sion of body ownership. However, the realism of the virtual
body can also negatively affects the acceptance of the virtual
appearance and causes a disconnection from the virtual body.
For example, the wrong gender [40], mismatching limbs [39],
or even too realistic avatars [26, 46] produce uncomfortable
feelings and altered behavior. Some of these findings were
partially brought into connection with a visually induced dys-
phoria [39, 40] or the uncanny valley phenomenon [26, 46],
which describes a sudden reduction in familiarity towards very
human- [32] or animal-like [41] characters.

It has been shown that avatars not only influence the subjective
experience or the feeling of virtual body ownership in VR. The
avatar can also influence the task performance [22] and the
user’s movements [3]. Furthermore, researchers found that the
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rendering of the own avatar can affect the workload and typing
performance in VR [23]. However, task performance or be-
havioral changes have been observed without considering the
accuracy of the performed interaction or gesture. To provide
interaction techniques for VR and games without additional
hand controllers, it is not only essential to render the desired
avatar appearance, but also to learn how the avatar influences
the accuracy when performing gestures.

Referential gestures require high accuracy and are essential
for interacting in VR. They are used for targeting, selection,
locomotion, and collaboration in VR. The mid-air pointing
gesture is a universal activity and this “primeval referential
device” [17] is developed in early childhood, and plays a fun-
damental role in developing a theory of mind [9]. Furthermore,
the gesture depends on the ability of self-location and the co-
ordination of head, arms, hands, and fingers. Despite intensive
efforts to point precisely at targets, humans make systematic
errors while pointing [13, 27, 28]. As systematic errors can be
compensated, researchers are interested in models to resolve
inaccuracies when interpreting the users’ input.

Using context and deduction, humans are well skilled in over-
coming potential inaccuracies or ambiguities while mid-air
pointing at a specific target. However, when interacting with
virtual systems, methods are required to determine the precise
pointing direction. Current systems use ray casting methods
based on finger, hand, and body pose tracking [2, 10, 35]. Sys-
tematic error compensation models can improve the direction
derived by these ray casting techniques [28, 27]. Using com-
pensating models is the state-of-the-art approach of systems
detecting pointing directions as referential inputs, which are
not only used in immersive VR games but also for interac-
tions with large high-resolution displays [20, 47], in media
rooms [7], and in smart home environments [19]. Immersive
applications such as games can benefit from offset correction
models as such models can increase the accuracy of target se-
lection [48], locomotion in virtual environments [44], and de-
ictic pointing gestures in multi-user environments [37]. While
systematic errors can easily be corrected with corresponding
models and ray casting methods, the virtual avatar in games
can vary or even disappear and, thus, may distort and falsify
corresponding corrections.

As avatars can have an effect on the input performance in
VR [23] and point [27] differently in the real world compared
to VR, we hypothesize that the appearance of avatars will
not equally be integrated into the own body scheme while
performing referential gestures using different avatars. Sim-
ilar effects of the virtual hand appearance are also evident
in visual-haptic integration [42]. Current VR applications
can provide continuous feedback to support pointing gestures.
However, immersive games such as Skyrim VR [6], Arizona
Sunshine [45], and Fallout 4 VR [5] do not provide continuous
feedback. Additional visual feedback can break the VR expe-
rience in realistic games and increase the cognitive load [48].
Thus, we propose to use correcting models without additional
feedback. However, general models reducing the pointing
error run into danger to be no longer valid in VR as the avatar
can have a complete different appearance.

Based on previous work in the research domains of HCI and
virtual limb ownership, we hypothesize that people represented
by less human-like avatars will not ignore the visual cue given
by a virtual avatar with a deviating appearance from the own
one and, thus, increase the accuracy of a mid-air pointing
gesture. To test this hypothesis, we conducted a pointing study
in VR using different whole-body avatars. Furthermore, we
hypothesize that people mainly rely on the direction of their
fingertip ray cast. Our contribution is three-fold:

• We show that avatars have a significant effect on pointing ac-
curacy. For example, robot and abstract avatars can increase
pointing accuracy compared to human-like avatars.

• We found that people mainly rely on the position of their
fingertip when pointing and not on the direction of their
forearm or index finger.

• We provide polynomial models for the herein presented
avatars to compensate mid-air pointing displacements and
significantly reduce the systematic pointing error.

RELATED WORK
This paper is related to previous work investigating the ef-
fects of virtual limb- and body-ownership on perception and
behavior. Our work is based on investigations of the point-
ing gesture in Psychology, Physiology, and human-computer
interaction (HCI). Researchers compare the accuracy of ray
casting methods, and compensate the error with polynomial
displacement models. Our work is related to absolute pointing
without using additional devices [34] or visual feedback [47]
and only partially refers to relative pointing techniques [7, 8].

Virtual Limb- and Body-Ownership
As mentioned prior research found that the brain is able to
accept virtual limbs [12] and bodies [43] as parts of the own
body. Rendering a virtual body solves a fundamental problem
of self-location as the brain encodes limb position primar-
ily using vision [14, 15]. However, it has also been shown
that the appearance of an avatar affects the illusion of body
ownership. For example, Lin and Jörg [25] found that human-
like hand models increased the illusion of body ownership.
Vinayagamoorthy et al. [46] and Lugrin et al. [26] found higher
levels of virtual limb ownership in VR when using fewer
realistic VR game characters. The authors of both papers
assume that presence is affected by the uncanny valley phe-
nomenon by Mori [32], who hypothesized that imperfections
of very human-like characters cause uncomfortable sensations.
Schwind et al. [40] found gender-related difference and, for
example, recommend to avoiding gender swapping in VR by
using non-realistic or androgyny avatars.

Changing the avatar appearance can also lead to behavioral
changes. Argelaguet et al. [3] found that the sense of agency
was stronger for less human-like virtual hands, however, the
illusion of body ownership increased with human-like virtual
hands. Researchers also showed that not only the perception
but also typing performance with avatar hands depends on
their appearance [23]. In a study with less fingers, Schwind
et al. [39] observed that users only used fingers they saw for
interaction. Furthermore, the authors found that the feeling of



presence in VR depends on structural changes and the realism
of avatar hands. Thus, the illusion of virtual ownership is
significantly affected by the virtual appearance and can lead
to changes in behavior, task performance, and presence in
VR. Currently, knowledge is lacking about the accuracy while
interacting or pointing with different avatars in VR.

Pointing as Referential Gesture
Research in psychology has shown that children begin to
express themselves with pointing gestures in early child-
hood [17]. The pointing gesture helps humans to learn
other’s intentions and has an impact on developing a theory
of mind [9] as well as on learning verbal declarations [4]. In
his book, Kendon [21] differentiates pointing gestures using
the index finger, open hand, or the thumb. While thumb and
the open hand are used when the object being indicated is not
primary focus or topic of the discourse, the extended index
finger is used when a specific person, object, or location is
being meant [21]. Pointing requires fine levels of dexterity and
control over intrinsic oscillations of the own body (tremor).
Mid-air pointing is also affected by the tremor of the human
muscle system. Morrison and Keogh [33] conducted a fre-
quency analysis for pointing with the hand and index finger
and found two dominant frequency peaks at 2−4 and 8−12
Hz. They also found that oscillations increased when par-
ticipants attempted to reduce the tremor by exerting greater
control over the hand.

Previous work proposes multiple ray casting approaches to
compute the pointing direction. Argelaguet et al. [2] distin-
guish between two families of ray casting methods: hand-
and eye-rooted techniques. Using hand-rooted methods the
ray from the hand differs from the eye/head position and can
intersect with objects even when there is no visible occlusion
of the target for the eye (or vice versa) [30, 31]. Corradini and
Cohen [10] identified the index finger ray cast (IFRC) as the
most common hand-rooted method. For eye-rooted ray cast-
ing approaches, there are two methods: the ray cast direction
given by the eyes’ orientation (gaze ray casts) [35] or the ray
between eye and index finger tip position. Kranstedt et al. [24]
suggest using the ray between the eyes (’Cyclops Eye’) and
the index finger tip. According to Mayer et al. [28] we refer to
this approach as eye-finger ray cast (EFRC). Nickel et al. [35]
proposed and investigated an elbow-rooted ray casting method.
We refer to this method as forearm ray cast (FARC). Jota et
al. [20] recommend reducing the parallax and considering the
kind of task as well as the system for ray cast selection.

Foley et al. [13] found a distance dependent trend while point-
ing with the index finger. The pointing gesture overreaches tar-
gets to the opposite side of the dominant hand and sighting eye.
This was confirmed by Mayer et al. [28]. In their work, the
authors describe the systematic error in absolute pointing and
present a polynomial displacement model for compensation.
Similarly, Akkil and Isokoski [1] conducted an experiment to
compare different pointing techniques including eye gaze to
compensate the error. Their results indicate that overlaying
gaze information on an egocentric view increase the accuracy
and confidence while pointing. In another study by Mayer
et al. [27], which is closely related to our work, the authors

showed a difference between the systematic error in the real
and virtual world. They used a compensating model and a
cursor to improve the users’ accuracy in pointing; however,
their study was only validated using a human-like avatar. It is
conceivable, that further avatars exist that produce a different
error and, thus, require different compensating models.

Summary
As shown by previous work, a virtual avatar increases the sense
of virtual limb- and body-ownership [43] and improves self-
localization [14, 15]. However, different virtual avatars are not
perceived equally [26, 40, 46] and cause perceptual as well
as behavioral changes [3, 23, 25]. Mayer et al. [27] showed
a systematic difference of the systematic error in pointing
between the real and the virtual environments, but they did not
investigate the effect of the avatar representation itself.

STUDY
Mir-air pointing has the potential to enrich the gaming experi-
ence in VR. Object selection, locomotion, and communicating
with other players or even AI-avatars, are examples of the
large number of use cases. To enable game designers to use
mid-air pointing in-game it is important to understand if and
how the avatar affects pointing performance. Therefore, we
compare different AVATARS to investigate how self representa-
tions affect humans’ mid-air pointing accuracy in VR. While
Mayer et al. [27] showed a difference in the systematic er-
ror when pointing in real and the virtual worlds, they only
used a single upper body avatar to represent the participant in
VR. The avatar was human-like, however, it has been shown
that avatar perception varies with the human-likeness of the
character [3, 40, 46]. Thus, we hypothesize that users in VR
rely only on informative cues of their own body to perform
pointing gestures, which potentially increases their accuracy
as they cannot ignore an avatar deviating from their own ap-
pearance. Furthermore, when people are used to relying on the
visual cues given by their body, the mean error should increase
when no avatar is visible. Our methodology for measuring and
compensating the systematic error [13] mainly builds upon the
work by Mayer et al. [27, 28].

The stimuli selection is based on previous work, investigating
the human-likeness or realism of avatars in VR [3, 25, 40].
We used avatars in different rendering styles and varied the
degree of human-likeness by changing the texture as well as
geometrical morphology of whole body avatars. We used a
within-subject design with AVATAR as the only independent
variable with 6 levels: human, cartoon, robo suit, robot, ab-
stract and invisible, as shown in Figure 2. The dependent
variable is the distance between the intersect of the ray cast
on a virtual screen and the targets. We used three different
ray casting techniques as purposed by previous work: EFRC,
IFRC, and FARC. As proposed by previous work [39, 40],
we asked participants to assess human-likeness, attractiveness,
and eeriness of each AVATAR. Since the tasks might be tir-
ing for some subjects, we asked for potential workload and
fatigue effects using a raw NASA-Task Load Index (raw TLX)
between the conditions.



(a) Human (b) Cartoon

(c) Robo Suit (d) Robot

(e) Abstract (f) Invisible
Figure 2. First- VR and third-person view of the six avatars pointing at one of the virtual targets: Human (a), Cartoon (b), futuristic Robo Suit (c),
a mechanical Robot (d), an Abstract (e) and Invisible (f) avatar. All avatars used the same skeleton. The avatars in the first row (a-c) used the same
human model and skinning. Body parts of the mechanical Robot and the Abstract avatars used rigid skinning. Red point on the floor indicate the target
standing position for the participants.

Apparatus
We used a Windows 10 PC with an NVIDIA GeForce GTX
1080 connected to an OptiTrack system with 14 cameras to
determine the position of 18 markers placed over the partic-
ipant’s upper body and right arm. These markers were used
to track the exact position of the participant’s left and right
shoulders, upper arm, forearm, hand and index finger. The
position of the body was moved according to the center of
both shoulders. Additional body parts were not animated.

OptiTrack offers a commercial implementation and approxi-
mation of a full body skeleton, however, it does not support
index finger tracking. Thus, we used rigid bodies to track
the upper right side of body without any body approxima-
tions through the OptiTrack system as suggested in previous
work [27]. We used 3D printed custom mounts by Mayer et
al. [27] to fit the shape of the arm, hand, finger, and HTC Vive

HMD1. Index finger markers wrapped around the finger. The
upper and forearm marker mounts are wrapping around the
arm with hook and loop fastener. The marker setup is shown
in Figure 1.

The virtual scene presented a medium sized room, as one
would find in a first-person game, for example, equipped with
concrete textures. The volume of the virtual room was 6m ×
5.55m × 3.5m (length × width × height). The virtual screen
was a wide blank canvas on which the targets were positioned
2m away in the front of the participant. The VR scene was
rendered using Unity 3D v5.6 and an HTC Vive HMD with
a refresh rate of 90 frames per second and a field of view of
110. Positional tracking provided by the HTC Vive was not
used. The virtual apparatus was scaled and arranged in real

1https://github.com/interactionlab/htc-vive-marker-mount
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world units (meter). To create results which are comparable to
previous work we decided to use the same target arrangement
as Mayer et al. [27]. Thus, the targets were arranged in a
7×5 (column × row) grid. The targets were presented in VR
on a grey virtual screen. The spacing of the target grid was
44.9cm × 34.cm.

Stimuli
We used whole body avatars as referential device to avoid
distracting participants through cut off or levitating limbs. To
avoid further distractions from the animation of other body
parts, only their upper body and the right arm were tracked and
animated. The stimuli were carefully selected to learn more
about potential biases caused by morphology and rendering
of human-like avatars. All avatars are based on the Genesis 3
Character by DAZ3D2. As suggested by Schwind et al. [40],
we removed gender specific cues (e.g., hairs, and glossy nails).
For the human, cartoon, and robo suit avatars, we used the
realistic human-like model of the generic Genesis 3 character
by DAZ3D. To avoid potential distractions by the rest of the
body, the human and cartoon avatar received a thin T-shirt,
pants, and shoes.

The cartoon model received three toon shader materials for
skin (skin color), pants (dark grey), and the T-shirt (grey). The
robo suit avatar received no clothing because of the futuristic
and glossy suit texture. The robot (the “Cypher” 3D model and
subclass of Genesis 3) and abstract avatars are based on the
design by Argelaguet et al. [3] and used solid rigid body skin-
ning of the mechanical body parts. No body parts or referential
devices were rendered in the invisible AVATAR condition. To
ensure that obviously affecting cues of the virtual body such
as position, size, and length of the limbs do not compromise
our measure, we used the same skeleton and the same limb
lengths throughout for all avatar geometries.

In line with [27], the avatars were scaled to match the indi-
vidual subjects’ height and size. The animation of all models
referred exactly to the same body skeleton given by DAZ3D.
The human, cartoon, and robo suit avatars had the same skin
mesh topology and skinning weights. As participants had to
refer to virtual targets using their finger tip, all meshes had
the same finger length. The abstract and robot avatars had a
different morphology but the same length of arm and finger
as the human, cartoon, and robo suit avatars. The mechanical
body parts of the robot and the primitives in the abstract model
were placed according to the orientation of the skeleton bones
from DAZ3D. Thus, only the textural (Figures 2a to 2c) or the
morphological structure of the rest of the body (Figures 2d
to 2f) were changed as referential device.

Measures
We measured the absolute distance of ray cast intersections
with the virtual screen. As suggested by related work, we mea-
sured the offset between hit and target using EFRC, IFRC, and
FARC. Furthermore, we used the raw TLX questionnaire [16]
to assess potential fatigue or work load effects. To assess the
subjective perception of the avatars we used the questionnaire

2https://www.daz3d.com

proposed by Ho and MacDorman [18] to assess the human-
likeness, attractiveness, and eeriness of each condition.

Task
For the pointing task, we followed the description by Mayer
et al. [28]. The virtual targets were placed in an invisible
uniformly distributed 7×5 grid (column × row) for a total of
35 targets in front of the participant. The virtual screen had
a size of 269.4cm × 136.2cm. The spacing of the target grid
was 44.9cm× 34.cm. An encircled red cross was presented
at each of the 35 positions. The order of appearance of the
targets was randomized for each participant. Participants were
required to point at each target position twice per condition
for a total of 420 targets for the whole experimental session.
Furthermore, the participants were equipped with a wireless
presenter in their left hand to start the sample recording while
they are pointing.

To compensate natural hand tremor, stated as an issue by
Olsen and Nielsen [36], the participants had to hold their
pointing pose for one second. The participants had to click
with the left hand on a button of the remote control when they
started holding and the target disappeared after one second.
We asked participants to point as they would naturally do in
other situations. They had to take their arm down after each
recording, and wait from 2 to 3 seconds until they were asked
to point at the next target.

Procedure
After welcoming, all participants were introduced with a brief
description of the procedure and the purpose of the study. After
signing the consent form, they were equipped with tracking
markers and the VR HMD. We took 14 measurements to have
a real-scale representation of the participant in VR. At the
beginning of each condition, the participants walked to the
center point of the tracking volume indicated by a red point
on the virtual floor with a distance of 2m from the screen.
AVATARS were sorted in a 6 × 6 Latin Square design. After
each condition, the participants took off the VR headset, sat
down, and completed the questionnaires.

Participants
A total of 24 participants (16 male, 8 female) from Central
Europe and North America took part in our study. The mean
age was 21.25 years (SD = 1.98). Findings in prior work in-
dicate that taking eye dominance into account can improve
the accuracy in interpreting the directions of the pointing ges-
ture. In line with Plaumann et al. [38], we used the Miles [29]
and Porta test [11] to screen participants for eye dominance.
Fourteen participants had right-eye dominance, 8 left-eye dom-
inance, and 2 were unclear. Six participants used vision cor-
rection during the study. All participants were right-handed.
Participants were compensated with credit points for partici-
pation in their class.

RESULTS
Participating in the study took M = 58.12 minutes (SD =
9.75) per participant. Average time for each condition was
M = 5.20 (SD = 1.19) for the human avatar, M = 4.95 (SD =
1.31) for the cartoon avatar, M = 5.14 (SD = 1.31) for the

https://www.daz3d.com
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Figure 3. The mean distance between the intersection of the ray cast
and the target (in cm) of the six avatars using the three ray casting meth-
ods (EFRC, IFRC, FARC). Error bars show 95% confidence intervals
(CI95).

abstract avatar, M = 5.10 (SD = 1.16) for the robo suit, M =
5.10 (SD = 1.28) for the robot, and M = 4.98 (SD = 1.02)
for the Invisible condition. Each participant performed 420
pointing gestures (70 in each condition). In line with Mayer
et al. [27], we report the errors in meters to understand the
actual error/influence on any VR scenario. Using a static 2m
projection canvas we ensure comparability with previous work.
Furthermore, we used the instructions by Mayer et al. [27] to
determine the ray casts.

Potential Fatigue/Workload Effects
First, we analyzed the raw TLX score to determine if potential
workload or fatigue effects had to be considered in the analysis.
The mean raw TLX score was M = 45.48 (SD = 24.48) after
the first, M = 38.61 (SD = 25.54) after the second, M = 41.66
(SD = 27.34) after the third, M = 39.58 (SD = 24.99) af-
ter the fourth, M = 36.87 (SD = 27.34) after the fifth, and
M = 38.40 (SD = 29.55) after the last phase. A one-way
repeated measures analysis of variance (RM-ANOVA) was
conducted. As the analysis did not reveal a significant ef-
fect, F(5,23) = .918, p = .471, we assume that the effect of
participants’ fatigue or workload is negligible.

Distance Offset Analysis
We used the ray casting methods EFRC, IFRC, and FARC
to measure the distance offset between the intersection of
the pointing ray and the actual target on the virtual screen.
We removed outliers for each ray casting method, condition,
and target individually. Samples more than three standard
deviations away from the average of the center were omitted
(15 EFRC, 205 IFRC, 2120 FARC). Resulting in a total of
37,750 samples which were considered in the analysis of the
ray casting methods. All offset means are listed in Table 1 and
depicted in Figure 3. As comparison, Mayer et al. [27] report
a 1.05cm (9.3%) smaller offset in IFRC and 6.56cm (18.4%)
smaller offset in IFRC, however, a 4.81cm (8.7%) larger offset
in FARC.

First, we conducted a repeated measure (RM) one-way mul-
tivariate analysis of variance (MANOVA) to determine if all
three ray casting methods were altered by the manipulation of
the independent variable (AVATARS). Using Wilks’ lambda,
we found a significant effect, Λ = .115,F(3,15) = 4.613,

p = .013, η2 = .885. Separate univariate analysis of vari-
ances (ANOVAs) on the dependent variables revealed sig-
nificant effects on EFRC, F(5,115) = 48.345, p < .001),
IFRC, F(5,115) = 5.293, p = .002), however, not on FARC,
F(5,115) = .159, p = .159).

Bonferroni-corrected pairwise comparisons revealed signifi-
cant differences of the distance error using EFRC between the
invisible and the other levels of AVATAR (all with p < .001).
No differences were found between the other levels (all with
p = 1.000). For the IFRC, we found significant differences
between the cartoon and abstract (p < .001), the human and
abstract (p = .031), cartoon and invisible (p = .031), cartoon
and robot (p = .021), human and robot (p = .031), and be-
tween robot and robo suit (p < .001). All means are listed in
Table 1 and depicted in Figure 3.

Two-dimensional Offset Analysis
The offset analysis only considers the one-dimensional dis-
tance between ray intersection and actual target on the virtual
screens. However, to understand the direction of displace-
ments it is also important to know if both axes of a vector have
to be considered independently from each other and if they
are affected by the avatars and the arm or finger movement.
Therefore, we conducted a multivariate multiple regression
analysis using a mixed effects model with the horizontal and
vertical offset as the two latent dependent variables indicat-
ing the direction of the vector displacement. HORIZONTAL,
VERTICAL were used as continuous covariates given by their
position on the target grid. RAY CAST and AVATARS were
used as exploratory variables of the model. By regarding RAY
CAST as predictor (not as kind of measurement) we learn how
the offset was influenced by arm and finger poses.

The multivariate regression equation with x- and y-offsets
as dependent measures was significant, R2 = .433,R2

Ad j. =

.432,SE = .162,F(19,14146) = 568.9, p < .001. Difference
to the mixed model without AVATARS as a exploratory fac-
tors (R2 = .372,R2

Ad j. = .371) was significant (p < .001).
The results of the complete model were significant for
AVATAR, Pillai’s Trace = .067, F(10,14146) = 98.4, p < .001,
η2 = .035, RAY CAST, Pillai’s Trace= 1.010, F(4,14146) =
7224.3, p < .001, η2 = .506, HORIZONTAL, Pillai’s Trace=
.032, F(2,14146) = 236.8, p < .001, η2 = .032, VERTI-
CAL, Pillai’s Trace= .006, F(2,14146) = 48.0, p < .001,
η2 = .006, and AVATAR×RAY CAST, Pillai’s Trace= .046,

EFRC IFRC FARC

AVATAR M SD M SD M SD

Human 9.15 6.56 37.41 20.77 54.49 21.13
Cartoon 9.31 6.3 40.29 21.74 53.73 21.2
Robo Suit 9.71 6.57 39.28 20.06 56.04 21.62
Robot 9.39 6.42 33.29 21.12 55.14 21.23
Abstract 9.82 5.73 30.14 21.06 56.18 22.21
Invisible 20.19 11.66 33.77 20.24 56.53 20.06

Average 11.26 7.21 35.7 20.83 55.35 21.24
Mayer et al.[27] 8.45 4.54 27.03 18.95 69.66 25.42

Table 1. Absolute means (M) and standard deviations (SD) of the dis-
tance between intersection of the ray cast and target (in cm).
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FARC) averaged over all targets. Error bars show 99% confidence inter-
vals (CI99).

F(20,14146) = 33.8, p < .001,η2 = .023. We learned that
both axes of a vector have to be considered horizontal as well
as in vertical. To understand how each of the two directions
was influenced by our factors, we conducted two separate
univariate mixed-model analyses. All scatterplots (not illus-
trated) of standardized residuals indicated that the data met
the assumptions of homogeneity of variance, linearity, and
homoscedasticity for all regression analyses.

The univariate regression equation for the x-axis was sig-
nificant, R2 = .635,R2

Ad j. = .634,SE = .175,F(19,14146) =
1296, p < .001,d = 1.949. No auto-correlations d were
found (ρ = −.025, p = .004). For offsets on the x-axis, we
found a significant effects for AVATAR, F(5,14146) = 5.071,
p < .001, η2 = .002, RAY CAST, F(2,14146) = 11976.9,
p < .001, η2 = .632, HORIZONTAL, F(1,14146) = 465.6,
p < .001, η2 = .032, VERTICAL, F(1,14146) = 11.5, p <
.001, η2 < .001, and AVATAR×RAY CAST, F(10,14146) =
16.935, p < .001, η2 = .011. The univariate regression equa-
tion for the y-axis was also significant, R2 = .433, R2

Ad j. =

.432, SE = .162, F(19,14146) = 568.9, p < .001, d = 1.917,
and no auto-correlations d were found (ρ = 0.041, p < .001).
For the offsets between the interact of the ray cast and
the target on the y-axis, we found a significant effect for
AVATAR, F(5,14146) = 183.3, p < .001, η2 = .063, RAY

CAST, F(2,14146) = 4624.9, p < .001, η2 = .394, HORI-
ZONTAL, F(1,14146)= 3.7, p= .050, η2 < .001, VERTICAL,
F(1,14146) = 67.7, p< .001, η2 = .038, and AVATAR×RAY

CAST, F(10,14146) = 57.193, p < .001, η2 = .038.

Through multi- and univariate variance analyses using mixed
effects models, we learned that the avatar influenced the offsets
in our pointing experiment for all ray casting techniques as
shown by the interaction effects of the models. The results
also show that the variance of x- and y-offsets is independent
from each other and do not homogeneously tend towards a
single direction. The vector plots of all offsets and ray casting
methods are shown in Figures 4 and 6.

Human Cartoon Robo Suit Robot Abstract Invisible
Avatar

2

1

0

1

Ra
tin

g

Human-Likeness Eeriness Attractiveness

Figure 5. Subjective ratings of the perceived human-likeness, attractive-
ness, and eeriness for each avatars. Error bars show CI95.

Subjective Perception of the Avatars
We conducted three one-way RM-ANOVA to assess the
perceived human-likeness, attractiveness, and eeriness of
each avatar. We used the uncanny valley questionnaire by
Ho and MacDorman [18] and found significant effects on
human-likeness, F(5,138) = 24.719, p < .001, on attractive-
ness, F(5,138) = 6.696, p < .001, however, not on eeriness,
F(5,138) = 1.949, p = .09. Thus, we assume that potential
effects of the uncanny valley as found by prior work are negli-
gible.

Pairwise Bonferroni-corrected post-hoc comparisons of the
perceived human-likeness measures revealed significant ef-
fects between all measures (with p < .05), except between
human and cartoon, abstract and robot, robo suit and the in-
visible, robot and invisible Avatar (with p > .05). Pairwise
comparisons of the perceived attractiveness showed significant
differences between the cartoon and robo suit, abstract and
invisible, as well as between the robo suit and invisible Avatar
(all other with p > .05). Multiple linear regression analyses
were conducted to understand if the perceived measures po-
tentially correlates with the quantitative measures. None of
the regression equations was significant (all with p > .05). All
means ratings of the questionnaire are depicted in Figure 5.

Model Development for Compensation and Prediction
Mayer et al. [28] showed that the presented systematic offsets
can be correct using two-dimensional polynomial functions
with the offset angles αpitch and αyaw as input. They pro-
posed using two functions one to model the offset in pitch
direction and one for the yaw offset. The specific function
was f (αpitch,αyaw) which performed best in the evaluation of
Mayer et al. [28] to compensate the offset:

f4(αp,αy) = x14α
4
p + x13α

4
y + x12α

3
pαy + x11αpα

3
y +

x10α
3
p + x9α

3
y + x8α

2
pα

2
y + x7α

2
pαy + x6αpα

2
y +

x5α
2
p + x4α

2
y + x3αpαy + x2αp + x1αy + x0 (1)

In the following, we will use the function in Equation (1) to
investigate the following three questions: a) can we confirm
the findings by Mayer et al. [27] that EFRC performs the best
in VR; b) can we extend this for avatar independent models,
in detail, we investigate if the correction using Equation (1)
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Figure 6. The displacement error for all ray casting methods (EFRC, IFRC, FARC). The colored points show the mean position of the ray intersecting
with the virtual screen using each avatar.

is independent for AVATARS × RAY CAST; and c) does each
avatar model need its own correction model or can we create a
universal model?

To answer a) we built 18 models one for each AVATARS× RAY
CAST and found that the average remaining error indeed is the
lowest for EFRC, with 10.3cm, followed by IFRC (15.5cm)
and FARC (32.3cm). Respectively this is an improvement of
3.88%, 57.38%, and 54.36%. The coefficients for the AVATAR
dependent models are presented in Table 3.

In line with Mayer et al. [28], we validated these models us-
ing leave-one-participant-out cross-validation (LOPOCV) to
ensure that we can reduce the offset using the function Equa-
tion (1) independent for each AVATARS, answering b). The
results are shown in Table 2. Hence the function from Equa-
tion (1) can improve the pointing accuracy overall. Moreover,
the results showed that the model could again improve EFRC
on average by only 2.92%, while for IFRC we achieved a
mean improvements of 43.93% and the best improvement was
using the FARC with a offset reduction of 51.92%. However,
the smallest remaining offset was achieved by using EFRC
with an average offset of 10.59cm followed by IFRC with
20.71cm and FARC with 34.72cm.

Finally, to check if a universal model exits for all 6 avatars
and thereby answering c), we built three models one for each
RAY CAST technique. We used leave-one-out cross-validation
(LOOCV) this time leaving one avatar out to access the qual-
ity of the models and if each AVATAR needs its own model.
The smallest remaining offset was achieved using EFRC with
an average offset of 10.85cm followed by IFRC with 15.84cm
and FARC with 32.45cm. However, we found that this is only
a offset reduction for IFRC and FARC (56.32% and 54.25%
respectively) while the offset increased for EFRC by −1.0%.
With respect to our 18 avatar dependent models, the three
universal models performed worse for all RAY CAST tech-
niques (EFRC: +5.24%, IFRC: +2.32%, and FARC: +.31%).
Thus, a model for each AVATAR is beneficial to correct mid-air
pointing errors.

DISCUSSION
We conducted a study in VR with 24 participants to investigate
the effects of avatars on mid-air pointing accuracy. Our results
show that the pointing accuracy of EFRC and IFRC was signif-
icantly affected by different avatars. Particularly, the robot and

abstract avatars showed an increased accuracy of the IFRC.
Inaccuracy does not correlate with the degree of perceived
human-likeness. The increased accuracy of IFRC could be
explained by the fact that the limb shapes of the robot and
abstract avatar hands provide more visual information about
the correct pointing direction of the index finger than a human,
robot, or invisible hand. The error of the IFRC increases with
the cartoon avatar, which can be explained by a lack of depth
cues using the cel shader. We conclude that the error does not
correlate with the degree of human-likeness. However, the
rendering of virtual avatars decreases the pointing error in VR
up to 45.3% (human vs. invisible avatar conditions) for EFRC
as the most accurate ray casting method.

We can confirm the overall trend (cf. Foley et al. [13] in the
real environment) that limbs tend to overreach targets to the
opposite side of their favored arm (all participants were right-
handed). We showed that the pointing error is systematically
affected in horizontal as well as in vertical-direction, which
means that both directions should be considered in determin-
ing or compensating the pointing error in VR. A polynomial
correction model further increases accuracy by up to 57%.
LOOCV ensured the validity of the presented models. We
achieved the smallest remaining offset when using EFRC and
a human-like appearance.

Interestingly, the FARC and IFRC methods in the invisible
avatar condition did not show the expected increase of the
mean error as measured in the EFRC method. It is clear that
properly tracked and rendered avatar hands visually help users
bring the position of the index finger into one line with the
target and their eye. However, we assume that the forearm

Remaining Offset (cm) Improvements (%)

AVATAR EFRC IFRC FARC EFRC IFRC FARC

Human 8.4 19.94 34.03 2.32 47.14 51.52
Cartoon 8.49 18.4 33.11 2.47 55.14 51.89
Robo Suit 9.62 20.7 33.94 .93 51.01 52.22
Robot 9.13 16.98 32.87 −.17 49.37 52.4
Abstract 9.78 15.95 34.74 .4 49.52 52.5
Invisible 18.11 32.3 39.64 11.57 11.41 50.98

Average 10.59 20.71 34.72 2.92 43.93 51.92

Table 2. Final LOOCV results using the correction Equation (1) pro-
posed by Mayer et al. [28]. These results are archived using independent
models for AVATAR × RAY CAST.
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coeff pitch yaw pitch yaw pitch yaw pitch yaw pitch yaw pitch yaw

x0 .003 .059 −.02 .07 −.018 .05 .002 .028 −.032 .041 −.016 .089
x1 .098 .001 −.104 −.145 .789 −.622 .387 −.418 .345 −.389 −.098 −.024
x2 .003 −.013 .006 −.03 .003 −.025 .002 −.021 .008 −.025 .048 −.048
x3 .062 −.028 .011 −.06 −.01 .117 −.051 −.011 .051 −.029 .047 −.166
x4 .216 −1.506 .384 −1.696 .995 −2.64 .335 −2.077 1.01 −2.455 2.187 −6.799
x5 −4.082 2.991 −2.913 −.602 −8.341 −5.174 −5.452 −1.986 −8.522 −2.418 −38.352 5.016
x6 −.025 .009 .004 .001 −.056 .042 −.029 .033 −.084 .075 −.031 .12
x7 −.105 .608 −.388 .24 −.194 .897 −.53 .711 −.406 1.31 −1.088 1.165
x8 .458 −1.146 −.694 −1.296 .244 −.554 .326 −1.331 .816 −2.112 2.763 −5.817
x9 4.495 −45.881 37.221 −60.417 50.873 −46.149 14.571 −6.2 65.456 −49.404 24.503 −129.608
x10 −39.805 32.051 35.683 94.242 −349.019 200.829 −162.74 143.21 −125.987 67.883 −314.623 −61.761
x11 −22.595 22.705 −19.123 38.279 −11.299 −18.594 3.602 35.656 −32.53 34.765 15.507 117.665
x12 −381.499 −1571.322 −483.672 −1678.815 −1266.141 −924.374 −425.234 −1369.7 −1348.018 −656.631 −2851.758 4304.068
x13 −2622.557 −1483.611 −2934.119 −307.917 −1573.722 409.755 −2002.314 −590.455 −1034.562 −1323.71 4030.81 −3718.72
x14 45160.606 −86356.916 35311.087 −91272.05 64306.238 −103109.811 37735.506 −113988.665 36316.381 −94136.501 290730.52 80019.157

Table 3. Model coefficients (in 10−5) of the correction function using the IFRC method. The function is given by Equation (1). the six pointing devices
(Human, Cartoon, Robo Suit, Robot, Abstract, Invisible Avatar). The coefficients are rounded with in the 95% confidence bounds.

and index finger are probably not affected to the same extent
as the EFRC method, because of their overall unreliability
while pointing. This implies that the orientation of finger
and forearm does not have the influence while pointing we
have suspected so far. This would also mean that users do
not consciously pay attention to how forearm and fingers are
oriented even when they see realistic bodies. Thus, our results
do not only confirm previous work showing that the EFRC
method is the most accurate method for determining the target
but also that people primarily rely on the pointing direction
between eye and finger tip and not on the directions of their
forearm or index finger.

As we showed that the appearance of the VR avatar has a sig-
nificant effect on the accuracy of the pointing gesture, the rep-
resentation of the own body must be considered while applying
compensating models in VR. The human avatar showed high
accuracy in pointing and was perceived as the most human-like.
None of the ray casting methods were significantly affected
when only either texture or shading was changed (cf. hu-
man, cartoon, and robo suit). Potential effects or distraction
of the human avatars regarding the uncanny valley or other
phenomena could not be found in our study.

CONTRIBUTION
We contribute with our findings that avatars can affect the
accuracy in pointing. We provide six mid-air compensation
models for correcting the pointing offset using the most accu-
rate ray casting method (EFRC) for six different avatar styles
in virtual reality based on motion capturing data of 24 partici-
pants. These models enable finer selection tasks and precise
interactions without using additional hand controllers or input
devices as referential devices. This allows precise interaction
with the VR system without additional controllers. Hand-free
interaction increases the users’ immersion and is an important
step forward in further improvement of virtual applications
and games. We further contribute with fully available source
code and assets used in this experiment3.

3https://github.com/interactionlab/pointing-in-vr-hands

Design Implications
Assuming that people try to hold their finger, hand, and arm in
an optimal manner by proprioceptive and visual information,
we either recommend the use of realistic human avatars or
human-like avatars as referential pointing device in VR or to
use very abstract avatars where the body structure, geometry,
and shading clearly indicate the pointing direction. For exam-
ple, 2D shading such as used for cartoon rendered avatars, is
not recommended when depth cues should provide reliable
information about the correct pointing direction. For highest
precision, we recommend to use EFRC. Considering the IFRC
method, we recommend using less human-like virtual charac-
ters providing visual cues about the actual pointing direction
of the index finger. To determine the correct direction of a
users’ pointing gesture, we recommend to use EFRC and the
compensating model for the desired avatar as it significantly
reduces the error in very immersive environments without
additional visual feedback.

Limitations
More research is needed to understand the effects of VR
avatars on referential gestures such as pointing. Even perfectly
tracked limbs cannot avoid distractions and uncomfortable
feelings caused by the virtual body representation. Though
we increased the accuracy using polynomial models, we ex-
pect florian alt that the accuracy could be further improved,
which is relevant for VR games and immersive applications.
Furthermore, our participants have pointed at targets in front
of them. We assume that there might be a difference when
the target direction is different from the alignment of the body.
We assume that including motion trajectories, additional body
poses, and gaze directions in compensating further decrease
the pointing error.

In the herein presented study, we used whole body avatars with
a human-like body structure. Structural changes (e.g., missing
or additional limbs as investigated by Schwind et al. [39])
of avatars that can affect the pointing accuracy were not in-
vestigated. It is conceivable that there are more styles and
morphologies of virtual avatars that potentially increase the ac-
curacy in free-hand pointing, and it is important to understand
to which extent an immersive VR experience still occurs using

https://github.com/interactionlab/pointing-in-vr-hands


such virtual appearances of one’s own body. Thus, a potential
promising continuation of our work would be an examination
of how the avatar models must be designed to reduce the error
of the pointing gesture while providing high levels of presence
in VR.

Future Work
To design new interaction techniques for VR and games using
pointing gestures, it is important to understand which cues
of the own avatar influence the accuracy in mid-air pointing.
Future work should derive models explaining how informative
cues in the virtual appearance can be used to further improve
the interpretation of the correct pointing direction. Further
research can use our models, for example, to improve locomo-
tion through virtual worlds, for simple selecting tasks, or to
improve the performance while interacting with virtual user
interfaces. Other gestures beyond pointing can be consid-
ered and compensated when systematic errors are occurring.
Previous work shows that eye gaze as ray casting technique
can further increase the accuracy in pointing [20], however,
requires additional equipment and calibration. Future work
can explore a combination of our models and such supporting
devices. Additional referential devices or indicators of the
pointing direction such as cursors or rays potentially help to
further increase the pointing accuracy in VR. Further research
must explore how such devices can be designed that they do
not negatively affect the VR experience. Finally, we also sug-
gest to investigate if modeling and compensating the error in
VR pointing could be further improved by rotating joints or
body poses of the avatar.
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