
VoodooFlash: Authoring across Physical and Digital Form
Wolfgang Spiessl*, Nicolas Villar, Hans Gellersen and Albrecht Schmidt*
Computing Department

Lancaster University
 Lancaster LA1 4WA, UK

{villar, hwg}@comp.lancs.ac.uk

*Research Group Embedded Interaction
University of Munich

Amalienstrasse 17, 80333 Munich, Germany
{wolfgang, albrecht}@hcilab.org

ABSTRACT
Design tools that integrate hardware and software components
facilitate product design work across aspects of physical
form and user interaction, but at the cost of requiring designers
to work with other than their accustomed programming tools.
In this paper we introduce VoodooFlash, a tool designed to
build on the widespread use of Flash while facilitating
design work across physical and digital components.
VoodooFlash extends the existing practice of authoring
interactive applications in terms of arranging components
on a virtual stage, and provides a physical stage on which
controls can be arranged, linked to software components,
and appropriated with other physical design materials.

Author Keywords
Product design, Physical interfaces, Authoring tools, Flash

INTRODUCTION
Product design processes are fast and fluid. Ideas are
rapidly made tangible using paper and foam to create low-
fidelity prototypes that are iteratively refined. But for
interactive products, the design of behaviour and user
interaction usually remains decoupled from the ‘physical
design’ process, and is developed on desktop screens with
‘flat’ representations of the product and tools such as
Adobe Flash to develop the interaction. Various tools have
been emerging to allow designers to better couple physical
design and interaction design, including techniques for
hooking up 3D product models with software simulations
via keyboard emulation [1,5], physical interface toolkits [2],
and complete design environments that cover hardware and
software aspects [3]. In contrast to these, we present an
approach that integrates physical prototyping with Flash, a
predominantly used environment in design practice.

Our design tool, VoodooFlash, is based on the Flash
concept of a stage on which interactive components are
arranged in the process of designing an interface. Alongside
the graphical stage in Flash, we provide a physical stage on

which designers can arrange controls, such as buttons,
rotary knobs and sliders. The graphical and physical stage
are closely coupled, with physical controls represented by
virtual counterparts on the Flash stage, and with Flash
programmed output visually overlaid on the physical stage.

Figure 1 shows the two stages side by side for design of a
map navigation interface. The physical stage serves as an
arena in which designers can work with paper, foam and
other materials around the controls, and the graphical stage
provides the environment in which controls can be
associated with functionality and interactive behaviour. The
two stages are kept tightly synchronized, to allow dynamics
such as rapid change of the behaviour of a control (affected
on the graphical stage) and immediate testing by
manipulating the respective control (on the physical stage).
We have implemented our tool by integrating Flash with
VoodooIO, a physical interface system that supports rapid
and dynamic arrangement of controls on interactive
substrate material [6].

The VoodooFlash tool has been evaluated in design
sessions with Flash experts and with industrial designers.
We report on experience and user feedback from these
studies, after a brief discussion of related work, and of the
integration of Flash with VoodooIO.

BACKGROUND / RELATED WORK
Designers have responded to the increased embedding of
computing in products with techniques for coupling hard
and soft representations of a product in the design process.
The IE system uses micro-switches embedded in foam-core
models and keyboard emulation to facilitate a physical-
interactive experience within hours of an initial design
sketch [1]. Similar approaches have been reported by
Handspring [5], and demonstrated, in more rudimentary
form, in the BOXES system [4]. In common with these
approaches, our VoodooFlash facilitates linkage between
physical model and software parts of a design, but on the
physical side with a richer set of controls (beyond switches
and touch sensors), and on the software side focused on
extension of a design environment already in widespread
use in design practice.

A variety of toolkits and design environments have
emerged for development of physical interactive systems.
Phidgets, for instance, provide physical interface building
blocks analogous to widgets in graphical user interfaces [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

TEI’07, February 15-17, 2007, Baton Rouge, Louisiana, USA.

Copyright 2007 ACM ISBN 978-1-59593-619-6/07/02…$5.00.

Chapter 2 - INTEGRATING THE VIRTUAL AND THE PHYSICAL TEI'07, 15-17 Feb 2007, Baton Rouge, LA, USA

97

The system was initially targeted at making hardware more
accessible by GUI programmers but also provides a Flash
API. VoodooFlash likewise supports Flash development of
the behaviour of physical controls but provides a much
tighter integration by giving physical controls an explicit
representation as Flash components.

The representation of physical devices within the design
environment is a feature our tool shares with d.tools [3].
The d.tools system provides an integrated design
environment that supports ‘plug and draw’ integration of
physical devices and statechart-based editing of interactive
behaviour. However while the system is more open-ended
in terms of hardware that can be integrated it does not
provide support for existing authoring environments.
Specifically the lack of support for Flash developers has
been reported as a distinct shortcoming [3].

The VoodooIO system, on which our Flash extension is
based, is similar to Phidgets in providing a range of
physical controls but in addition emphasizes malleability of
physical interfaces [6]. VoodooIO does this by providing a
substrate material on which controls can be dynamically
added, arranged, manipulated and removed. This substrate
material effectively serves as a network bus to which
controls can be connected effortlessly, wirelessly and faster
than via a standard USB connection (faster both in terms of
user interaction and network discovery).

INTEGRATION OF FLASH AND VOODOOIO
VoodooIO is available as a TCP service to which clients
can connect to set properties of physical controls and to
monitor interaction (i.e. adding, manipulation, removal of a
controls on a substrate). For integration of the system in
Flash, we have built a connection manager and event
dispatcher that, transparently for the user, handle
communication, parsing and event dispatching between
Flash and VoodooIO.

From the user’s perspective, VoodooIO is integrated in the
form of reusable Flash components. These include:
• a connection component through which a VoodooIO

service can be selected (connections to multiple services
are possible, facilitating programming of distributed
physical interfaces),

• a component each for the available VoodooIO control
types (each with predefined event handlers for the three
core VoodooIO events: added, manipulated, removed),

• a filter component that allows filtering of events (for
example to filter events from a particular service if
multiple connections are made).

Users interact with these components as they do with any
other Flash component, using the standard mechanisms for
instantiation of a component, arrangement on or off the
stage, and setting of properties and parameters through
graphically inspectable panels (cf. Figure 2).

Physical controls and corresponding components can be
brought onto their respective stages independently of each
other, in no prescribed order. Associations can at any time
be made and changed, either by using the unique ID that
each VoodooIO control has built-in, or by using a name that
may be pre-programmed for a control, or interactively
assigned.

USE EXPERIENCE
We conducted two studies for evaluation of VoodooFlash
with external users, one in Munich with two Flash experts,
and one in Delft with a larger group, primarily from an
academic industrial design background.

Figure 2: Physical controls are integrated as standard

components in the Flash development environment.

Figure 1. VoodooFlash provides a physical stage for interface prototyping(right) alongside the Adobe Flash’s virtual stage (left).

TEI'07, 15-17 Feb 2007, Baton Rouge, LA, USA Chapter 2 - INTEGRATING THE VIRTUAL AND THE PHYSICAL

98

Munich experience
The study in Munich was organised as a half-day expert
evaluation to which we invited two professional Flash
developers from a local start-up. Both participants had a
background in computing and several years of professional
work experience in Flash application development.

We started with giving our developer-users a 15-minute
introduction to VoodooFlash, using an example design
case. They were then given the task to design a user
interface for an Internet radio, with a design brief
describing the requested functionality (selection of preset
stations grouped by categories, etc.), the available resources
(a set of buttons, knobs, sliders, etc.) and the design focus
(functional interface design, abstracting from issues such as
data formats and storage). Our two users were given two
hours to jointly work on their task. This was followed by an
interactive session, in which they explained their design and
were challenged to carry out a change in the interface on-
the-fly. Finally, we invited and collected general feedback.

Figure 3 shows a series of photos taken during the design
session, and indicates, from left to right, how the two
developers progressed in general with their task. Initially
they sketched a crude design on paper and then laid the
interface out physically with VoodooIO controls. They then
switched their attention to design on the Flash stage,
instantiating, linking and arranging the corresponding
virtual controls and associating them with functionality
programmed in ActionScript 2.0. At a later stage, changes
to the interface configuration were first carried out in the
Flash environment, and then reflected on the physical stage.

Throughout the design session, the two developers
interacted intensely, in continuous joint reflection over their
task (very much exemplifying the reflective prototyping
practice that Hartmann et al. discuss in [3]). One of the two
developers tended to keep control over mouse and keyboard
for work within Flash, and specifically for ActionScript
programming. His design partner would simultaneously
work with the controls on the physical stage, to generate
life input to the script as it evolved, and to continuously try
and test the effect of additions and changes in functionality.

Our users were able to complete their task in the given time,
including iterations for refinement (e.g. fine-tuning the
response to knob rotation to specific value ranges). They
did not require help other than support we had integrated in

the tool environment (documentation of the VoodooIO
API), and they were able to completely abstract from
VoodooIO technical detail (e.g., they did not have to
understand how controls are detected and networked, and at
some point during the session one of our users suggested to
his partner to “stick the two [knobs] further apart”, sus-
pecting they might interfere with each other when to close
together). After completion of the task, the two developers
were challenged to replace a slider they had selected for
volume control with a rotary knob. This only required them
to physically replace the devices, to instantiate, name and
bind a virtual knob, and to replace the name they had used
in ActionScript for the slider with the knob’s name, all of
which was achieved in less than a minute.

In the final feedback session our developer-users reported
that working with VoodooFlash was “identical in terms of
programming” to routine Flash development, “all you had
to know in addition was the VoodooIO events but there are
only four anyway”. They also speculated that development
with separate physical input devices was “probably faster
because you don’t have to go through menus [to trigger
actions]”, and also because mouse and keyboard focus
always remained on the programming task, while the
VoodooIO extension served for testing. The users also
noted the fun factor of the system, and of being able to
immediately see the effect of what you do.

We also prompted our users to suggest improvements to our
tool. Among others, this resulted in consideration of how
displays could be integrated with the physical stage instead
of projection. This led to the idea of cut-outs in the physical
stage, as peephole to a display underneath. It was easy to
try this out, as the VoodooIO material can be cut too any
shape without compromising its functionality (cf. Figure 4).

Figure 3: Participants in our study at Munich initially moved from paper design and physical interface layout to work within Flash

(images on the left), and at later points introduced first in Flash and to then reflect and test them on the physical stage (right).

Figure 4. A cut-out in the physical stage for a display area

Chapter 2 - INTEGRATING THE VIRTUAL AND THE PHYSICAL TEI'07, 15-17 Feb 2007, Baton Rouge, LA, USA

99

Delft experience
The study in Delft was organized as a workshop with an
interdisciplinary project team of about 15, primarily
composed of academic staff and students from industrial
design departments, with some but not expert knowledge of
Flash. The team was given a 30 minute introductory
presentation of our system, and then split into a ‘red’ and a
‘blue’ group, both given the task to develop a version of the
classic Etch-a-Sketch toy for which they were given 2
knobs, 2 sliders and 2 buttons as resource. The groups were
to first develop their own version of Etch-a-Sketch in order
to sketch a trace on a projected display with separate
controls for X- and Y-axis of the cursor, and invited to then
more freely experiment with the system, and to try and
interfere with each others design (facilitated by exposing
VoodooFlash events over a shared network). The workshop
was concluded with a general feedback session.

In contrast to our experience in Munich, the groups
struggled more with their initial task, as the participants
were not as proficient in using ActionScript. The ‘blue’
group though quickly got into a more explorative mode,
mapping controls in intricate ways to functions such as
changing line thickness for etching, so to confuse the ‘red’
group as to how their Etch-a-Sketch version worked. As
programming in ActionScript was taken over by 1-2
individuals in each group, others began to explore how the
small set of controls they were given could be physically
appropriated. Figure 5 shows some examples resulting from
this, from left to right:

• A rotary knob ‘dressed up’ to modify look and feel.
• A slider customized with rubber-band to be self-centering

and usable for rate control input (as opposed to absolute
control).

• Pen and paper used on the physical stage to label and
decorate the physical interface.

• A ‘voodoo doll’ constructed around a strip of VoodooIO
substrate, two sliders and a button, for remote controlling
(and hi-jacking) the visual display of the other group.

In the feedback session, participants welcomed the
combination of physical prototyping with programming in
Flash, as Flash had been adopted as the first language for
design student education in two of the Universities
represented in the workshop. Apart from this, feedback was
more concerned with the physical sub-system of the

VoodooFlash tool. Most workshop participants had
experience with using Phidgets in product design classes,
and in comparison saw in particular the wire-free assembly
of VoodooIO devices as a significant advantage. Their
other concern was ease of physical appropriation, and for
example how more specialised sensors and transducers
could be made to work with VoodooFlash.

CONCLUSION
VoodooFlash achieves a seamless extension of an authoring
environment for work across physical and interaction
aspects in product design and prototyping. The two design
exercises with external users reported in this paper indicate
a very good fit of our tool with existing design practices.
On the interaction design side, the tool extends the widely
used Flash authoring environment in a manner that is
intuitive, and effective in hiding technical detail of integra-
ting a physical interface system. On the physical design
side, the physical stage proves to be effective in supporting
fast and fluid assembly of controls (by virtue of VoodooIO)
and in facilitating appropriation with other physical design
material such as paper, foam, textiles and rubber-band.

ACKNOWLEDGEMENTS
This research was supported by the Equator project (EPSRC,
U.K.) and the Smart Surroundings project (BSIK, NL).

REFERENCES
1. Gill, S. Developing Information Appliance Design Tools

for Designers. Personal and Ubiquitous Comp., 2003.
2. Greenberg, S. and Fitchett, C.. Phidgets: easy

development of physical interfaces through physical
widgets. Proc. UIST ’01, ACM Press (2001), 209–218.

3. Hartmann, B., Klemmer, S., Bernstein, Abdulla, L., Burr,
B., Robinson-Mosher, A. and Gee, J. Reflective Physical
Prototyping through Integrated Design, Test and
Analysis. Proc. UIST 2006, ACM Press, pp. 299-308.

4. Hudson, S. and Mankoff, J. Rapid Construction of
Functioning Physical Interfaces from Cardboard,
Thumbtacks, Tin Foil and Masking Tape. Proc. UIST
2006, ACM Press, pp. 289-298.

5. Pering, C. 2002. Interaction design prototyping of
communicator devices: towards meeting the hardware-
software challenge. interactions 9, 6 (Nov. 2002), 36-46.

6. Villar, N., and Gellersen, H. A Malleable Control
Structure for Softwired User Interfaces. Proc. Tangible
and Embedded Interaction (TEI ’07).

Figure 5: Creative appropriation of the physical design

TEI'07, 15-17 Feb 2007, Baton Rouge, LA, USA Chapter 2 - INTEGRATING THE VIRTUAL AND THE PHYSICAL

100

