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ABSTRACT
The purpose of image restoration is to recover the original state of
damaged images. To overcome the disadvantages of the traditional,
manual image restoration process, like the high time consumption
and required domain knowledge, automatic inpainting methods
have been developed. These methods, however, can have limitations
for complex images and may require a lot of input data. To mitigate
those, we present “interactive Deep Image Prior”, a combination
of manual and automated, Deep-Image-Prior-based restoration in
the form of an interactive process with the human in the loop. In
this process a human can iteratively embed knowledge to provide
guidance and control for the automated inpainting process. For
this purpose, we extended Deep Image Prior with a user interface
which we subsequently analyzed in a user study. Our key question
is whether the interactivity increases the restoration quality sub-
jectively and objectively. Secondarily, we were also interested in
how such a collaborative system is perceived by users.

Our evaluation shows that, even with very little human guidance,
our interactive approach has a restoration performance on par or
superior to other methods. Meanwhile, very positive results of
our user study suggest that learning systems with the human-in-
the-loop positively contribute to user satisfaction. We therefore
conclude that an interactive, cooperative approach is a viable option
for image restoration and potentially other ML tasks where human
knowledge can be a correcting or guiding influence.

CCS CONCEPTS
• Human-centered computing → Collaborative and social
computing systems and tools; • Computing methodologies
→ Neural networks; • Applied computing → Fine arts.
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1 INTRODUCTION
Image inpainting is a process that fills missing sections in images,
such that the restored images are visually plausible. It can be applied
to a variety of real-world applications such as removing unwanted
objects in images or image restoration.

In order to distinguish from the general image inpainting tasks,
we consider image restoration of damaged or corrupted art works
in this paper.

Figure 1: Manually restored murals from Mogao Grotto. Im-
ages in the first row are the damaged murals and the images
in the bottom row are their corresponding line drawings by
experts. Image from [24].

A typical scenario for image restoration is heritage protection.
The Dunhuang grottoes dataset [31] of damaged murals from the
Mogao Grottoes (see Fig. 1) which we use throughout this work is a
popular example for both heritage protection and image restoration
[24]. These murals were created by ancient artists between the 4th
and 14th centuries. The majority of discovered artifacts in those mu-
rals are damaged in some way and continue to deteriorate making
restoration essential for preserving this cultural artifact. Tradition-
ally, the restoration requires a professional to paint manually, which
requires much experience and effort. While this may remain neces-
sary for the physical artifacts, the digitization of such murals can
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be a helpful support. The ability to quickly and reliably restore dig-
ital copies of historical artifacts can for example help to determine
whether a particular restoration seems plausible without having
to work on the valuable original artifact. Additionally, creating a
digital representation of the murals ensures that they are available
even with the progression deterioration. In recent years, numerous
automated frameworks have been proposed for this digital image
processing. The inpaiting frameworks proposed by prior works can
be categorized into two main classes: exemplar-based [4, 21, 26]
and learning-based methods [17, 18, 27]. Those frameworks offer a
digital restoration process which showed decent results for many
image inpainting tasks while being significantly less time-intensive.
However, exemplar-based methods have trouble in recovering com-
plex images, since they only copy existing patches from the same
image. And while Deep Learning (DL) works well when trained
on a large dataset, DL-based approaches severely suffer from over-
fitting when only a small training set is available. The fact that such
datasets are rarely available prevents learning-based methods from
being adopted into many domains.

Furthermore, the restoration performance usually degradeswhen
the corrupted sections become dense or large. Due to the lack of
semantic information in large corrupted areas, restored images
can be filled with artifacts like inconsistent texture or monotone
color. Nevertheless, when missing image features are obvious from
semantic but not structural context, humans can easily deduce
these missing features, while many algorithms may fail. The deep
body of knowledge a human has would allow such inference but
is currently unavailable to the machine. A mechanism to harness
human knowledge in Machine Learning (ML) is still missing. Such
knowledge-based enhancement can make the restoration more ro-
bust than when only learned by algorithms alone. To incorporate
human knowledge in image restoration and improve the restoration
quality, we present a collaborative, interactive image restoration
system which enables humans to iteratively guide and correct an
automated restoration process, embedding their knowledge into
the process.

Directly learning the pixel-level statistics from a small training
set without severe over-fitting is unfortunately not possible. We
took inspiration from Deep Image Prior (DIP) [22]. Ulyanov et al.
[22] claims that the structure of a convolutional generator network
is sufficient to act as image prior, i.e. knowledge available before
the restoration process, for many images, making it independent
of the learning process. This eliminates the need for pre-training
the network on large datasets.

Combining DIP with Human-Computer Interaction resulted in
an interactive Machine Learning (iML) [7] process: After running
the image through the automated DIP restoration, the human oper-
ator can manually refine the image via a user interface. This image
is then passed through the DIP again for polishing and the process
repeats until the user is satisfied. Not only does this mean the pro-
cess can be terminated anytime once a level of quality has been
reached that satisfies human perception, but it also provides more
frequent feedback as to the restoration progress. Since these visual
media are primarily designed for human perception, tailoring the
output of a process like image restoration towards perceived quality
should be a key focus. Additionally, an interactive process informs
the user about their impact on the restoration results as well as

how well the system performs, which can lead to better system
transparency.

As a combination of automated, ML elements with human in-
teraction, this system is a “Human-in-the-Loop” ML system [13].
Those are systems that involve the human in the machines oper-
ations to inform the human and/or to improve the performance,
accuracy or efficiency of the machines.

Since human-in-the-loop approaches require some work from
the user, it is important though, that the interactivity and the human
involvement in the process is designed with human factors in mind
to ensure user acceptance and satisfaction, ideally such that even
people with little restoration expertise should be able to create
plausible images with the proposed system.

We present our interactive Deep Image Prior (iDIP) in Sect. 3,
including how it automates the majority of the process but enables
human operators to embed their knowledge by manually providing
additional image information. We implemented a back-end that
runs the iDIP to perform the automated steps, as well as a front-end
with some drawing capabilities that allows the human to directly
manipulate the intermediate increments.

We then evaluated this systemwith respect to two core questions:
(1) Does the interactive approach produce higher quality

reconstructed images?
We evaluated this in terms of both objective measures like
Dissimilarity Structural Similarity Index Measure (DSSIM,
Sect. 4.2) and subjective perception of users (Sect. 4.3).

(2) How do users view such a system in terms of user ex-
perience and satisfaction?
We evaluated this with a users study (Sect. 4.4).

2 RELATEDWORK
Restoration of historical artifacts and images is of course far from
a new field. It has, however, gained increasing attention recently
due to technological developments. The following section outlines
some of the new approaches to image restoration. It also gives some
context to our contribution, the interactive approach, by providing
some background on iML.

2.1 Image Inpainting
Especially the development of DL and computer vision have con-
tributed to the increased attention inpainting has received recently.
There are two main categories of approaches demonstrating state-
of-the-art performance for inpainting tasks. Exemplar-based restora-
tion algorithms, such as PatchMatch [1] and PatchOffset [10], fill the
missing or damaged parts by copying local patches from the same
image to those regions. PatchMatch [1] quickly finds approximate
nearest-neighbor matches between image patches and was adopted
into Photoshop. PatchOffset [10] minimizes an energy function to
select patches with dominant offsets. This approach is especially
suitable for images with simple and repeating textures. However,
images which contain rich semantic information are difficult to
restore by simply copying local patches. To deal with complex con-
tent information in those missing parts, learning-based methods,
such as EdgeConnect [18] and PartialConv [17] address the im-
age restoration problem in a data-driven manner. These methods
leverage the expressiveness of Deep Neural Networks (DNNs) and
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Figure 2: A framework of Human-in-the-Loop ML, where human perception and intelligence can be tightly integrated with
the advances of ML.

learn the semantics in corrupted regions on massive datasets. In
the past years, many variants of DNN-based algorithms have been
studied for image inpainting, e.g. Deep Convolution Generative
Adversarial Networks (DCGANs) [19] and Deep Convolution Au-
toencoder (DCA) [5], and achieve the state of the art performance
on benchmarks for content-aware image inpainting tasks [14, 30].
EdgeConnect [18] proposed a two-stage adversarial model and can
deal with irregular masks, while PartialConv [17] utilized partial
convolutions with an automatic mask update step. Their data ineffi-
ciency requires that huge amount of data must be used for training
such networks though, which is still infeasible for most practical
image restoration tasks, where very few or even no ground-truth
images are available.

To tackle the data inefficiency problem, Ulyanov et al. utilized
DNN in a different way and presented Deep Image Prior (DIP) [22],
a DNN-based multi-task solution. Compared to classic DNN-based
inpainting approaches, one notable improvement is that it does
not require any pre-training or training data. However, the authors
report that DIP still suffers from overfitting with the increasing
iteration number, since DIP utilizes an over-parameterized DNN.
We will further discuss DIP as the basis of our approach in Sect. 3.1.

2.2 Interactive Machine Learning
In this paper we describe our extension of the DIP method by
bringing the human in the loop, making it an iML setup. iML tools
are gaining interest as a alternative to fully automated ML.

Most ML research until now has concentrated on fully auto-
mated ML, where great advances have been achieved by DL in
recent years, for example, in image classification [23], natural lan-
guage processing [29] and recommender systems [11]. A Classic
Machine Learning (CML) process typically starts with feature en-
gineering by domain experts or specific algorithm input for the
target application. CML users need to work together with domain
experts to identify and determine data patterns. Next, ML experts
experiment with different ML algorithms, tune parameters, tweak

features and collect more data to improve target performance met-
rics. However, CML and many of its applications are considered
hard to approach due to two main reasons: the complexity of the
algorithms and the low data efficiency.

Potential users of ML-based applications are always non-experts
for the underlying task and ML, so that the tight coupling between
system and users can be hardly modelled with CML when no suffi-
cient support from professionals is available. As a result, it is not
possible to apply their perception and insight such as found pat-
terns to enhance the learning algorithms. On the other hand, fully
automated approaches greatly benefit from massive data with large
training sets. However, in some domains with high dimensional
input data, a certain accuracy must be guaranteed while less data is
available [12]. For example, ML algorithms would fail in healthcare
and medical diagnostics where they would have to deal with very
small datasets. This would lead to strong biases for fully automated
approaches due to insufficient and unbalanced training samples.
Therefore, the limited involvement of human expertise and the
low data efficiency are two factors that largely prevented ML from
being adopted into these domains.

iML overcomes the aforementioned disadvantages by extending
ML with interactivity. One way is with systems that use interaction
as an input modality for human knowledge to learn from human
perception. The insights gained by this make it a popular approach
that is quickly becoming widespread [6]. Another method for iML
to improve both task accuracy and user satisfaction of ML systems
is to introduce the human into the training loop of ML algorithms,
which is refereed as Human-in-the-Loop ML.

Human-in-the-Loop ML aims to complement ML algorithms
with human perception and intelligence by tightly integrating hu-
man knowledge with the power of ML. Compared to the one-time
training in CML, Human-in-the-Loop ML breaks down the tasks
in iterative learning loops as shown in Fig. 2. As a first step, an
appropriate basis (intermediate output) is formed by using the CML
algorithms. Then users are able to derive insights from this basis
and contribute to them via a interactive process. The interactive
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process is designed to incorporate input from the user but does
not require much domain knowledge that might be necessary to
work with most CML techniques. Finally, the overall performance
can be boosted by leveraging the knowledge encoded in the hu-
man involvement obtained from a careful designed interactive user
interface.

Recent research provides a number of case studies that show
how existing ML-based systems fail to account for the user, so they
instead explore new Human-in-the-Loop approaches. Caruana et al.
[3] developed an interactive protein taxonomy by clustering low-
level protein structures. This framework allows domain experts to
critique and set new constraints for low-level protein structures
for next iteration. Sanchez-Cortina et al. [20] proposed an auto-
matic speech recognition system with an interactive interface that
facilitates error correction. Fails’ et al. [7] frequently cited work
describes an idea similar to ours. It demonstrates a user interface
where users can train a classifier incrementally by drawing on an
image. With a Human-in-the-Loop ML process, even non-experts
can gain insights into unwieldy datasets and contribute, regardless
of their limited domain knowledge, to the use of complex, data-
driven applications. This process is co-adaptive in nature and relies
on carefully designed interactions between human and machine
[6].

iML is well suited to be applied in image processing, when inter-
actions can be realized by providing pixel-level feedback by directly
sketching on images, which is successfully exploited in several pior
research works.

3 METHOD
In the following section, we present iDIP, a collaborative and in-
teractive image restoration process. We demonstrate its setup and
the methods used to perform the interactive image restoration. Our
method of image reconstruction is based on the DIP, which we
extend with interactivity, making it an iML system [7].

3.1 Deep Image Prior
Unlike most DNN-based image inpainting frameworks, DIP does
not directly learn pixel-level statistics on a training set. Instead,
DIP considers the architecture of Convolution Neural Networks
(CNNs) [15] as image prior and adjusts the network parameters so
that it can recover the undamaged part of one single image. DIP can
be generalized as a fully automated framework for multiple tasks
e.g., image super resolution, image denoising and image inpainting.
Mathematically, DIP minimizes the following loss function in image
inpainting tasks:

min
θ

L = min
θ

| |(fθ (z) − x0) ⊘m0 | |2, (1)

where fθ is a convolutional generator network parameterized with
θ , z is a fixed input, x0 is a corrupted image, ⊘ is the Hadamard
product andm0 is the mask for damage area. By taking a fix noise
input signal z as input, DIP gets rid of the requirement of large
training set while maintaining the iterative, learned improvement
process of learning-based methods [14, 27, 28, 30]. DIP can itera-
tively capture the complex textural semantics in uncorrupted region
using backpropagation algorithm [16] in an end-to-end manner.

With its iterative update quality of the restored image continues to
improve as the generator is trained further.

While this makes DIP quite effective and, when fully automated,
very efficient, overfitting can lead to deteriorating quality espe-
cially when larger areas need to be inpainted. Additionally, when
the content of missing patches is obvious from semantic but not
structural context, humans, who can infer these missing semantics,
have an advantage.

To leverage this human knowledge and to overcome the overfit-
ting issue, we extended DIP to a Human-in-the-Loop ML system.

Figure 3: Left to right: the damaged image from the Mogao
Grotto dataset [31], amask specifying damaged regions, and
a restoration by iDIP.

3.2 Interactive Image Restoration
To our knowledge, there exists no interactive extension of DIP for
inpainting. We therefore attempt to leverage human knowledge
and overcome some of DIP’s disadvantages by extending DIP with
interactivity that brings humans into the training loop.

iDIP restores images by alternately and iteratively exploiting
the image prior and human knowledge. The underlying algorithm
updates the image iteratively, incrementally, and focused onto spe-
cific masked regions (see Fig. 3). Refinement by the user can come
in two forms: First, the user can edit the mask and therefore direct
the DIP to include or exclude specific regions in the restoration
process. Second, the user can paint onto the current increment
to provide information that may not be restorable by structural
information alone. This may for example be features that can be
deduced from image semantics. This in particular is where human-
machine-collaboration can shine, since especially features obvious
from the semantic context are easily detected by humans, from
the original damaged image, but especially from a first iteration
when something in the image looks wrong. Blending hand painted
image features into the structure of the original image can be hard
though. With the collaborative approach, this can be left to the DIP
algorithm.

The results of the human involvement are fed back into the DIP
system which continues training – and therefore refinement of the
image prior – until the next increment is reached. The human is in
control of how many training iterations should be performed for
the next increment, giving more control and making degradation
due to overfitting less likely.

Fig. 4 visualizes the stages of iDIP:
(1) To provide some base information, the first increment x0 is

given without the user refining it.
(2) From then on the user always receives the current increment

xn restored by iDIP.
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Figure 4: iDIP performs an initial restoration using DIP and
then cycles through a phase of user refinement, followed by
iterations of DIP.

(3) In the following painting phase, the user paints onto the
image xn to refine it, yielding the refined image x ′n .

(4) The refined image x ′n is fed back to the DIP algorithm for
another training phase where a set number of training itera-
tions are applied.

(5) After training, the system generates the next increment xn+1
from the further trained generator. At this point the process
starts anew.

With the iterative nature we intend for DIP and human knowl-
edge to jointly boost each other. Besides, this approach should also
give users greater control on the output: by trial-and-error they
can determine what impact their actions have to better gauge their
actions for the next increment.

With the added interactivity and the subsequent breaking down
of the whole restoration into smaller increments, the user remains
in control of the algorithms progress. Frequent interactions can
also contribute to greater user satisfaction. It might even give the
user insights into how the algorithm performs which can further
add to the user experience and transparency of the system.

By inspecting intermediate steps it can become clear early on
when the algorithm fails to perform as expected and when changes
are necessary. The worst case, when the restoration fails altogether
and has to be stopped, can also be detected earlier, reducing the
risk that comes with unsupervised long-running jobs. Likewise, the
restoration can also deliberately be stopped to prevent overfitting,
visible for example when textural consistency degrades, which can
happen with to large a number of DIP iterations [22].

To facilitate our interactive system, we implemented the DIP
as a backend that accepts requests for iterations via an API using
Python. To achieve acceptable response time, as necessary for an
interactive system, we ran the DIP backend on a server with the
setup of 64 GB RAM, one 20-core Intel® Xeon® CPU and 8 Nvidia
GeForce® RTX1080 GPUs. Our DIP implementations follows the
original repository 1 and uses one GPU to avoid the complexity
caused by gradient parallelization.

1https://github.com/DmitryUlyanov/deep-image-prior

Figure 5: The user interface for the interactive image re-
construction. At the center is the image that is being recon-
structedwith themask as red overlay. Top right the different
layers. At the bottom the different tools.

3.3 User Interface and Interaction
While the backend is fully capable of running the DIP image recon-
struction without any human intervention, our interactive system
requires a frontend for a human operator to observe the progress
and provide additional information. This happens via direct ma-
nipulation by painting onto the image. Therefore we create an
HTML/JavaScript application for a web client, as shown in Fig. 5,
which includes the following functions:

• It shows a composition of the known, undamaged image
regions with the reconstructed patches filled in. The compo-
sition is necessary to give the user feedback as to how far
the reconstruction has progressed while also showing the
original context.

• Next to the composition the user can also toggle the visibility
of the pure reconstructed image, the mask, if available, and
the currently added paint as individual layers. This is a fea-
ture also commonly found in image manipulation software
and allows the users to choose the context appropriate for
them.

• On the paint layer the user can draw using a simple spray
tool, which randomly colours pixels in a set radius in a set
colour. We chose this method over a pen tool that pains
all pixels within a radius because the textured images we
reconstructed rarely had large patches of a single colour.

• The images from the Mogao Grottoes dataset come with
a mask that should define the damaged region. For deal-
ing with these masks we added two modes. While in the
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first, constrained mode, the user could only draw inside the
masked area, i.e. the area that needed reconstruction. This
was ideal for when the users did not want to modify the
original image, accidentally changing undamaged areas. In
the second, free mode, the user could draw anywhere on the
image. This was useful for corrections when the algorithm
incorrectly reconstructed the image but flagged the area as
already reconstructed and therefore masked. We also gave
the users a tool for editing the mask.

• After finishing the painting, the user could send the image
to the backend while providing a number of how many iter-
ations of the DIP should be applied for the next increment.
More iterations would lead to higher reconstruction quality
but would take more time.

• There were also some additional convenience feature like
undo and redo, a colour picker and an export feature which
allowed the user to download the result.

To accommodate all drawing functionality, the images andmasks
are treated as different layer for the whole client-side process. Once
the users chooses to transmit them for additional DIP iterations,
they are composited on the client and submitted to the servers
API, which triggers the DIP. Once the DIP has completed the re-
quested number of DIP runs, the result is again sent to the client
for additional drawing or for the users to export the image as fi-
nal result. This way the performance and therefore the wait time
for the DIP is independent from the client hardware. This was a
prerequisite for performing the user study, since this way we are
independent in terms of client hardware and therefore location and
could scale the processing time down by running the backend on
the aforementioned hardware.

4 EVALUATION
To ensure our interactive process fulfills its purpose, namely improv-
ing image restoration, we subsequently analyzed it. The analysis
consists of two parts: regarding restoration quality and regarding
usability and overall user perception of the tool and process.

The evaluation of the restoration quality firstly uses two quality
measures for comparison with five baseline algorithms. However,
these pixel-wise measures cannot account for the the criteria a
human would use to judge the quality such as semantic correct-
ness and consistency. As a consequence, we also asked humans
to subjectively judge the different reconstructed images from our
iDIP approach in comparison to those reconstructed with the five
alternative methods listed below, two of which are exemplar-based,
two learning-based and the pure DIP. Note that to evaluate the
learning model, we used the pre-trained model on Places2 2 [32],
because it is one of the largest and widely-used scene recognition
dataset.

The following section outlines the setup for these evaluations as
well as the individual results.

2http://places2.csail.mit.edu/

Figure 6: The Mogao Grotto as an example of damaged cul-
tural artifacts in need of restoration. The sheer volume of
more than 45,000m2 of murals and more than 2,000 statues
motivates the need for automated restoration. Image taken
from [31].

4.1 Evaluation Setup
4.1.1 Dataset. To evaluate a data-driven method we required a
dataset to work with. We chose the Mogao Grottoes dataset 3 [31]
which was readily available and matched our use-case of image
restoration. It contains 500 full frame paintings with artificially
generated masks for damaged regions of the more than 45,000m2

of murals in the grottoes. The masks were generated using random
walks from randomly selected points on the image [31]. One might
argue that this process roughly matches how damage due to mois-
ture or fungi spreads. We determined by visual inspection, that
these masks, as seen in Fig. 3, seem like plausible damaged areas.
For our evaluation we randomly picked ten sets of original ground
truth image, generated mask, and resulting artificially damaged
image.

4.1.2 Metrics. For the comparison, we utilized Local Mean Square
Error (LMSE) [8] and Dissimilar Structural Similarity IndexMeasure
(DSSIM) [25] as our quality measures for restoration performance.
Means Square Error (MSE) is a common and easy-to-compute mea-
sure of estimation quality of the estimated values of independent
variables. However, we would like each local region of the estimated
images to be exactly same like the ground truth image. For this
purpose, we computed the MSE of the masked region, which is
equivalent to its LMSE by setting k = 1. The Structural Similarity
Index Measure (SSIM) is a improved version of similarity measure
for predicting the perceived quality of digital images or videos.
The SSIM is a full reference metric, which means it is based on an
initial uncompressed image (ground truth) as reference. By using

3The Mogao Grottoes, also known as the Thousand Buddha Grottoes or Caves of the
Thousand Buddhas, consist of 492 temples spread over 25 km (16 mi) in the area to the
southeast of the ancient city Dunhuang, an oasis located at a religious and cultural
crossroad on the Silk Road, in the Gansu province, China. The grottoes may also be
known as the Dunhuang Caves. The grottoes contain more than 10000 full frame
paintings, which are consecutively created by ancient artists over a thousand years
between the 4th and the 14th centuries.
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Figure 7: Examples of images that can be found in theMogao
Grottoes dataset. Image taken from [31]

.

LMSE DSSIM

EdgeConnect 629.65*** 0.2803***
PartialConv 2550.02*** 02816***
PatchMatch 185.68 0.2423
PatchOffset 558.05*** 0.2247*
DIP 214.23 0.2228
iDIP 207.37 0.2227

Table 1: Results for the restoration metrics. Lower values
are better. Significance levels for comparison to iDIP using
Mann-Whitney-U test.

DSSIM = 1−SSIM
2 we let the DSSIM be inversely proportional to

restoration quality as LMSE.

4.1.3 Baselines. To show the effectiveness of our interactive ap-
proach, we compared it with five state-of-the-art algorithms:

• EdgeConnect [18] proposed a two-stage adversarial model
and can deal with irregular masks.

• PartialConv [17] used partial convolutions with an auto-
matic mask update step.

• PatchMatch [1] quickly finds approximate nearest-neighbor
matches between image patches, a process also adopted in
some image manipulation software.

• PatchOffset [10]minimizes an energy function to find patches
with dominant offsets.

• Deep Image Prior (DIP) [22] minimizes the Mean Squared
Error (MSE) in the unmasked region while exploiting prior
image information contained in the architecture of CNNs.

Fig. 8 shows a comparison of restored images from each method.

4.2 Objective Evaluation
To compare the reconstructed image to the baseline we used es-
tablished measures for the comparison of images: We compute the
Dissimilarity Structural Similarity Index Measure (DSSIM) [25] and
the Local Mean Squared Error (LMSE) [8] between the restored and

ground truth images. We used the Shapiro-Wilk test to determine
that our quality metrics were not normally distributed. We there-
fore continued the comparison of the different methods using a
pairwise comparison by Mann–Whitney-U test (see Tab. 1).

Clearly visible in the scores is the fact that, although we used
the pre-trained model, the performances of two learning-based
methods are worst for both DSSIM and LMSE. The reason is that the
styles varied too much on training set and Mogao Grottoes Painting
Dataset. This is another clear indicator that learning-basedmethods,
especially deep learning methods, are unsuitable for inpainting task
with few training samples.

Of the other methods, even though DIP optimizes on Mean
Square Error, PatchMatch has the best LMSE score, although not
statistically significant. Similarly there is no significant difference
between the performance of pure DIP and our approach. Merely
PatchOffset performed significantly worse than all other threemeth-
ods (p < 0.001).

Results for DSSIMwere similar with no significant differences be-
tween PatchMatch, DIP, and iDIP, while PatchOffset again showed
significantly worse performance than our approach (p = 0.010).
compare to the three other methods.

While significant improvement would have been more desirable,
we see these results as an indicator that our approach achieves
at least performance on par with these baselines regarding the
objective measures.

4.3 Subjective Evaluation
While the aforementioned quality metrics can be an indicator for
the quality of the image reconstruction, subjective perception re-
mains an important factor when deciding whether a certain quality
threshold has been reached or whether the reconstruction makes
sense to begin with. As visible in Fig. 9, the differences between
the methods can be subtle but may still be noticed, consciously or
subconsciously, by humans. This does not only apply to interactive
approaches, but to image reconstruction in general. Consequently
we decided to conduct a user study with two goals: to evaluate the
subjective quality of our image reconstruction as described below
and to receive feedback on the overall usability of the tool and
method, as described in the following Sect. 4.4.

Participants in this study (n = 19, 9 male, 9 female, 1 other, see
Fig. 10) were people with mixed expertise with image manipulation
and generally limited prior experience with image reconstruction
but overall good self-reported technology skills (see Fig. 11).

To gauge the subjectively perceived image quality, we asked par-
ticipants to judge restored images. We first explained the purpose of
our tool and gave a quick introduction of the functionality. We then
had participants play around and restore some images, described
further in the following section.

After getting familiar with the capabilities of the image restora-
tion system, we presented ten images, restored by six methods
each, in randomized order. For each image the participants had to
choose the two restorations they considered best, resulting in each
participant choosing 20 images, yielding 380 restored images being
selected.

Fig. 12 shows the absolute frequency of the participants choice.
EdgeConnect and PartialConv are not shown since they had not
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(a) Corrupted
Image

(b) EdgeConnect (c) PatialConv (d) PatchOffset (f) PatchMatch (g) DIP (h) iDIP

Figure 8: Images restored by our baselines and iDIP.

Figure 9: Left to right: the damaged image, the image restored by DIP, the image restored by iDIP, and a map showing the
different regions between the two approaches. White level of the difference map has been increased by 75% for clarity.

Figure 10: Demographic data of our 19 test participants.

Figure 11: Prior knowledge of the participants. Self-reported
on a five-point Likert scale.

been chosen at all. Interestingly, PatchMatch and PatchOffset were
chosen almost equally often, 23 and 18 times respectively, even
though their difference in the objective measures was considerable.
This is mostly due to the worse performance of PatchMatch, which
was on par with DIP and iDIP for DSSIM, even better for LMSE,
but was chosen considerably less frequently, only by 12.1% of par-
ticipants. DIP meanwhile was chosen by 78.9% of participants as

Figure 12: Frequency of how often participants chose each
method in the top two restorations.

one of the top two and our approach, iDIP, was chosen for almost
all images by all participants, 99.5% of times in total.

Clearly there is a difference between objective and subjective
perception of the restored images. So while – by objective measure –
iDIP is merely on par with some of the baselines, by the standard of
human perception it outperforms all five baselines. The fact that it
even outperforms the non-interactive DIP also is a strong indicator
that the added interactivity improves the output quality.

4.4 User Experience Evaluation
While the improved quality is to be viewed positively, the improve-
ments of an interactive approach can only be relevant when users
choose to adopt it. We therefore asked the participants of the subjec-
tive evaluation for qualitative and quantitative feedback regarding
the usability of our tool using a questionnaire including System Us-
ability Scale [2] and NASA TLX [9]. The questionnaire also included
questions regarding the benefits of machine learning for tools in
general and for image restoration in particular. Participants filled
this questionnaire after using our tool for restoring two images:
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Figure 13: Individual Results of the System Usability Scale

After an introduction and explanation of the tool and its key fea-
tures, each participant worked on two images. As described above,
each damaged image received 500 DIP iterations initially to provide
a basis for the painting. After this followed the painting phase in
which the participants painted their correction and guidance. One
of the two images the participants restored in a single increment
with 1200 DIP runs after the painting phase. The other image was
restored in two increments, the first with 500 iterations of DIP,
followed by another painting phase, followed by 700 iterations of
DIP. The order of those two variants was randomized between par-
ticipants. In order to time-box the study we restricted the painting
phases in the restoration process to five minutes each.

Regarding the user experience with our tool, three participants
mentioned minor usability issues, none of which were an imped-
iment to task-completion. In general the feedback towards the
tool was very positive. Some participants requested additional fea-
tures like more complex drawing capabilities. The only frequently
voiced criticism was the processing time of the image reconstruc-
tion process being too long. This, however, is independent from
the interactivity and could be alleviated by improvements to the
underlying ML algorithms or running them on stronger hardware.

Likewise, the scores in the System Usability Scale are very posi-
tive with a total average score of 85 (out of 100). Individual results
are shown in Fig. 13 Ease of use was rated very positively and
the system was rated easy to learn, even though image restoration
usually is a fairly specialized activity. The only relatively evenly
distributed item in the SUS was “I think I would like to use this
system frequently”. This may very well be the case because image
reconstruction is a very specialized activity and not very common
in the day-to-day of our participants.

The NASA TLX showed relatively low reported values for work-
load on most scales. The notable exception in the TLX scales being
“How successful were you in accomplishing what you were asked
to do?” where our participants reported an average of 7.55 (out of
10). Given the relatively high number of iterations and amount of
time necessary for a proper image reconstruction, coupled with

Figure 14: The participants attitude towards ML and ML in
tools. Self-reported on a five-point Liker scale. Higher val-
ues mean stronger agreement with the statement.

our time constraint, it is unsurprising that participants felt unsatis-
fied with their results. Still, they agreed with our assessment that
the cooperative, interactive approach can be a serious time-saver
compared to the traditional manual restoration.

Overal the participants opinion towards ML supported tools and
was very positive (see Fig. 14), with participants considering ML
als support mechanism beneficial for effectiveness and efficiency.
In particular for image reconstruction the participants saw the
benefit of ML support. They were however critical of the time
requirements, which matches the qualitative feedback, and how
well the automated process compares to a restoration done by a
human alone.

Participants responded positively though to adopting ML for
support in tools like ours although with the qualification of adding
it only when necessary or where it made sense. In summary, the
feedback towards ML as support mechanism in general and towards
our tool in particular was very positive, which to us is a clear sign
that interactive ML is a promising direction for improving work-
flows that are currently work- or time-intensive or could otherwise
be improved by semi-automation.

5 DISCUSSION
These results look promising, indicating that added interactivity is
a positive influence on image restoration.

Since our questionnaire also included questions on collaborative
iML systems for other domains, which participants responded very
positively towards, it is fair to state that at least in their subjective
perception, interactivity might be adopted in other settings where
task are supported by machine learning. Whether a collaborative
system does in fact offer benefits in these situations cannot be
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inferred from the image restoration scenario though, so it remains
for future work. For image restoration, the benefits are fairly clear
in both quality and user satisfaction though.

Nonetheless, these benefits have to be weighed against the cost,
since of course a solution based on computation alone does not
require any human interaction and is therefore still more time-
efficient than an interactive solution. The fact that our participants
achieved good results with very little interaction suggests that the
human involvement is only a small fraction of the total time the
process takes. Additionally, knowing whether the algorithm is per-
forming as intended and the option to interrupt early on can be a
significant gain in cases where the algorithm fails and would other-
wise have run to completion only to return an unsatisfactory result.
There is also added flexibility in our approach, since the total time
consumption can be adjusted depending on the requirements by
choosing different settings for how many intermediate increments
are created and for how many iterations the DIP runs for each
increment. Figuring out the trade-off between control and time
by varying the number of increments remains an open question
though.

On the other side of the time-quality trade-off there is also a
different consideration: there are applications of image restoration
where quality is the primary objective and the time-consumption
is secondary. In these cases a manual approach might still be the
most viable option. As we mentioned before though, a pure digital
reconstruction is often not the ultimate goal and only serves as
a frame of reference or material for discussion. The interactive
approach still offers this handily. The reduced entry barrier in terms
of necessary expertise also enables more people to participate. This
may positively contribute to debate what the ideal reconstruction
may be, since the results of different people can differ to a greater
degree than when only a single algorithm were used.

Of course, the quality of the restored images varies, depending
on the expertise of the operator. This has the downside that inex-
perienced users may easily give inappropriate feedback, different
from what a professionals might provide. This could be in direct
contradiction to the actual true image patterns. Unfortunately, these
improper interventions can not be recognized by iDIP and are there-
fore considered to be ground truth in the training process. Such
ill-regularized DIP could easily degrade the restoration performance
instead of improving it.

Also regarding the image manipulation skill, our interface was
not specifically tailored towards experts, as our participants were
no image restoration professionals. People with year long experi-
ence and with an interface tailored to their needs may produce even
better results. The quality is also dependent on the functionality the
interactive tool offers. We only implemented rudimentary painting
functionality. If such a tool had a rich tool palette as found in com-
mon image manipulation software, the options for an expert are
much broader, potentially leading to even better results. Inversely,
it may also be possible to implement an image restoration function-
ality or similar interactive machine learning supported features into
existing image manipulation software, where they would benefit
greatly from the existing general purpose tool ecosystem.

Whether our results do apply to all images one might want to
restore is also debatable. The cave painting restoration use case is
a plausible but not a common one. However, these paintings were

fairly abstract, since motives were not entirely clear from just the
small subsections we used in our study. If human involvement is
beneficial for abstract visuals, where even the human has to more
heavily rely on structural information, it seems plausible that the
benefit of human knowledge and semantic recognition becomes
even greater for images with clearer motives. This remains to be
validated in future work though.

Another issue of generalizability is the specialized nature of im-
age restoration. As our participants reported, they were no experts
for image reconstruction. While this can be seen as a positive in the
sense that our tool is also usable for non-experts, it does limit the
expressive power of our study for image restoration professionals
and their work. It does seem reasonable though to assume that
the benefits of an interactive approach would transfer to an expert
interface, even it that might differ in functionality and depth.

6 CONCLUSION
In this paper we have described iDIP, our Human-in-the-Loop
framework for interactive image restoration. This framework allows
users to interactively contribute their knowledge to a DIP-based
image restoration process such that both image prior and human
knowledge are used as a collaborative iML system.We have outlined
our implementation of this system as well as how we evaluated
whether the interactive approach improves output quality and how
it is perceived by users. Our experiments show that the interactivity
positively affects the output quality as iDIP is on par with or better
than the five state of the art baselines. Meanwhile, according to
the user study, we achieved good user satisfaction, as participants
stated their appreciation and confidence of the proposed method.
They also see similar approaches for other tasks and domains a
viable prospect. These positive results for our two core research
questions indicate to us that iML is desirable for image restoration.
Our study participants also enjoyed the collaborative setup and saw
its potential. We leave the adoption to other domains and tasks as
future work.
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