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ABSTRACT

Software using Machine Learning algorithms is becoming ever
more ubiquitous making it equally important to have good devel-
opment processes and practices. Whether we can apply insights
from software development research remains open though, since
it is not yet clear, whether data-driven development has the same
requirements as its traditional counterpart. We used eye tracking
to investigate whether the code reading behaviour of developers
differs between code that uses Machine Learning and code that
does not. Our data shows that there are differences in what parts
of the code people consider of interest and how they read it. This
is a consequence of differences in both syntax and semantics of the
code. This reading behaviour already shows that we cannot take
existing solutions as universally applicable. In the future, methods
that support Machine Learning must iterate on existing knowledge
to meet the challenges of data-driven development.
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1 INTRODUCTION

With Machine Learning (ML) becoming a common part of everyday
software, the interest in its development and the management of
the necessary data volumes is growing steadily. Particularly for
applications in critical domains - like healthcare [5, 16, 22, 34, 39],
the automotive industry [15, 19, 25, 29] or IT security [17, 40] -
it becomes important to have clear understanding and a rigorous
development process for data-driven software.
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While there is some research in making the user-facing parts
of data-driven software more accessible, we still have a limited
understanding of how data-driven differs from traditional software
on the developer side, e.g. what are the best practices and processes
to deal with data-driven software during development to ensure its
quality. Do they differ between these development paradigms? Or
are they the same?

Ideally, of course, we would want to build on the decades of
research in general “traditional” software development, but it is still
open whether this is a legitimate path: ML, other rather all data-
driven methods, are a different development paradigm; one that
requires new skills, methods and processes. A first step, therefore,
must be to investigate how this paradigm compares to the more
traditional way of creating software, which focuses on algorithms
rather than data. Only then do we know whether the knowledge
transfer from prior work makes sense.

In this paper we contribute to this process, focusing on how
developers interact with their code, specifically how they read it
and whether they read ML code differently than more traditional
code. To this end, we conducted a preliminary user study, which
explores and compares and reading behaviour of programmers.

Sect. 3 outlines our study setup for recording the programmers
gaze data while reading the code and additional qualitative feed-
back. It also gives an overview of how we evaluated this data. We
visualize the data and present specific results in Sect. 4 and high-
light implications and potential applications for this information in
Sect. 5.

2 RELATED WORK

While ML is around for half a century, only the advances in storage
and processing power of the last decades have made it useful for a
large amount of real world applications. Naturally, the complexity
of the data, models, and software has increased enormously.

Many efforts are being undertaken to counter this and make ML
easier to understand [2, 11, 13, 14, 18, 20, 21, 39]. While often not
the main target group, the developer has been recognized as an
essential stakeholder that needs support mechanisms for working
with ML systems [6, 8, 28, 30].

In an effort to support ML development, academia and industry
have jumped ahead and created a myriad of tools. Libraries like
TensorFlow [1] or Scikit-learn [27] make it easier to set up complex
ML models but often rely on low-level data management. The way
they are programmed also does seemingly not differ much from
traditional programming in appearance, tooling, etc., indicating
how the libraries came to be. Yet, it this iteration on existing meth-
ods the correct choice or does the paradigmatic shift require new
methods and tools?

Graphical development tools like RapidMiner [31] or Orange
[10], by comparison, hide away a lot of the low-level programming
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and offer a high-level interface for the data pipeline. They hearken
back to graphical tools as used for example in Model-Driven Devel-
opment [9, 35, 36]. For traditional software development, graphical
tools have not found wide acclaim but remain a niche tool. It re-
mains to be seen, whether graphical tools find greater adoption for
data-driven development where the high-level view certainly has
benefits.

The development of tools, however, is a fairly advanced steps,
although one that frequently precedes detailed empirical analysis.
Still, to best support developers it is valuable to first understand how
they work and this particular case, how they work differently for
data-driven software. There is some research on this comparison so
far, e.g. Thung et al. [38] who applied empirical bug analysis to ML
code, which before had only been used for traditional software. Sun
et al. [37] on the other hand analyzed how bugs are then fixed in
ML projects on the code sharing platform GitHub. Bangash et al. [7]
looked at questions from the popular Q&A platform StackOverflow
that deal with ML and determined that the way these questions are
asked and answered is still lacking.

As some of the authors above point out though, their work is
merely an iteration of similar methods being applied to traditional
software development. Understanding how people work in the
traditional setting has been subject of a much greater body of re-
search. Particularly the sub-field of Code Comprehension (cf. [41]
for an overview) deals with the question what contributes to the
understanding of code and how to support it.

One example of this effort is the work by Rodeghero et al. [32]
who used eye tracking with the goal of summarizing Java code.
In their experiments, they had their participants, regular software
developers, read and manually summarize different Java methods.
They then used the gaze data to determine what the programmers
found important during reading. Using the Vector Space Model (cf.
[33]), they extracted important keywords from the Java methods in
order to then automatically summarize source code to aid in code
comprehension.

Ishida and Uwano [23] also highlight the importance of program
understanding for efficient software development. They performed
a combined eye tracking and EEG study during which programmers
had to solve tasks in code, while they recorded both their eye
movements and brain waves. Analyzing 80 data sets, Ishida and
Uwano found a correlation of the fixation ratio and EEG activity
with the comprehension of materials.

Using eye tracking in an effort to help with understanding un-
familiar code, Ahrens et al. [4] recorded gaze data, which they
visualized via heatmaps to guide the readers attention to rele-
vant code sections. While helpful for some, their results also
show that too much visual information can be detrimental and
distracting.

All of the examples, however, focus on “traditional” software
code where the developer encodes information about the program
directly in instructions. For now there appears to be a gap in the
literature how all these effects play out when the program is not
directly encoded but is automatically extracted from data, while the
written code deals mostly with just preparing the necessary data
sets. The remainder of this paper deals with our efforts to determine
whether this has an effect that is detectable in gaze data.
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3 METHODS

The following section describes the design of our eye tracking study,
from its preparation to data collection and evaluation. Our study is
as a within-subject design where we asked participants to look at
ML code snippets as well as traditional Python code and to then
summarize it while we tracked their eye movement.

3.1 Research Questions

Interested in how people read ML code, we formulated the following
research questions:

RQ1 What parts of the ML code do participants look at most
(dwell time)?

RQ2 What aspects/points of interest of the code do participants
consider most relevant?

RQ3 Do programmers look at different aspects of ML code versus
traditional code to understand it?

The first question is a primarily quantitative evaluation of the
data and should give an indication of what parts of the code are
important. RQ2 expands on this data using the total dwell time
and the subjective opinions of participants from a questionnaire.
The primary research interest, however, of course lies in RQ3: to
determine whether ML as a new development paradigm and ML
code specifically are equivalent to traditional software of whether
it is treated fundamentally differently. If it were similar, we could
rely on existing research while, if ML proves to be very different,
the transfer of knowledge may not be as straight forward.

3.2 Study Procedure

To answer these questions we conducted a user study during which
participants had to read code, ML and traditional, while we recorded
their eye movement. We invited the participants to our study en-
vironment consisting of a neutral, well lit desk. We provided a
computer with the study user interface (see Fig. 1), as well as a
keyboard, mouse and the eye tracker mounted on the monitor.

As eye tracker we used a tobii-92 on-screen tracker, with a sam-
pling rate of 90 Hz, which was attached to the bottom of the screen.
It was re-calibrated before each use to minimize measurement er-
rors.

In each run, one subject spent about 45 minutes working on spe-
cific tasks, starting with the pre-questionnaire, followed by a series
of the code snippet which they had to summarize, and wrapping up
with the post-questionnaire. Since participants could decide when
they considered a code snipped completed, the total time varied

slightly.

3.3 Tasks

In order for the study participants to get familiar with the code and
thus to look at it longer and more intensely, we considered tasks
that they should solve while reading the code. In our study we asked
participants to “describe what happens (in each) code example (and
to write down what they) think the developer of this code intend it
to do?" For the longest snippet, we also asked participants to write
an additional doc-comment for more in-depth insights. These tasks
are intended to foster engagement of the participants with the code;
it also gives us an idea whether the subjects actually understood
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Figure 1: Screenshot of the user interface used in the study
with the code on the left (1) and instructions and input field
on the right (2).

the code snippet and what they subjectively focused on. It also acts
as a simple sanity check, to verify that participants did, in fact, read
the code.

3.4 Code Examples

We asked the study participants to look at eight code snippets in
total, four of which are code that uses ML. The other four snippets
were written as “traditional” code that does not use ML and were of
similar length. Every participant looked at the same code snippets
in the same order.

Both types of code we selected from GitHub!, an online platform
for sharing code, based on expert opinions. All code is written in
Python, which was the natural choice, since it is a popular lan-
guage for ML applications. At the same time, there are also many
“traditional” applications available in Python.

Since we could not assume our participants to be ML experts,
we decided to use code that is often used in ML tutorials, using
the popular “Iris” [12] and MNIST [24] data set. We made sure to
choose code that was short enough to be shown without scrolling
to keep the eye tracking data consistent.

3.5 User Interface

Similar to Rodeghero et al. [32] we built a user interface (see Fig. 1)
for the study, which had the following functionality:

e On the left side the user can see a text field, which displays
the code. For the code we used a non-proportional font, as is
common for code editors, but without syntax highlighting
to eliminate this influence on the results.

o On the right side we placed a small text editor, allowing user
to log their answers to the task directly in the interface. The
instructions are displayed above.

o The interface allows participants to move through the ex-
periment at their own pace, committing their answers and
moving on to the next code snippet via a button in the bottom
right.

o Overall, the interface is kept muted in tones and design so
that it does not distract from the code.

https://github.com
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Traditional Code Example
def list depth(items:1list) -> <nt:
max_depth = il fE@llisistance (items, list)IFIETNE
for item in items:
iisinstance(items, list)B .
max depth = max(max_depth, list_depth(item) + il) | FunctionParameter
it Function Call

Variable Declaration

Function Signature

Function Body

Literal

Machine Learning Code Example
- — index-based Access
from sklearn.datasets import load_iris - -
from sklearn.tree dimport DecisionTreeClassifie iifiCondition

if Bod:
iris = 'Load_'ilr%I - -
X = iris.datal # petal length and width
y = iris.target

Loop Condition
Loop Body

tree_clf = Dec'is'ionTreeC'l.ass'iﬁer(max,depth=, random_state="8l)
tree_clf.fit(X, y)

return statement

Class.

Figure 2: Two examples of the grammar-based subdivision
of the code in areas of interest. In areas where the classifica-
tion overlaps, the most specific type is shown.

As soon as the interface is opened the eye tracker records the
study participants eye movements. The task interface is able to
measure the time a participant takes engage with the code. This
allows us to create static information visualizations for data analysis
as well as dynamic time lapses of the collected gaze data. These are
particularly helpful to review how a subject read the code in real
time.

The interface also had an indicator for the study conductor in
case the participant is not looking at the eye tracker or the tracker
failed to record allowing us to ensure the eye tracking process is
working as intended.

3.6 Questionnaire

As mentioned, aside from the interface for reading the code, partic-
ipants filled in a pre- and post-questionnaire.

In the pre-questionnaire we asked for demographic data, self-
reporting of the general programming skills and in their previous
ML experience using five-point Likert scales.

After conducting the eye tracking study, the post-questionnaire
asked open questions about the code-reading during the study,
particularly any highlights in the examples in terms of complexity,
code structures that contribute to understanding, and differences
between the ML and non-ML code.

3.7 Evaluation

To evaluate the gaze data, we used both qualitative analysis us-
ing visualizations and quantitative measures based on the formal
grammar underlying the Python programming language.

The gaze data has two aspects we were interested in: spatial and
temporal. The spatial distribution of gaze points, i.e. parts of the
screen a person look at, we visualized using heat maps, smoothed
with kernel density estimation (KDE). Fig. 3 shows an example
of such a heatmap as overlay over the code. The KDE uses the
seaborn library [42] with the Epanechnikov kernel and dynamically
selected bandwidth via Silverman algorithm (cf. [3]). We considered
other parameters but those above yielded a reasonable trade-off
between noise and expressiveness. To visualize the temporal aspect
of the data, we implemented a dynamic visualization, effectively a
re-playable time-lapse of the study session.
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To analyze the data more precisely, we quantified the gaze data
based on which aspects of the code the participants looked at. For
this purpose we divided the area of the code based on its syntax in
potential areas of interest as shown in Fig. 2. To this end we used
the labels from the official Python grammar specification? which
occurred in our code snippets. Fig. 2 lists all grammar constructs
we used for labeling the code snippets.

Based on this subdivision, we could gauge how long participants
looked at individual parts of the code by adding up the dwell time
of each rectangular area of each code construct.

4 RESULTS

At the current point in time we had six ML novices participate in
our study (three male, three female; mean age: 24.5, std: 1.8). In the
following we report the results this sample has yielded so far.

RQ1: Based on the replay of the gaze data, we could determine
that, unsurprisingly, early parts in the code, particularly import
statements and variable declarations at the beginning, frequently
catch the readers eye first. Our participant’s gaze behaviour also
often shows patterns similar to Nielsen’s F-patterns [26] for initial
scanning. These patterns describe the reading behavior of an indi-
vidual when looking at a given text, which resembles the letter "F”.
It consists of three typical parts: Participants scan vertically the left
margin of the code structure. They tend to read horizontally the
upper part of the code snippets first, then read shorter horizontal
paths of the code in the middle area.

RQ2: Regarding the code structures look at most, there is no en-
tirely clear picture but rather distinct groups of reading behaviour:
some participants stuck to the F-patterns, therefore focusing mostly
on the beginning of line. Other participants, particularly those with
some self-reported ML experience, skipped ahead and focused on
later parts, especially index-based list access and specific literals
and function names that are common in ML. Fig. 3 shows an exam-
ples of this with two of the participants showing reading patterns
resembling the F-structure while the other two focused the majority
of their attention on specific literals. This generally matches with
the subjective opinions which aspects of the code people consider
important, as reported in the questionnaire. Here participants stated
that they usually read the code top to bottom, thus focusing more
on early parts. They also reported, though, that they sometimes skip
over entire sections if they consider it less relevant, particularly the
imports at the top. Instead the participants report to focus function
parameters, and familiar function names. Function and variable
names but also indentation were also named as important factors
for code comprehension.

For a quantitative view of which parts of the code might have
been important, Fig. 4 shows an overview of all code elements and
their proportional viewing frequency. Since the data is normalized
to eliminate the fact that different code constructs occupy a different
amount of space, a value of one would indicate that the percentage
of the participants gaze on a piece of code is proportional to the are
it occupies. A value greater or less than one therefore indicate that
the code was looked at disproportionally long of short respectively.

Zhttps://docs.python.org/3/reference/grammar.html
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The gaze data therefore suggests that the index-based access,
often used for slicing data sets, is considered fairly important, as
are variable declarations and loops.

RQ3: The proportional viewing frequency also allows us to draw
a comparison between traditional Python code and code that uses
ML. As the Fig. 4 shows, there are some similarities and differences
between how our participants read the two types of code: The
relative dwell time for a number of code constructs, like literals
and variable declarations, is very similar for both types of code. For
others, the difference, however, is very stark: loops, signatures and
calls receive a fair amount of attention for ML but much more so for
traditional code. With the high variance across our participants, it is
unclear though, whether this is just an effect of personal preference
or a real difference.

Further noteworthy are the function parameters, conditions and
index-based access, since they show a discrepancy where in one
type of code they are viewed very frequently, while in the other,
they are much less in the focus.

The apparent difference for class declarations and return state-
ments is no real effect but a result of the fact that the ML code did
not contain either.

5 DISCUSSION

While some of our results outlined above certainly are not surpris-
ing - for example, the mixture of F-pattern type and skip-ahead
reading in both types of code simply lies in the nature of code —
the following section will discuss interesting insights in our data
as well as some limitations and future changes that may lead to
clearer results.

The first fruitful finding are those aspects of ML and traditional
code that are not read with equal importance. Even in our limited
code examples, we could observe these differences but while these
differences should be further corroborated with more code exam-
ples, they share a similarity which points to a potential reason: in
ML code index-based operations on data sets are considered more
important, while control flow like conditional branching received
relative less attention. Since in ML the complexity of the resulting
program is encoded or hidden in the data, control flow in the code
serves only an auxiliary purpose and does not affect the program as
much as it does in traditional code. Therefore understanding how
the data is handled might appear more relevant than the order in
which the written code is executed. One participant did also note
that she uses indentation to get an idea of the code at first glance.
With less control flow constructs in ML code and less attention
spent on them, different methods for visually structuring the code
may be of interest.

Another point of interest is the relative little interest in depen-
dencies and imports. While in traditional code they often serve to
make auxiliary functionality accessible. In ML code, where particu-
larly the ML models are rarely re-implemented but rather imported,
they offer important insights which models, what data sets, etc. are
used. It is very likely though that the similarity in gaze we see in
our data is a result of habitation, where developers have gotten into
the habit of skipping the import section. This behaviour is even
encouraged when tools deliberately hide or fold imports. A future
analysis of real world examples of ML code and a comparison of
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Figure 3: Gaze patterns of four participants for a ML code snippet. The two examples on the left with no prior ML knowledge
show loose F-patterns, while the two more knowledgeable participants on the right focus on specific later parts of the code.

M Traditional Code
M Machine Learning Code
T Min/max across all participants

Normalized Dwell Time per Area

Figure 4: Relative dwell time per structural code element.
The data is normalized by the relative area to accommodate
for differences between traditional and ML code examples.

how much information developers can extract from code with or
without import statements therefore seems worthwhile.

Regarding the code structure, while we did account for differ-
ence in code structure by normalizing the results, they are still
dependant on the code examples we chose. IRIS an MNIST may
be typical tutorial examples but are likely very different from real
world examples. Ideally this study should be conducted with code
that is representative of the two classes of code, but finding such
examples is nearly impossible given the breadth and variety of
code, different coding styles, etc. Furthermore, we would want both
groups, ML and traditional, to have a roughly similar frequency of
syntax elements to maintain comparability. Using static analysis
of large amounts of code, e.g. GitHub repositories, could help in
determining typical features of ML code, which would allow us
to create more representative examples while at the same time
further investigating whether and how ML code differs from the
traditional variety. At the same time, even just ML code can be very
diverse with different types of models, libraries, etc. So a selection
of code will always only represent a certain subset of the whole
development paradigm and it remains to be investigated how well
a selection can represent the whole paradigm.

Lastly, the above results are collected from six participants, none
of which are professional data analysts or ML developers. In order
to yield more reliable results, our study needs to be continues with,
ideally, industry professionals and ML experts. Nonetheless, results
from novices have value too, since this is a target group the benefits
especially from good support mechanisms, while long-time experts
would have had a lengthy learning period and would have gotten
used to certain practices.

6 CONCLUSION

With this paper we contribute to the effort of determining the
differences and similarities between ML and traditional code. In
our experiment we collected gaze data and subjective feedback for
both ML and traditional code, allowing us to compare those two
via visualization and quantitative analysis.

In this data we found that the reading patterns for both types of
code are similar with both F-pattern scanning and deliberate skips.
Good naming of variables and functions is also important for both
types of code. Dependencies beyond the current code, usually in
the form of imports, are skipped deliberately in both cases even
though they may bear important information especially for ML.

The gaze data also revealed some differences though: for tra-
ditional code structural information appears to be important, e.g.
loop- and conditional blocks and functions. For ML code these code
constructs are less important, so participants infer a lot of seman-
tics from variable and function names like “train” and instead look
more at how the data sets are transformed.

This different focus may be taken into account in future research
for supporting ML developers via different highlighting in existing
tools, by new tools that abstract away irrelevant parts of the code
etc. Whether data-driven development will eventually just merge
into general software development or remain distinct is still open.
Our results so far, however, show that we should not simply assume
that we can just apply our knowledge of the one to the other but
need to take into account the specific requirements and challenges
of the data-driven paradigm.
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