

Diplomarbeit 18.05.2010

Bastian Schildbach

Dr. Enrico Rukzio (Lancaster University)
Prof. Dr. Andreas Butz (LMU Munich)

Mobile User Interfaces For People On The Move

Lehr- und Forschungseinheit Medieninformatik LMU Munich

Embedded Interactive Systems Group Lancaster University

Research Questions

Thumb-based one-handed interaction with touch screens while walking

interacting selecting buttons, text, links, map applications, ...

reading web pages, texts, e-mails, ...

- 1. effect of target and text size on performance?
- 2. how does walking affect performance?
- 3. how to counteract the additional cognitive load while walking?

Agenda

3

Related Work

Target Acquisition & Reading User Study

Selection Techniques User Study

Conclusion & Future Work

Discussion

Related Work

Walking UI Music Player [Kane et al. 2008]

Legibility with small screens [Mustonen et al. 2004]

Thumb-based target selection [Parhi et al. 2006]

Use-in-motion evaluation guidelines [Barnard et al. 2007]

User Study

Target Acquisition and Reading – Experimental Design

- within-subjects experimental design (n = 16)
- Fitts' Law task: three target sizes based on iPhone Human Interface Guidelines
- reading comprehension task: three text sizes based on mobile platforms analysis
- outdoor walking course controlled & realistic environment
- two control conditions standing condition & normal walking speed

Target Acquisition

□ stand/small □ walk/small □ walk/medium ■ walk/large

- selection speed suffers from movement
- error rate higher while walking
- error rate lower with larger targets
- subjective workload higher while walking
- subjective workload lower with larger targets

Reading

- compensation in reading speed between standing/walking seems to be fixed
- high demand for scrolling with larger text
- workload lower while standing

Selection Techniques

"fat finger problem" map application, web browser, buttons, games, ...

18.05.2010

Bastian Schildbach 8

User Study

Selection Techniques – Experimental Design

- 4×2 within-subjects experimental design (n = 16)
- outdoor walking course controlled & realistic environment
- four selection techniques {TapTap, Touch'n'Slide, Escape, Shift}
- two movement conditions {standing, walking}
- one control condition normal walking speed

Results

Selection Techniques (I)

- TapTap/Escape faster than Touch'n'Slide/Shift
- Touch'n'Slide/TapTap have low error rates
- Touch'n'Slide/TapTap less demanding

Results

Selection Techniques (II)

Dragging behaviour

Touch'n'Slide Escape

Reading Task while walking

change in text size has no effect on legibility

Target Acquisition while walking

selections are not performed significantly faster, but:

120% target size: 9% less errors

140% target size: 14% less errors

Selection Techniques

target selection time: TapTap / Escape faster than Touch'n'Slide / Shift

error rate: TapTap / Touch'n'Slide less errors than Shift / Escape

Conclusion & Future Work

Conclusion

- Increase text size if this does not lead to a higher demand for scrolling or text wrapping
- Increase target size if possible (but keep usability design guidelines in mind)
- Introduced selection techniques TapTap & Touch'n'Slide performed well

Future Work

- Combination of TapTap (fast) and Touch'n'Slide (low error rate)
- Integration of TapTap / Touch'n'Slide into 'walking user interfaces'
- Use of accelerometer data

Contribution

- Full paper for Mobile HCI 2010 conference (target acquisition and reading user study)
- Tech note for UIST conference (selection techniques user study)

Discussion

References

- Shaun K. Kane, Jacob O. Wobbrock, and Ian E. Smith. Getting off the treadmill: Evaluating walking user interfaces for mobile devices in public spaces. In MobileHCl'08: Proceedings of the 10th international conference on Human Computer Interaction with mobile devices and services, pages 109–118, New York, NY, USA, 2008. ACM.
- Pekka Parhi, Amy K. Karlson, and Benjamin B. Bederson. Target size study for one-handed thumb use on small touchscreen devices. In MobileHCI '06: Proceedings of the 8th conference on Human-computer interaction with mobile devices and services, pages 203–210, New York, NY, USA, 2006. ACM.
- Terhi Mustonen, Maria Olkkonen, and Jukka Häkkinen. Examining mobile phone text legibility while walking. In CHI '04: extended abstracts on Human factors in computing systems, pages 1243–1246, New York, NY, USA, 2004. ACM.
- Leon Barnard, Ji Soo Yi, Julie A. Jacko, and Andrew Sears. Capturing the effects of context on human performance in mobile computing systems. Personal Ubiquitous Computing, 11(2):81–96, January 2007.
- International Organization for Standardization. ISO 9241-9: Ergonomic requirements for office work with visual display terminals (VDTs) Part 9: Requirements for non-keyboard input devices. 2000.

References

- Daniel Vogel and Patrick Baudisch. Shift: a technique for operating pen-based interfaces using touch. In CHI '07: Proceedings of the SIGCHI conference on Human factors in computing systems, pages 657–666, New York, NY, USA, 2007.
- Koji Yatani, Kurt Partridge, Marshall Bern, and Mark W. Newman. Escape: a target selection technique using visually-cued gestures. In CHI '08: Proceedings of the SIGCHI conference on Human factors in computing systems, pages 285–294, New York, NY, USA, 2008. ACM.
- Anne Roudaut, Stéphane Huot, and Eric Lecolinet. Taptap and magstick: improving one-handed target acquisition on small touch-screens. In AVI '08: Proceedings of the working conference on Advanced visual interfaces, pages 146–153, New York, NY, USA, 2008. ACM.