
LFE Medieninformatik Ÿ Andreas Butz (Dozent), Gregor Broll,

Alexander De Luca, Max-Emanuel Maurer

Praktikum Entwicklung von
Mediensystemen mit Android
Introduction to Android

2

Today

• Schedule
• Organizational Stuff
• Introduction to Android
• Exercise 1

3

Schedule

• Two phases: individual and team phase
• Phase 1 – Individual Phase:

 Introduction to basics about Android
 Exercises 1 to 4
 Each student works on exercises himself/herself
 Weekly meetings

• Phase 2 – Project Phase:
 Concept and implementation of an Android application
 Topic: mobile student services
 Students work in teams
 Regular milestone meetings

4

Topic: Mobile Services for Students

• Practical as part of a greater effort at LFE Media
Informatics to investigate mobile services for students
 Services tailored to students and their requirements
 Adaptation of existing services/information to mobile usage
 Creation of new, more adapted mobile services

• Collaboration with LMU-IT (Herr Diekamp)
 Practical to develop prototypes that use real info and services

• Practical can build upon previous efforts
 Diploma thesis by Tanja Herting (analysis of requirements,

LMUApp)
 Practical in winter term 2009/10 (example applications)
 Practical can re-use interfaces to LSF from previous work

5

Mobile Services for Students -
Examples

LMUApp Stoodle ProfCall

6

Timeline

Final Presentation22./29.07.

… (Milestones)

Brainstorming, Application Design27.05.2010

Project Phase Starts10.06.2010

Christi Himmelfahrt13.05.2010

Storing, Retrieving and Exposing Data20.05.2010

Fronleichnam03.06.2010

Implementing a User Interface06.05.2010

Introduction and Overview of the Android Platform29.04.2010

Topic/ActivityDate

7

Organizational Stuff I

• 4 SWS
• Weekly meetings

 Thursday 14:00 s.t. – 16:00
 Room 105, Amalienstraße 17

• Room for the practical parts:
 Medienlabor 103, Amalienstraße 17
 Special accounts required
 Open during normal working times (8:00 – 17:00)
 1 key for each group

• Homepage:
 http://www.medien.ifi.lmu.de/pem

8

Organizational Stuff II

• Students work in teams
• SVN accounts for each team

 svn://tracsvn.medien.ifi.lmu.de/repos/pem_team[number]
(e.g. svn://tracsvn.medien.ifi.lmu.de/repos/pem_team1)

• Students check their exercises in with their group‘s
SVN repository

• Needed Accounts
 SVN username
 Medienlabor-Kennung
 Belegungsplan Medienlabor

9

Teams

• Team 1
 Kehr, Mautner, Fichtner

• Team 2
 Schauer, Ateia, Hemme, Viegener

• Team 3
 Huff, Vodicka, Heller, Tevi

• Team 4
 Schmidmaier, Held, Bauer

10

Technology – SVN

11

Technology – SVN I

• SVN - General
 Version control system
 Enables collective editing of shared source code
 Data stored in a „Repository“ which is accessed over the

network
 Editing on local copies of the files
 Old version available on the server
 When possible, files will be merged automatically when edited

by multiple users at the same time
 Similar to CVS

12

Technology – SVN II

• SVN – First Steps (using Tortoise SVN)
1. Download a SVN Client like Tortoise SVN for Windows

http://tortoisesvn.net/
2. Checkout your team repository (creates a local copy of the

repository)
Create an empty folder, open it, right-click and choose
„Checkout“.

13

Technology – SVN III

• SVN – First Steps (using Tortoise SVN)
3. Each time you start working perform the “Update“ command.
4. Each time you‘re done working perform a “Commit”. Both

commands are located in the right-click menu.
5. Further functionalities are available in the right-click menu like

“delete“, “rename“ and more.
Attention: Do not use the OS-functionalities for this functions.
And do not touch the hidden .svn-Folders, especially do not
copy an svn-folder (use Export-Command).

 For further Information read the German SVN introduction by
Richard Atterer, which can be found here:
http://www.medien.ifi.lmu.de/fileadmin/mimuc/mmp_ss04/Pr
ojektaufgabe/mmp-subversion.pdf

14

An Introduction to Android - Outline

• What is Android?
• Installation
• Getting Started
• Anatomy of an Android Application
• Life Cycle of an Android Application

15

What is Android?

• Released in Nov. 2007 – rumored to be some kind of GPhone
• Open, free mobile platform with a complete software stack

 Operating system
 Middleware
 Key mobile applications

• Developed by the Open Handset Alliance
• Built on the open Linux kernel
• Custom Dalvik virtual machine for mobile environments
• Applications written in Java
• Open source; Apache v2 open source license
• Applications can access all core functionalities of a mobile device
• No differentiation between core and 3rd party applications
• Can be extended to incorporate new technologies

16

Open Handset Alliance
• Group of more than 30 technology and mobile

companies led by Google
 Mobile Operators, e.g. China Mobile, KDDI, NTT

DoCoMo, T-Mobile, Sprint Nextelk, Telefonica
 Semiconductor Companies, e.g. Broadcom, Intel,

Nvidia, Qualcomm, SiRF, Texas Instruments
 Handset Manufactureres, e.g. HTC, LG, Motorola,

Samsung
 Software Companies, e.g. eBay, Google,

• Goal: „to accelerate innovation in mobile and offer
consumers a richer, less expensive, and better
mobile experience “

• Android as the first project towards an open and
free mobile experience, but also commercial
deployment

• URL: www.openhandsetalliance.com/index.html

Source: www.openhandsetalliance.com/

17

Android Features
• Application framework enabling reuse and replacement of

components
• Dalvik virtual machine optimized for mobile devices (register based)
• Integrated browser based on the open source WebKit engine
• Optimized graphics powered by a custom 2D graphics library; 3D

graphics based on the OpenGL ES 1.0 specification (hardware
acceleration optional)

• SQLite for structured data storage
• Media support for common audio, video, and still image formats

(MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, GIF)
• GSM Telephony (hardware dependent)
• Bluetooth, EDGE, 3G, and WiFi (hardware dependent)
• Camera, GPS, compass, and accelerometer (hardware dependent)
• Rich development environment including a device emulator, tools for

debugging, memory and performance profiling, and a plugin for the
Eclipse IDE

Source: http://code.google.com/android/index.html

18

Android Architecture

Source: http://code.google.com/android/index.html

19

Linux Kernel

• Linux kernel version 2.6
• Abstraction layer between hardware and the

software stack
• Core services

 Security
 Memory management
 Process management
 Network stack
 Driver model

Source: http://code.google.com/android/index.html

20

Libraries

• C/C++ libraries used by various Android components
• Developers can use their capabilities through the

application framework
• Includes:

 Media Libraries: includes MPEG4, H.264, MP3, JPG, PNG, …
 WebKit/LibWebCore: web browser engine
 SQLite: relational database engine
 Libraries/engines for 2D and 3D graphics

Source: http://code.google.com/android/index.html

21

Android Runtime

• Core libraries provide Java functionalities
• Dalvik virtual machine relies on Linux kernel for e.g.

threading or low-level memory management
• Devices can run multiple Dalvik VMs, every Android

application runs with its own instance of Dalvik VM
• VM executes optimized Dalvik Executable files (.dex)
• Dx-tool transforms compiled Java-files into dex-files

Source: http://code.google.com/android/index.html

22

Applications /Application Framework

• Core applications, e.g. contacts, mail, phone, browser,
calender, maps, …

• Full access to all framework APIs for core applications
• Simplified reuse of components
• Applications written in Java

Source: http://code.google.com/android/index.html

23

Core Android Packages
• android.util

 contains various low-level utility classes, such as specialized container classes, XML
utilities, etc.

• android.os
 provides basic operating system services, message passing, and inter-process

communication.
• android.graphics

 is the core rendering package.
• android.text, android.text.method, android.text.style, and android.text.util

 supply a rich set of text processing tools, supporting rich text, input methods, etc.
• android.database

 contains low-level APIs for working with databases.
• android.content

 provides various services for accessing data on the device: applications installed on the
device and their associated resources, and content providers for persistent dynamic data.

• android.view
 is the core user-interface framework.

• android.widget
 supplies standard user interface elements (lists, buttons, layout managers, etc) built from

the view package.
• android.app

 provides the high-level application model, implemented using Activities.

24

Android Version History

15.09.2009: Screenshots on the android market,
Voice Search, WVGA resolutions,

1.6 Donut

12.01.2010: Speed improvements, More screen
resolutions (dip), Camera flash support, Live
wallpapers, Multitouch support

2.0/2.1 Eclair

30.04.2009: Onscreen-Keyboard with
„Autocomplete“, Screen switch Animations, Video
upload

1.5 Cupcake

FeaturesVersion

25

Installing SDK

• Please follow instructions from the Android doc
• Download and install the Android SDK
• SDK includes documentation, tools and examples
• Set up your IDE; Eclipse (Java EE) recommended
• Install Eclipse Android Development Tools (ADT) plugin, connect

it with the Android SDK and Download your Platforms

http://developer.android.com/sdk/index.html

26

Installing SDK

• Create an Android project
 Standard Eclipse procedure
 Automatically creates folders and a Manifest file
 Can also be used to create a demo project

• Set up a launch configuration
 Run application from menu or
 Define settings for run configuration (project, activity, emulator

options, …) from Run > Open Run Dialog >

• Run Android application in emulator
 Be Patient! The emulator takes while to boot up.
 Keep it open once it was started!

27

The Nexus One

Source: Wikimedia Commons

28

Hello Android I

29

Hello Android II

Source: http://code.google.com/android/index.html

30

Hello Android III

Source: http://code.google.com/android/index.html

31

Hello Android IV

32

Anatomy of an Android Application

• 4 main building blocks for Android applications
 Activity
 Intent Receiver
 Service
 Content Provider

• AndroidManifest.xml lists all components of an
application, their capabilities and requirements

Source: http://code.google.com/android/index.html

33

Activity
• Single, focused thing or task
• Extends the Activity base class
• Refers to a single screen in a (multi-

screen) application
• Displays a UI, interacts with user,

responds to events
• 2 main methods:

 onCreate(Bundle): initialization of
activity, set UI, …

 onPause(): leaving an activity
• Moving through screens by starting

other activities
• Activities managed by activity stack
• New activity put on top of the stack
• 4 states: active/running, paused,

stopped, killed/shut down

Source: http://code.google.com/android/index.html

34

Intents and Intent Filters

• Intent
 Abstract description of an operation/action to be performed
 Mostly used for launching activities; “glue between activities”
 Action: general action to be performed, e.g. VIEW_ACTION,

EDIT_ACTION, MAIN_ACTION, …
 Data: data to operate on, expressed as a URI
 Example: VIEW_ACTION content://contacts/1

• Intent Filter
 Describes what Intents an activity can handle
 Activities publish Intent Filters describing their capabilities/

how they can handle certain Intents and their actions
 Navigating between screens is accomplished by resolving

Intents => system matches Intents and Intent Filters
 Activity calls method startActivity(myIntent)

35

Intent Receiver, Service, Content Provider

• Intent Receiver
 Used to execute code upon an external event, e.g. phone rings
 Usually no UI; may use the NotificationManager

• Service
 Application component running in the background
 Runs indefinitely, no UI, no interaction with user
 E.g. media player

• Content Provider
 Used to share data with other applications

36

Life Cycle of an Android Application

• Each Android application runs in its own Linux process
• Process’s lifetime not directly controlled by application
• Determined by the system, depending on running

applications, their importance, available memory
• Components (Activity, Service, Intent Receiver) impact

the lifetime of the application’s process
• Importance hierarchy for killing processes based on

 Components running in them
 The state of these components

37

Android’s Importance Hierarchy

1. Foreground Process
 Required for current user activities
 E.g. running an Activity at the top of the screen

2. Visible Process
 Activity is visible but not in the foreground (onPause())
 E.g. previous activity displayed behind a foreground dialog

3. Service Process
 Holds a Service, not directly visibleE.g. media player, network

up/download

4. Background Process
 Holds an Activity that is currently not visible (onStop())
 Can be killed at any time to reclaim memory

5. Empty Process
 Holds no active application components

38

Exercise 1

• Follow the Hello Android example
• Add a picture to the „Hello Android“-text
• Submit your solution using SVN

 Create your personal folder „nachname“ in
the SVN-repository of your group

 Create a folder for each exercise named
„exerciseX“ and put all necessary source
files there

• Submit your solution until
Wednesday, 05.05.10, 12p.m.

Source: http://code.google.com/android/index.html

39

Links

• Android website: http://code.google.com/android/
• YouTube: Androidology

40

Fragen?
Viel Spaß!

