Computer Graphics 1

Ludwig-Maximilians-Universität München
Summer semester 2020

Prof. Dr.-Ing. Andreas Butz
lecture additions by Dr. Michael Krone, Univ. Stuttgart

http://www.wikiwand.com/
Chapter 2 – Transformations & Scene Graphs

• Three-Dimensional Geometric Transformations
 • Affine Transformations and Homogeneous Coordinates
 • Combining Transformations

• Why a scene graph?
• What is stored in the scene graph?
 • Objects
 • Appearance
 • Camera
 • Lights
• Rendering with a scene graph
• Practical example
What is a Transformation?

• A transformation maps a point \(x \) to a point \(x' \)

• A linear transformation \(T \) is a mapping that maps a point \(x \in \mathbb{R}^n \) to a point \(x' \in \mathbb{R}^m \): \(T(x) = Ax \)
 • \(A \in \mathbb{R}^{m \times n} \) is the transformation matrix of \(T \)
 • \(A \) has \(m \) rows and \(n \) columns

• Examples
 • Positioning of an object in the scene
 • Animation
 • Deformation
 • Camera transformations and projection (← later!)
 • But also real-time shadows, mirroring etc.
Basic Transformations

• Transformations in CG normally...
 • can be combined and...
 • are reversible/invertible
 • Exception: Scaling by a factor of zero!
Translation

• Add a vector t
• Geometrical meaning: Shifting
• Inverse operation?
• Neutral operation?

\[
\begin{pmatrix}
 p_1 \\
 p_2 \\
 p_3 \\
\end{pmatrix}
+ \begin{pmatrix}
 t_1 \\
 t_2 \\
 t_3 \\
\end{pmatrix}
= \begin{pmatrix}
 p_1 + t_1 \\
 p_2 + t_2 \\
 p_3 + t_3 \\
\end{pmatrix}
\]
Uniform Scaling

- Multiply with a scalar s
- Geometrical meaning: Changing the size of an object

$$\begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \cdot s = \begin{pmatrix} p_1 \cdot s \\ p_2 \cdot s \\ p_3 \cdot s \end{pmatrix}$$

- What happens when we scale objects which are not at the origin?
- How can we fix that?
Non-Uniform Scaling

• Multiply with three scalars
• One for each dimension
• Geometrical meaning?

\[
\begin{pmatrix}
 s_1 & 0 & 0 \\
 0 & s_2 & 0 \\
 0 & 0 & s_3 \\
\end{pmatrix}
\begin{pmatrix}
 p_1 \\
 p_2 \\
 p_3 \\
\end{pmatrix}
=
\begin{pmatrix}
 p_1 \cdot s_1 \\
 p_2 \cdot s_2 \\
 p_3 \cdot s_3 \\
\end{pmatrix}
\]
Reflection (Mirroring)

- Special case of scaling
 \[s_1 \cdot s_2 \cdot s_3 < 0 \]

- Example:
 \[s_1 = 1, s_2 = -1, s_3 = 1 \]

- Discuss: What does this mean for
 - surface normals?
 - order of polygon edges?
 - handedness?

\[
\begin{pmatrix}
 s_1 & 0 & 0 \\
 0 & s_2 & 0 \\
 0 & 0 & s_3
\end{pmatrix} \cdot \begin{pmatrix}
 p_1 \\
 p_2 \\
 p_3
\end{pmatrix} = \begin{pmatrix}
 p_1 \cdot s_1 \\
 p_2 \cdot s_2 \\
 p_3 \cdot s_3
\end{pmatrix}
\]
Shearing along X Axis

• Example:
 • Only x coordinate values are modified
 • Modification depends linearly on y coordinate value
 • Areas in x/y and x/z plane, as well as volume remain the same
• Generalization to other axes and arbitrary axis: see later...

\[
\begin{pmatrix}
 p_1 + m \cdot p_2 \\
p_2 \\
p_3
\end{pmatrix} = \begin{pmatrix}
1 & m & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
p_1 \\
p_2 \\
p_3
\end{pmatrix}
\]
Rotation about X Axis (1/3)

• x coordinate value remains constant
• Rotation takes place in y/z-plane (2D)
• How to compute new y and z coordinates from old ones?

\[
\begin{align*}
\cos \phi &= \frac{y_{old}}{r} \\
\sin \phi &= \frac{z_{old}}{r} \\
y_{old} &= r \cdot \cos \phi \\
z_{old} &= r \cdot \sin \phi
\end{align*}
\]
Rotation about X Axis (2/3)

\[
\cos(\alpha + \varphi) = \frac{y_{new}}{r}
\]

\[
y_{new} = r \cdot \cos(\alpha + \varphi)
\]

\[
= r \cdot \cos \alpha \cdot \cos \varphi - r \cdot \sin \alpha \cdot \sin \varphi
\]

\[
= \cos \alpha \cdot y_{old} - \sin \alpha \cdot z_{old}
\]

\[
\sin(\alpha + \varphi) = \frac{z_{new}}{r}
\]

\[
z_{new} = r \cdot \sin(\alpha + \varphi)
\]

\[
= r \cdot \sin \alpha \cdot \cos \varphi + r \cdot \cos \alpha \cdot \sin \varphi
\]

\[
= \sin \alpha \cdot y_{old} + \cos \alpha \cdot z_{old}
\]
Rotation about X Axis (3/3)

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{pmatrix}
\begin{pmatrix}
p_1 \\
p_2 \\
p_3
\end{pmatrix}
=
\begin{pmatrix}
p_1 \\
\cos \alpha \cdot p_2 - \sin \alpha \cdot p_3 \\
\sin \alpha \cdot p_2 + \cos \alpha \cdot p_3
\end{pmatrix}
\]

• Special cases, e.g. 90 degrees, 180 degrees?
• How to rotate about other axes?
Elementary rotations

• Combine to express arbitrary rotation
• This is not always intuitive

• Order matters (a lot!) → Likely source of mistakes/bugs!

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{pmatrix} \cdot \begin{pmatrix}
p_1 \\
p_2 \\
p_3
\end{pmatrix} = \begin{pmatrix}
p_1 \\
\cos \alpha \cdot p_2 - \sin \alpha \cdot p_3 \\
\sin \alpha \cdot p_2 + \cos \alpha \cdot p_3
\end{pmatrix}
\]

\[
\begin{pmatrix}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{pmatrix} \cdot \begin{pmatrix}
p_1 \\
p_2 \\
p_3
\end{pmatrix} = \begin{pmatrix}
\cos \beta \cdot p_1 + \sin \beta \cdot p_3 \\
p_2 \\
\cos \beta \cdot p_3 - \sin \beta \cdot p_1
\end{pmatrix}
\]

\[
\begin{pmatrix}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
p_1 \\
p_2 \\
p_3
\end{pmatrix} = \begin{pmatrix}
\cos \gamma \cdot p_1 - \sin \gamma \cdot p_2 \\
\sin \gamma \cdot p_1 + \cos \gamma \cdot p_2 \\
p_3
\end{pmatrix}
\]
Transformation of Coordinate Systems

• Applying a geometric transformation...
 • ...to all points of a single object: Transforming the object within its own coordinate system.
 • ...to all points of all objects of the “world”: effectively transforming the reference coordinate system in the opposite direction!

• Geometric transformations can be used to...
 • ...modify an object
 • ...place an object within a reference coordinate system
 • ...switch to different reference coordinates

- Identity
- Translation
- Rotation
- Isotrope (uniform) scaling
Transformation from 3D to 2D: Projection

• Many different projections exist (see later)
• Projection onto x/y plane:
 • “Forget” the z coordinate value

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} \cdot \begin{pmatrix}
p_1 \\
p_2 \\
p_3
\end{pmatrix} = \begin{pmatrix}
p_1 \\
p_2
\end{pmatrix}
\]

• Other projections?
• Other viewpoints?
→ More detail in lecture about cameras!
Chapter 2 – Transformations & Scene Graphs

• Three-Dimensional Geometric Transformations
• Affine Transformations and Homogeneous Coordinates
• Combining Transformations

• Why a scene graph?
• What is stored in the scene graph?
 • Objects
 • Appearance
 • Camera
 • Lights
• Rendering with a scene graph
• Practical example
Affine Transformations

- Mathematically: A transformation preserving collinearity
 - Points lying on a line before are on a line after transformation
 - Ratios of distances are preserved (e.g. midpoint of a line segment)
 - Parallel lines remain parallel
 - Angles, lengths and areas are not necessarily preserved!

- Basic transformations: translation, rotation, scaling and shearing
 - All combinations of these are affine transformations again
 - Combination is associative, but not commutative

- General form of computation:
 - New coordinate values are defined by linear function of the old values

\[
\begin{pmatrix}
 p'_1 \\
 p'_2 \\
 p'_3
\end{pmatrix} = \begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix} \cdot \begin{pmatrix}
 p_1 \\
 p_2 \\
 p_3
\end{pmatrix} + \begin{pmatrix}
 t_1 \\
 t_2 \\
 t_3
\end{pmatrix} = A \cdot p + t
Affine Transformations

- Affine transformations preserve parallelism and ratios of parallel segments.
- Non-affine transformations change parallelism or ratios of parallel segments.
Combining Multiple Transformations

• Rotation, scaling and shearing are expressed as matrices
 • Associative, hence can all be combined into one matrix
 • Many of these operations can also be combined into one matrix

• Translation is expressed by adding a vector
 • Adding vectors is also associative
 • Many translations can be combined into a single vector

• Combination of Translation with other operations?
 • Series of matrix multiplications and vector additions, difficult to combine
 • How about using a matrix multiplication to express translation?!?
Homogeneous Coordinates

• Usage of a representation of coordinate-positions with an extra dimension
 • Extra value is a *scaling factor*
• 3D position \((x, y, z)\) is represented by \((x_h, y_h, z_h, h)\) such that

\[
\begin{align*}
x &= \frac{x_h}{h}, \\
y &= \frac{y_h}{h}, \\
z &= \frac{z_h}{h}
\end{align*}
\]

• Simple choice for scaling factor \(h\) is the value 1
 • In special cases other values can be used
• 3D position \((x, y, z)\) is represented by \((x, y, z, 1)\)
 • Position vector
• 3D direction \((x, y, z)\) is represented by \((x, y, z, 0)\)
Translation Expressed in Homogeneous Coordinates

\[
\begin{pmatrix}
 p'_1 \\
 p'_2 \\
 p'_3 \\
 1
\end{pmatrix} =
\begin{pmatrix}
 t_1 \\
 t_2 \\
 t_3 \\
 0
\end{pmatrix} +
\begin{pmatrix}
 p_1 \\
 p_2 \\
 p_3 \\
 1
\end{pmatrix} =
\begin{pmatrix}
 p_1 + t_1 \\
 p_2 + t_2 \\
 p_3 + t_3 \\
 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
 p'_1 \\
 p'_2 \\
 p'_3 \\
 1
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 & 0 & t_1 \\
 0 & 1 & 0 & t_2 \\
 0 & 0 & 1 & t_3 \\
 0 & 0 & 0 & 1
\end{pmatrix} \cdot
\begin{pmatrix}
 p_1 \\
 p_2 \\
 p_3 \\
 1
\end{pmatrix} =
\begin{pmatrix}
 p_1 + t_1 \\
 p_2 + t_2 \\
 p_3 + t_3 \\
 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
 p'_1 \\
 p'_2 \\
 p'_3 \\
 0
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 & 0 & t_1 \\
 0 & 1 & 0 & t_2 \\
 0 & 0 & 1 & t_3 \\
 0 & 0 & 0 & 1
\end{pmatrix} \cdot
\begin{pmatrix}
 p_1 \\
 p_2 \\
 p_3 \\
 0
\end{pmatrix} =
\begin{pmatrix}
 p_1 + 0 \cdot t_1 \\
 p_2 + 0 \cdot t_2 \\
 p_3 + 0 \cdot t_3 \\
 0 \cdot 1
\end{pmatrix}
\]

\[\rightarrow \text{ Translation has no effect on direction vector } (x, y, z, 0)!\]
Scaling Expressed in Homogeneous Coordinates

\[
\begin{pmatrix}
 p'_1 \\
 p'_2 \\
 p'_3
\end{pmatrix} =
\begin{pmatrix}
 s_1 & 0 & 0 \\
 0 & s_2 & 0 \\
 0 & 0 & s_3
\end{pmatrix}
\begin{pmatrix}
 p_1 \\
 p_2 \\
 p_3
\end{pmatrix} =
\begin{pmatrix}
 s_1 p_1 \\
 s_2 p_2 \\
 s_3 p_3
\end{pmatrix}
\]

\[
\begin{pmatrix}
 p'_1 \\
 p'_2 \\
 p'_3 \\
 1
\end{pmatrix} =
\begin{pmatrix}
 s_1 & 0 & 0 & 0 \\
 0 & s_2 & 0 & 0 \\
 0 & 0 & s_3 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 p_1 \\
 p_2 \\
 p_3 \\
 1
\end{pmatrix} =
\begin{pmatrix}
 s_1 p_1 \\
 s_2 p_2 \\
 s_3 p_3 \\
 1
\end{pmatrix}
\]
Rotation Expressed in Homogeneous Coordinates

\[
\begin{pmatrix}
 p_{1}' \\
 p_{2}' \\
 p_{3}' \\
 1
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & \cos \alpha & -\sin \alpha & 0 \\
 0 & \sin \alpha & \cos \alpha & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\cdot
\begin{pmatrix}
 p_{1} \\
 p_{2} \\
 p_{3} \\
 1
\end{pmatrix} =
\begin{pmatrix}
 \cos \alpha \cdot p_{2} - \sin \alpha \cdot p_{3} \\
 \sin \alpha \cdot p_{2} + \cos \alpha \cdot p_{3} \\
 1
\end{pmatrix}
\]
Shearing Expressed in Homogeneous Coordinates

\[
\begin{pmatrix}
 p'_1 \\
 p'_2 \\
 p'_3 \\
 1
\end{pmatrix}
= \begin{pmatrix}
 1 & m & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{pmatrix}
\cdot
\begin{pmatrix}
 p_1 \\
 p_2 \\
 p_3
\end{pmatrix}
= \begin{pmatrix}
 p'_1 \\
 p'_2 \\
 p'_3
\end{pmatrix}
\]
Shearing: General Case

\[
\begin{pmatrix}
 p'_1 \\
p'_2 \\
p'_3
\end{pmatrix} = \begin{pmatrix}
 1 & m_{12} & m_{13} \\
m_{21} & 1 & m_{23} \\
m_{31} & m_{32} & 1
\end{pmatrix} \cdot \begin{pmatrix}
p_1 \\
p_2 \\
p_3
\end{pmatrix} = \ldots
\]

\[
\begin{pmatrix}
 p'_1 \\
p'_2 \\
p'_3 \\
1
\end{pmatrix} = \begin{pmatrix}
 1 & m_{12} & m_{13} & 0 \\
m_{21} & 1 & m_{23} & 0 \\
m_{31} & m_{32} & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
p_1 \\
p_2 \\
p_3 \\
1
\end{pmatrix} = \begin{pmatrix}
p_1 + m_{12} \cdot p_2 + m_{13} \cdot p_3 \\
p_2 + m_{21} \cdot p_1 + m_{23} \cdot p_3 \\
p_3 + m_{31} \cdot p_1 + m_{32} \cdot p_2 \\
1
\end{pmatrix}
\]
Computational Complexity for 3D Transformations

\[
\begin{pmatrix}
 p'_1 \\
p'_2 \\
p'_3 \\
1
\end{pmatrix}
= \begin{pmatrix}
 a_{11} & a_{12} & a_{13} & t_1 \\
a_{21} & a_{22} & a_{23} & t_2 \\
a_{31} & a_{32} & a_{33} & t_3 \\
0 & 0 & 0 & 1
\end{pmatrix}
\cdot
\begin{pmatrix}
p_1 \\
p_2 \\
p_3 \\
1
\end{pmatrix}
= \begin{pmatrix}
a_{11} \cdot p_1 + a_{12} \cdot p_2 + a_{13} \cdot p_3 + t_1 \\
a_{21} \cdot p_1 + a_{22} \cdot p_2 + a_{23} \cdot p_3 + t_2 \\
a_{31} \cdot p_1 + a_{32} \cdot p_2 + a_{33} \cdot p_3 + t_3 \\
1
\end{pmatrix}
\]

• Operations needed:
 • 9 multiplications
 • 9 additions

... for an arbitrarily complex affine 3D transformation (of a position vector)

• Runtime complexity improved by pre-calculation of composed transformation matrices
 • Hardware implementations in graphics processors
 • Very efficient
Chapter 2 – Transformations & Scene Graphs

• Three-Dimensional Geometric Transformations
• Affine Transformations and Homogeneous Coordinates
• Combining Transformations

• Why a scene graph?
• What is stored in the scene graph?
 • Objects
 • Appearance
 • Camera
 • Lights
• Rendering with a scene graph
• Practical example
Combining several transformations: Order matters!

\[p' = A \cdot B \cdot p = A \cdot (B \cdot p) = (A \cdot B) \cdot p \neq (B \cdot A) \cdot p \]

\[p = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \quad A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

A = Rotation 90° around X axis (i.e., Y becomes Z)
B = Translation by 5 along Y axis

ABp = A(Bp) means: first translate, then rotate the result
BAp = B(Ap) means: first rotate, then translate the result

\[(A \cdot B) \cdot p = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \]

\[(B \cdot A) \cdot p = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 5 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \]
The same example in Three.js

```javascript
var p = new THREE.Vector4( 1, 0, 0, 1);

var M = new THREE.Matrix4(); // initialized by identity

var A = new THREE.Matrix4();
var B = new THREE.Matrix4();

var gamma = Math.PI / 2; // equals 90 degrees

A.makeRotationX( gamma ); // rotation by 90 degrees around X axis
B.makeTranslation( 0, 5, 0 ); // translation by 5 along Y axis

M.multiply( A ); // Now M contains MA = A
M.multiply( B ); // Now M contains AB

p.applyMatrix4( M ); // Now p contains ABp
```
Chapter 2 – Transformations & Scene Graphs

• Three-Dimensional Geometric Transformations
• Affine Transformations and Homogeneous Coordinates
• Combining Transformations

• Why a scene graph?

• What is stored in the scene graph?
 • Objects
 • Appearance
 • Camera
 • Lights

• Rendering with a scene graph
• Practical example
The 3D Rendering Pipeline (our version for this class)

1. **3D models in model coordinates**
2. **3D models in world coordinates**
3. **2D polygons in camera coordinates**
4. **Pixels in image coordinates**

- **Scene graph**
- **Camera**
- **Animation, Interaction**
- **Rasterization**
- **Lights**
Why a Scene Graph?

Naive approach:
- For each object in the scene, set its transformation by a single matrix
 (i.e., a tree 1 level deep and N nodes wide)
 - Advantage: very fast for rendering
 - Disadvantage: if several objects move in the same way, all of their transforms change

Observation: Things in the world are made from parts

Approach: define an object hierarchy along the *part-of* relation
- Transform all parts only relative to the whole group
- Transform group as a whole with another transform
- Parts can be groups again
Chapter 2 – Transformations & Scene Graphs

- Three-Dimensional Geometric Transformations
- Affine Transformations and Homogeneous Coordinates
- Combining Transformations

- Why a scene graph?

- What is stored in the scene graph?
 - Objects
 - Appearance
 - Camera
 - Lights

- Rendering with a scene graph
- Practical example
Geometry in the Scene Graph

• Leaves are basic 3D objects
• Non-leaf nodes (groups) contain a transformation
 • can have one or several children
 • transformation is given by a homogeneous matrix
• Root is the entire world

• Nodes can be the child of several groups
 • Not a tree, but a directed acyclic graph (DAG)
 • Effective reuse of geometry
Appearance in the Scene Graph

• Scene graph also contains appearances
 • Appearance: e.g. Color, reflection, transparency, texture
 → Details see next lecture(s)
 • Can be reused similarly to geometry

• Appearance can be only partially specified
 • Uns specified values are inherited
Lights in the Scene Graph

• Light sources also need a position and/or direction
 • Just include them into the scene graph
 • Can be animated just like geometry

• Lights can be in local coordinate systems of geometry groups
 • Move with them
 • Example: lights on a car
The Camera in the Scene Graph

• Camera also needs a position and direction
 • Just include it into the scene graph
 • Can be animated just like geometry

• Camera can be in local coordinate systems of geometry groups
 • Move with them
 • Example: driver’s view from a car
Chapter 2 – Transformations & Scene Graphs

• Three-Dimensional Geometric Transformations
• Affine Transformations and Homogeneous Coordinates
• Combining Transformations

• Why a scene graph?
• What is stored in the scene graph?
 • Objects
 • Appearance
 • Camera
 • Lights

• Rendering with a scene graph
• Practical example
Scene graph traversal for rendering

- set T_{act} to T_{Auto}
- push state
- set T_{act} to $T_{\text{act}} * T_{\text{Karosserie}}$
- push state
- set T_{act} to $T_{\text{act}} * T_{\text{Chassis}}$
- render Quader1
- pop state
- set T_{act} to $T_{\text{act}} * T_{\text{Kabine}}$
- render Quader2
- pop state
- pop state
- set T_{act} to $T_{\text{act}} * T_{\text{Räder}}$
- ...
Scene Graph Libraries

• Scene graphs exist on a more abstract layer than OpenGL!

• VRML/X3D
 • descriptive text format, ISO standard

• OpenInventor
 • Based on C++ and OpenGL
 • Originally Silicon Graphics, 1988
 • Now supported by VSG3d.com

• Java3D
 • Provides 3D data structures in Java
 • Not supported anymore

• Open Scene Graph (OSG)

• Various game engines
 • e.g. Unity or jMonkey Engine (scene graph based game engine for Java)

• Three.js
Scene Graphs in Practice

• Creation of scene graphs and objects
 • Specific authoring software (e.g. Blender, Maya, 3DS Max)

• Assets (models, objects) exported to exchange formats
 • E.g. (X3D,) Wavefront OBJ (.obj), 3ds Max (.3ds), Ogre XML (.mesh)

• Objects typically are tesselated
 • Polygon meshes
 • No primitive geometric objects visible/readable anymore

• Example:
 • jMonkey Engine Scene Viewer / Composer
Chapter 2 – Transformations & Scene Graphs

• Three-Dimensional Geometric Transformations
• Affine Transformations and Homogeneous Coordinates
• Combining Transformations

• Why a scene graph?
• What is stored in the scene graph?
 • Objects
 • Appearance
 • Camera
 • Lights
• Rendering with a scene graph

• Practical example
Example of a scene graph

• Graph to be drawn together in the lecture
• VRML world linked from the class page