Tutorial 3

Geometry
 Computer Graphics

Summer Semester 2020
Ludwig-Maximilians-Universität München

Agenda

- Geometric Representations
- Constructive Solid Geometry
- Polygonal Mesh
- Bézier Curves and Interpolation
- Bézier Curve
- The de Casteljau Algorithm
- Piecewise Bézier Curves
- Bézier Patches
- Mesh Sampling
- Mesh Simplification
- Mesh Subdivision

Tutorial 3: Geometry

- Geometric Representations
- Constructive Solid Geometry
- Polygonal Mesh
- Bézier Curves and Interpolation
- Bézier Curve
- The de Casteljau Algorithm
- Piecewise Bézier Curves
- Bézier Patches
- Mesh Sampling
- Mesh Simplification
- Mesh Subdivision

Constructive Solid Geometry (CSG)

CSG allows to represent complex models as a series of boolean operations between primitives.

difference (NOT)
$A-B$

intersection (AND)
$A \cap B$

exclusive or (XOR)
$A \oplus B$

Task 1 a) Representation: CSG Tree

Why CSG and Why not CSG?

- Why?
- Minimum steps: represent solid objects as hierarchy of boolean operations
- A lot easier to express some complex implicit surface
- Less storage: due to the simple tree structure and primitives
- Very easy to convert a CSG model to a polygonal mesh but not vise versa
- ...
- Why not?
- Impossible to construct non-solid shape, e.g. organic models
- Require a great deal of computation to derive boundaries, faces and edges \Rightarrow needed for interactive manipulation

○ ...

Polygonal Mesh

By definition, polygonal mesh is a collection of vertices, edges and faces that defines the shape of a polyhedra object.

Task 1 b)

Q: What's the order when list vertices and faces? Which vertex and face should be listed first? A: Depends. But the order should be consistent e.g. in .OBJ, it is counterclockwise.

Task 1 c) Apparently this is a mesh...

Task 1 d)

A hilly terrain can be derived from a $x-y$ plane by changing the z value of each vertex. In three.js, one can use PlaneGeometry.

Perlin Noise

- Motivation: smoothly random interpolation

$v_{P_{i}}=\mathbf{a}_{i} \overrightarrow{P_{i} P}(i=1,2,3,4)$
Then P equals linear interpolation of P1-P4

Perlin v.s. random noise

Ken Perlin. 1985. An image synthesizer. SIGGRAPH Comput. Graph. 19, 3 (Jul. 1985), 287-296. DOI:https://doi.org/10.1145/325165.325247 Ken Perlin. 2002. Improving noise. ACM Trans. Graph. 21, 3 (July 2002), 681-682. DOI:https://doi.org/10.1145/566654.566636

Task 1 e)

```
export default class Terrain extends Renderer {
init() {
    // TODO: Implement a terrain. Hint: use PerlinNoise.
    const l = new PointLight(params.lightColor, 1, 100)
    l.position.copy(params.lightPos)
    this.scene.add(l)
    const g = new PlaneGeometry(params.size, params.size, params.fragment, params.fragment)
    const plane = new Mesh(g, new MeshStandardMaterial|({flatShading: true, side: DoubleSide}),
    plane.rotateX(Math.PI/2)
    this.scene.add(plane)
}
}

\section*{Task 1 e)}
```

export default class Terrain extends Renderer {
init() {
// IODO: Implement a terrain. Hint: use PerlinNoise.
const l = new PointLight(params.lightColor, 1, 100)
l.position.copy(params.lightPos)
this.scene.add(l)
const g = new PlaneGeometry(params.size, params.size, params.fragment, params.fragment)
const plane = new Mesh(g, new MeshStandardMaterial({flatShading: true, side: DoubleSide}))
plane.rotateX(Math.PI/2)
const n = new PerlinNoise()
for (let i = 0; i < g.vertices.length; i++) {
g.vertices[i].z = 2*n.gen(g.vertices[i].x, g.vertices[i].y) // Add noise to z coordinate of each vertex
}
this.scene.add(plane)
}
}

```

\section*{Task 1 f) Why triangles?}
- The most basic polygon
- Other polygons can be turned into triangles
- Unique properties
- Guaranteed to be planar
- Well-defined interior ( Q : How to check if a point is inside a triangle?)
- Easier to compute interaction with rays (later in ray tracing)
- ... too many reasons!

\section*{Task 1 f) Why quadrilateral?}
- Quad meshes is a lot easier for modeling smooth and deformable surface
- Converting quadrangles to triangles is a simple process
- Quad meshes have many sub-regions with grid-like connectivity (flow line or edge loop)
- Quad meshes are better for subdivisions than tri-meshes
\(\Rightarrow\) Many subdivided surfaces are quad meshes (spline surface, e.g. Bézier patches)
... Bézier patches?

\section*{Tutorial 3: Geometry}
- Geometric Representations
- Constructive Solid Geometry
- Polygonal Mesh
- Bézier Curves and Interpolation
- Bézier Curve
- The de Casteljau Algorithm
- Piecewise Bézier Curves
- Bézier Patches
- Mesh Sampling
- Mesh Simplification
- Mesh Subdivision

\section*{Cubic Bézier Curve - de Casteljau}

\section*{4 control points}


\section*{Task 2 a)}
\(\mathrm{t}=0.5 \Rightarrow\) midpoint


\section*{Task 2 b)}

\[
\begin{aligned}
t= & \frac{x-x_{0}}{x_{1}-x_{0}}=\frac{y-y_{0}}{y_{1}-y_{0}} \\
\Longrightarrow & x=x_{0}+t\left(x_{1}-x_{0}\right)=(1-t) x_{0}+t x_{1} \\
& y=y_{0}+t\left(y_{1}-y_{0}\right)=(1-t) y_{0}+t y_{1}
\end{aligned}
\]

\section*{Task 2 c) de Casteljau Algorithm}

Take cubic Bézier as an example:
\begin{tabular}{lllll}
\(\mathbf{b}_{0}\) & \(\mathbf{b}_{1}\) & \(\mathbf{b}_{2}\) & \(\mathbf{b}_{3}\)
\end{tabular}


\section*{Task 2 c) de Casteljau Algorithm}

Take cubic Bézier as an example:


\section*{Task 2 c) de Casteljau Algorithm}

Take cubic Bézier as an example:


\section*{Task 2 c) de Casteljau Algorithm}

Take cubic Bézier as an example:


\section*{Task 2 c) de Casteljau Algorithm}

Take cubic Bézier as an example:


\section*{Task 2 c) de Casteljau Algorithm}
```

createDeCasteljauPointAt(t) {
// TODO: implement de Casteljau's algorithm
// use this.controlPoints to access the given control points
const n = this.controlPoints.length
const tc = new Array(n)
for(var i = 0; i < n; i++){
tc[i] = this.controlPoints[i].clone()
}
for (let j = 0; j < n; j++) {
for (let i = 0; i < n-j-1; i++) {
tc[i].x = (1-t)*tc[i].x + t*tc[i+1].x
tc[i].y = (1-t)*tc[i].y + t*tc[i+1].y
}
}
return tc[0]
}

```

\section*{Task 2 c) de Casteljau Algorithm - Result}

\section*{Bézier Curve - Algebraic Formula}

Quadratic Bézier curve \(\quad \mathbf{b}_{0}^{1}(t)=(1-t) \mathbf{b}_{0}+t \mathbf{b}_{1}\)
\[
\begin{aligned}
\mathbf{b}_{1}^{1}(t) & =(1-t) \mathbf{b}_{1}+t \mathbf{b}_{2} \\
\mathbf{b}_{0}^{2}(t) & =(1-t) \mathbf{b}_{0}^{1}+t \mathbf{b}_{1}^{1} \\
& =(1-t)\left((1-t) \mathbf{b}_{0}+t \mathbf{b}_{1}\right)+t\left((1-t) \mathbf{b}_{1}+t \mathbf{b}_{2}\right) \\
\Longrightarrow \mathbf{b}_{0}^{2}(t) & =(1-t)^{2} \mathbf{b}_{0}+2 t(1-t) \mathbf{b}_{1}+t^{2} \mathbf{b}_{2}
\end{aligned}
\]

\section*{Bézier Curve - Algebraic Formula}

Quadratic Bézier curve \(\quad \mathbf{b}_{0}^{1}(t)=(1-t) \mathbf{b}_{0}+t \mathbf{b}_{1}\)
\[
\begin{aligned}
\mathbf{b}_{1}^{1}(t) & =(1-t) \mathbf{b}_{1}+t \mathbf{b}_{2} \\
\mathbf{b}_{0}^{2}(t) & =(1-t) \mathbf{b}_{0}^{1}+t \mathbf{b}_{1}^{1} \\
& =(1-t)\left((1-t) \mathbf{b}_{0}+t \mathbf{b}_{1}\right)+t\left((1-t) \mathbf{b}_{1}+t \mathbf{b}_{2}\right) \\
\Rightarrow \mathbf{b}_{0}^{2}(t) & =(1-t)^{2} \mathbf{b}_{0}+2 t(1-t) \mathbf{b}_{1}+t^{2} \mathbf{b}_{2}
\end{aligned}
\]

Cubic Bézier curve
\[
\mathbf{b}_{0}^{3}(t)=(1-t)^{3} \mathbf{b}_{0}+3 t(1-t)^{2} \mathbf{b}_{1}+3 t^{2}(1-t) \mathbf{b}_{2}+t^{3} \mathbf{b}_{2}
\]

\section*{Bézier Curve - Algebraic Formula}

Quadratic Bézier curve
\[
\begin{aligned}
\mathbf{b}_{0}^{1}(t) & =(1-t) \mathbf{b}_{0}+t \mathbf{b}_{1} \\
\mathbf{b}_{1}^{1}(t) & =(1-t) \mathbf{b}_{1}+t \mathbf{b}_{2} \\
\mathbf{b}_{0}^{2}(t) & =(1-t) \mathbf{b}_{0}^{1}+t \mathbf{b}_{1}^{1} \\
& =(1-t)\left((1-t) \mathbf{b}_{0}+t \mathbf{b}_{1}\right)+t\left((1-t) \mathbf{b}_{1}+t \mathbf{b}_{2}\right) \\
\Longrightarrow \mathbf{b}_{0}^{2}(t) & =(1-t)^{2} \mathbf{b}_{0}+2 t(1-t) \mathbf{b}_{1}+t^{2} \mathbf{b}_{2}
\end{aligned}
\]

Cubic Bézier curve
\[
\mathbf{b}_{0}^{3}(t)=(1-t)^{3} \mathbf{b}_{0}+3 t(1-t)^{2} \mathbf{b}_{1}+3 t^{2}(1-t) \mathbf{b}_{2}+t^{3} \mathbf{b}_{2}
\]

General Bézier curve

Bernstein basis
\[
\mathbf{b}_{0}^{n}(t)=\sum_{i=0}^{n} B_{i}^{n}(t) \mathbf{b}_{i}
\]
\[
B_{i}^{n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}
\]

\section*{Task 2 d) Properties of Bézier Curves}
\[
\mathbf{b}^{n}(t)=\sum_{i=0}^{n} B_{i}^{n}(t) \mathbf{b}_{i}
\]
1. Affine transform curve by transforming control points (try to verify by yourself)

No need to transform every point on a curve/surface \(\Rightarrow\) good performance!
\[
f\left(\mathbf{b}^{n}(t)\right)=f\left(\sum_{i=0}^{n} B_{i}^{n}(t) \mathbf{b}_{i}\right)=\sum_{i=0}^{n} B_{i}^{n}(t) f\left(\mathbf{b}_{i}\right), f(x, y)=(a x+b y+c, d x+e y+f)^{\top}
\]
2. Curve is within convex hull of control points
3. Interpolates endpoints
\[
\begin{aligned}
& \mathbf{b}^{n}(0)=\sum_{i=0}^{n} B_{i}^{n}(0) \mathbf{b}_{i}=\mathbf{b}_{0} \\
& \mathbf{b}^{n}(1)=\sum_{i=0}^{n} B_{i}^{n}(1) \mathbf{b}_{i}=\mathbf{b}_{n}
\end{aligned}
\]


\section*{Task 2 e) Piecewise Bézier Curves}
- The Cubic Bézier curve with 4 control points is widely used (almost every design software)
- The connection of the two head/tail control points forms a tangent of the Bézier curve
- A "seamless" curve is guaranteed if all given points are differentiable
\(\Rightarrow\) Left and right tangent slopes are equal for

a connecting point

\section*{Task 2 f) Higher-order Bézier Curves}

\author{
Very hard to control!
}

Can you imagine which control point influences which part of the curve?


N-order Bézier Curve Playground:
https://www.desmos.com/calculator/xlpbe9bgl|

\section*{Task 2 g) Bicubic Bézier Surface (Patch)}

4 cubic Bézier curves determines a bicubic Bézier surface:
Each cubic Bézier curve needs 4 control points, with 4 curves, \(4 \times 4=16\) control points in total.
Then on an orthogonal direction, each Bézier curve contributes one control point.

\section*{Tutorial 3: Geometry}
- Geometric Representations
- Constructive Solid Geometry
- Polygonal Mesh
- Bézier Curves and Interpolation
- Bézier Curve
- The de Casteljau Algorithm
- Piecewise Bézier Curves
- Bézier Patches
- Mesh Sampling
- Mesh Simplification
- Mesh Subdivision

\section*{Mesh Simplification (downsample)}

Reducing \#polygons while preserving the overall shape



\section*{Mesh Simplification: Vertex Clustering}
1. Divide 2D/3D space into grids
2. For each cell
a. replace all nodes by their barycenter
b. reconnect all edges to the barycenter

\section*{Task 3 a) and b)}

- Before simplification: \#triangles = 22
- After simplification: \#triangles = 15
- Reduction ratio \(=(\) before - after \() /\) before \(=(22-15) / 22 \approx 31.8 \%\)

\section*{Vertex Clustering: Inconsistency}

Depending on the position of vertices, the same geometry can lead to inconsistent results:


\section*{Task 3 c)}

- If you are doing simplification, details will be lost for sure
- Major drawback: geometric topology has changed

\section*{Geometry vs. Topology}

Geometry: The vertex is at \((x, y, z) \Rightarrow\) distance relevant
Topology: These vertices are connected \(\Rightarrow\) distance irrelevant

\section*{Manifold \& Non-Manifold}

Manifold: Each edge is incident to one or two faces, and faces incident to a vertex from a closed or open fan.

closed fan

manifolds
non-manifolds

\section*{Topology Change?}
- Manifold \(\rightarrow\) Non-manifold
- Non-manifold \(\rightarrow\) Manifold


Non-manifold often causes problematic editing and rendering
Q: Can you name an example that vertex clustering change manifold to non-manifold?

\section*{Task 3 d) Ways into source code}

Most of the modern developments rely on a huge number of dependencies, these dependencies are written by others. All you can do is to trust(?) their implementation.

Most of the time, you don't have to worry about the things that you have used. But if a problem occurs, you will need to ask for help. In the worst case, nobody can help you (e.g. lack of response, abandoned by maintainer, etc.) then you will have to read the source code on your own and understand what's under the hood.

\section*{Task 3 d) Ways into source code}
- With open source, you have the freedom to explore everything you need to understand
- Where can I find the SimplifyModifier and SubdivisionModifier?


\section*{Task 3 d) Looking for examples}

\section*{turree.js docs examples}
```

simpli

```
webol
webol
modifier / simplifier

\section*{Task 3 d) Find where the dependency is introduced}
© mrdoob / three.js


Branch: master v three.js / examples / webgl_modifier_simplifier.html
E mrdoob Examples: Added padding after script tag.


101 lines (69 sloc) 2.89 KB
Raw Blame History \(\square\) 而
<[DOCTYPE html>
<html lang="en">
<head>
<title>three.js webgl - modifier - Subdivisions using Loop Subdivision Scheme</title>
<meta charset="utf-8">
meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
<link type="text/css" rel="stylesheet" href="main.css">
</head>
<body>
<script type="module">
import * as THREE from '../build/three.module.js';
import \{ Orbitcontrols \} from './jsm/controls/OrbitControls.js';
import \{ SimplifyModifier \} from './jsm/modifiers/SimplifyModifier.js';
var renderer, scene, camera;
init();
function init() \{
var info = document.createElement( 'div' );
info.style.position = 'absolute';
info.style.top = '10px'
info. style.width \(=\) ' \(100 \%\) ';
info.style.textAlign = 'center';
info.innerHTML = '<a href="https://threejs.org" target="_blank" rel="noopener">three.js</a> - Vertex Reduct
document.body.appendChild( info) ;

\section*{Task 3 d) Read source code}

Thankfully, the code is well documented.

SimplifyModifier uses
Progressive Polygon Reduction
by Stan Melax

\begin{tabular}{|c|c|c|c|c|}
\hline three.js / examples / jsm / modifiers / SimplifyModifier.js / <> Jump to - & & & Find file & Copy path \\
\hline C. Mugen87 BufferGeometry: Introduce .setAttribute() and deleteAtrribute(). & & & \multicolumn{2}{|l|}{764bc3d on Oct 5, 2019} \\
\hline \multicolumn{5}{|l|}{2 contributors} \\
\hline 503 lines (301 sloc) 9.56 KB & Raw & Blame & History & - 而 \\
\hline
\end{tabular}
Simplification Geometry Modifier
    - based on code and technique
            by Stan Melax in 1998
            - Progressive Mesh type Polygon Reduction Algorithm
    ttp://www.melax.com/polychop/
import \{
            BufferGeometry,
            Float 32 BufferAttribute
            Geometry,
            vector 3
\} from "../../../build/three.module.js";
var SimplifyModifier \(=\) function () \{\};
(function () \{
    var \(\mathrm{cb}=\) new \(\operatorname{Vector} 3(), \mathrm{ab}=\) new \(\operatorname{Vector} 3()\);
    function pushifunique( array, object )
        if ( array.indexof( object) \(===-1\) ) array.push( object);
    \}
    function removeFromArray( array, object )

\section*{Task 3 d) Read source code}

Same way, SubdivisionModifier uses

\author{
Loop Subdivision
}


\section*{Mesh Simplification \& Subdivision in three.js}

Melax, S., 1998. A simple, fast, and effective polygon reduction algorithm. Game Developer, 11, pp.44-49.

Loop, C.T., 1987. Smooth subdivision surfaces based on triangles, Master's thesis Department of Mathematics. University of Utah.

\section*{Face Normal \& Vertex Normal}

Face normal: unit length and orthogonal with given face
Vertex normal: interpolation vector from surrounding face normals (computation depends on the definition)


Why? Influence shading (later lectures for more details)
flatShading uses face normals, smooth shading uses vertex normals

\section*{Edge Collapse}

Basic Idea: Collapse an edge then merge one vertex into the other


Q: How many vertices, faces and edges are removed in each edge collapse?

\section*{Pick an Edge}

How much does it cost to collapse an edge?
A possible way: cost = edge length * curvature

\[
\operatorname{cost}(u, v)=\underbrace{\|u-v\|}_{\text {distance }} \times \max _{f \in T_{u}}\{\min _{n \in T_{u v}}\{\underbrace{1-f . \text { normal } \cdot n . \text { normal }}_{\text {curvature }}\}\}
\]
where \(\boldsymbol{T} \boldsymbol{u}\) is the set of triangles that contains \(\boldsymbol{u}, \boldsymbol{T} \boldsymbol{u} \boldsymbol{v}\) is the set of triangles that contains both \(u\) and \(v\).
curvature by definition: 1 - f.normal.dot(n.normal)

\section*{Pseudocode}
```

const u = Vector3(...)
const v = Vector3(...)
const Tu = [...] // faces contains u
const Tuv = [...] // faces contains u and v
let maxCurvature = 0
for (let i = 0; i < Tu.length; i++) {
let minCurvature = 1
for (let j = 0; j < Tuv.length; j++) {
const curvature = 1 - Tu[i].normal.dot(Tuv[j].normal)
if (curvature < minCurvature) {
minCurvature = curvature
}
}
if (minCurvature > maxCurvature) {
maxCurvature = minCurvature
}
}
const cost = u.sub(v).norm() * maxCurvature

```

\section*{Melax's Progressive Polygon Reduction - Optimization}

We know the cost of collapse an edge.
But if we collapse an edge, costs of neighbors can also be affected (why?)

How to efficiently simplify a mesh progressively?
Data structure: priority queue or min-heap.
- cost of access min element: O(1)
- cost of affected elements manipulation: \(\mathbf{O}(\log (n))\)

\section*{Mesh Subdivision (Upsample)}

Increase \#polygons that smoothly approximate its shape
Triangle: Loop
Quad: Catmull-Clark


\section*{Mesh Subdivision: Loop Subdivision}

Basic idea: interpolating at every midpoint
\#poly *= 4^(subdivision number)


\section*{What if...}

```

export default class Bunny extends Renderer {
constructor() {
super()
this.scene.add(new AmbientLight(0x333333))
const light = new PointLight(0xffffff, 0.8, 1000);
light.position.copy(new Vector3(100, 50, 100))
this.scene.add(light)
const loader = new GLTFLoader()
loader.load('assets/bunny.glb', model => {
const simplifier = new SimplifyModifier()
const subdivision = new SubdivisionModifier(2)
const reduceRatio = 0.95
const N = 10
// TODO: Implement repetitive subdivision and simplification.
const addBunny = (g, i) => {
const bunny = new Mesh(g, new MeshStandardMaterial())
bunny.rotateX(Math.PI/2)
bunny.scale.copy(new Vector3(40, 40, 40))
bunny.translateX(8*i)
this.scene.add(bunny)
}
// original model
const original = model.scene.children[0]
original.scale.copy(new Vector3(40, 40, 40))
this.scene.add(original.clone())
let g = new Geometry().fromBufferGeometry(model.scene.children[0].geometry)
g.mergeVertices()
for (let i = 1; i <= N; i += 2) {
g = subdivision.modify(g)
addBunny(g, i)
g = simplifier.modify(g, Math.floor(g.vertices.length*reduceRatio))
g = (new Geometry()).fromBufferGeometry(g)
addBunny(g, i+1)
}
})
}
}

```

\section*{Task 3 e)}

If subdivision number \(=2\), reduction ratio of number of vertices \(=95 \%\) :


Q: Is it possible to preserve the \#faces and mesh quality when repeating simplification and subdivision?

\section*{Task 3 e)}

If subdivision number \(=2\), reduction ratio of number of vertices \(=90 \%\) :

\begin{tabular}{|c|c|c|}
\hline Iteration & Vertices & Faces \\
\hline 0 & 2503 & 4968 \\
\hline 1 (subdivision) & 39826 & 79488 \\
\hline 2 (simplification) & 3981 & 7798 \\
\hline 3 (subdivision) & 62715 & 124768 \\
\hline 4 (simplification) & 6075 & 11545 \\
\hline 5 (subdivision) & 93357 & 184720 \\
\hline 6 (simplification) & 3561 & 6710 \\
\hline 7 (subdivision) & 54051 & 107360 \\
\hline 8 (simplification) & 2658 & 5009 \\
\hline 9 (subdivision) & 40176 & 80144 \\
\hline 10 (simplification) & 2666 & 5002 \\
\hline
\end{tabular}

Observation: Shape is still not exactly preserved.

\section*{More about mesh sampling}

Other possibilities:
1. subdivision \(\rightarrow\) simplification \(\rightarrow\) subdivision \(\rightarrow\) simplification \(\rightarrow \ldots\) \#vertices/\#faces is reduced over iteration \#vertices/\#faces is increased over iteration
2. simplification \(\rightarrow\) subdivision \(\rightarrow\) simplification \(\rightarrow\) subdivision \(\rightarrow \ldots\) \#vertices/\#faces is reduced over iteration \#vertices/\#faces is increased over iteration

We encourage you to explore and verify by yourself :)

\section*{Task 3 f) Mesh Aliasing}
- The method for upsampling or downsampling is not an inverse to one another
\(\Rightarrow\) Aliasing errors can occur if the sampling pattern is not perfectly aligned to features in the original geometry

\section*{Take Away}
- A lot of open problems in geometry remains unsolved, and they are utterly hard
- If you are interested in practical 3D modeling, now you have enough basic knowledge.

Check out the Blender (an amazing free and open source software), find a tutorial that fits your taste then get started.

\section*{TOblender}
- If you are more interested in technical geometric analysis, check out these fascinating books, and enjoy :)


\section*{Thanks!}

\section*{What are your questions?}

\section*{Appendix}

\section*{If you met this issue...}

SimplifyModifier does not compute vertex normals, this means your simplified model will not be shaded unless you use flat shading. Two possible fixes:
1. manually compute vertex normals:
```

const addBunny = (g, i) => {
g.computeVertexNormals()
const bunny = new Mesh(g,
new MeshStandardMaterial(),
)
bunny.rotateX(Math.PI/2)
bunny.scale.copy(new Vector3(40, 40, 40))
bunny.translateX(8*i)
this.scene.add(bunny)

```

```

2. Or create a Geometry from a BufferGeometry (used in the provided solution):
for (let i = 1; i <= N; i += 2) {
g = subdivision.modify(g)
addBunny(g, i)
g = simplifier.modify(g, Math.floor(g.vertices.length*reduceRatio))
g = new Geometry().fromBufferGeometry(g)
addBunny(g, i+1)
```
\}

\section*{Midterm Survey}

Submit your feedback before 08.06.2020, the results will be available to you later when the evaluation is done.
Link: https://forms.gle/XqWC5cctM56GBvZV9

\section*{Computer Graphics SS2O - Intermediate Evaluation}

In this semester (SS2020), we all have an exceptional situation. As course assistants, we value your learning experience in having the course entirely online. Thus, it is expected to understand your status, then better plan for the rest of the summer semester. Thank you very much for your time and feedback :)

David \& Changkun
P.S. This survey is anonymous.
* Required

What's your major? *

Medieninformatik
O Informatik
Mensch-Computer-Interaktion
Bioinformatik```

