
1

AR-Übung - Vitzthum/Boring - SSIML/AR1

Projektphase
• 2 Projekte aus den Bereichen Montage/Wartung
• 4 Teams (2 x “herkömmliche Programmierung”, 2 x Verwendung

des Entwicklungsansatzes SSIML/AR)
• Je 2 Teams (1 x C-Programmierung, 1 x SSIML/AR) arbeiten

unabhängig voneinander an einem Projekt
– Auswahl der Teams vor der Projektphase
– Meilensteine

Vorstellung des AR-Entwicklungsansatzes
SSIML/AR

Übung AR, A. Vitzthum



2

AR-Übung - Vitzthum/Boring - SSIML/AR3

Situation – AR Development
• AR Development:

– Much effort spent in base technologies (tracking, rendering)
– Most support at implementation level (e.g. ARToolkit)
– Reuse of high-level AR components still rare 
– Development of complex AR applications time-consuming and error-

prone
• Problem: 

– Lack of concepts and tools to support a structured development of AR 
applications

Planning and designing the AR application at an abstract level prior 
to implementation could ease development

AR-Übung - Vitzthum/Boring - SSIML/AR4

Solution Approach
• Traditional software engineering: 

– Visual languages applied successfully for abstract software design
– De-facto standard: Unified Modeling Language (UML)
– Adaptation to the requirements of AR applications needed; e.g. no 

explicit distinction between real and virtual objects in UML

Solution approach: SSIML/AR – A visual and platform independent 
modelling language

• Support of AR development in task-focused domains such as 
maintenance, assembly and repair 

• Three model types:
– Taskflow model: Sequence of user tasks
– Scene model: UI structure as a scene graph
– Interrelation model: Comprises application components, scene model 

and relations between components and scene elements
• Automatic model-code mapping allows seamless transition to 

implementation level



3

AR-Übung - Vitzthum/Boring - SSIML/AR5

Example Scenario
• The user is supported by an AR system in exchanging the cartridge 

of an inkjet printer 
• The user has solve a sequence of tasks
• Taskflow model

– Sequence of tasks is modelled with an UML activity diagram
– Every task is represented by an UML action 
– Possibility to decompose tasks hierarchically or to model optional 

tasks

AR-Übung - Vitzthum/Boring - SSIML/AR6

Taskmodel – Example 2 – Graphics Card Installation

InstallGraphicsCard

<<ARTask>>
ConnectPowerSupply

<<ARTask>>
RemoveMetalCover

<<ARTask>>
RemovePCCover

<<ARTask>>
ReplacePCCover

 [else]

 [powerSupplyRequired]

<<ARTask>>
FastenGraphicsCard

<<ARTask>>
FitInGraphicsCard



4

AR-Übung - Vitzthum/Boring - SSIML/AR7

Example Scenario: Real, virtual and hybrid objects

Chassis with
visual marker

Graphics card

Card slot

Instruction
text

HybridObject

RealObject

VirtualObject

AR-Übung - Vitzthum/Boring - SSIML/AR8

SSIML/AR Scene Model
• Basis: The Scene Structure and Integration Modelling Language 

(SSIML) 
• Models 3D content structures (i.e. the 3D UI structure) using a 

scene graph-oriented notation
– Encapsulation and reuse of subgraphs

• Important AR specific scene nodes:
– VirtualObject node (V)

• Exists only in the virtual world
– RealObject node (R)

• Physical object in the real world
• Can be tracked by a tracking device
• Has a non-visual representation in the virtual IS
• Can serve as spatial reference point (i.e. a group element) for other objects 

in the virtual world
– HybridObject node (H)

• Has a real and a virtual component
• The virtual component represents the real component in the virtual world 

(e.g. a 3D model of a printer represents a real printer)
• Virtual component is aligned with the real component



5

AR-Übung - Vitzthum/Boring - SSIML/AR9

Scene graph types

Plate (real)

Table (real)

Plate (virtual)

Table (Group)

Cup (virtual) Plate (hybrid)

Table (real)

Cup (virtual)

a) Real scene b) Virtual scene c) AR scene (mixed)

d) e) f)

AR-Übung - Vitzthum/Boring - SSIML/AR10



6

AR-Übung - Vitzthum/Boring - SSIML/AR11

Scene Model

Scene Root Node

Constrained Edge

RealObject Node

HybridObject Node

AR-Übung - Vitzthum/Boring - SSIML/AR12

SSIML/AR – Interrelation Model

• Interrelation model:
– <<tracks>> - relation between tracking software component and real or 

hybrid object
– <<aligns>> - relation between scene updating component and virtual or 

hybrid object



7

AR-Übung - Vitzthum/Boring - SSIML/AR13

Interrelation Model

Application class

Class-Node
relation

Software Designer

3D Developer

……..
……..
……..
……..

Program Code 
Skeleton

Generate Code from
Interrelations

……..
……..
……..
……..

3D Template
(e.g. X3D)

Generate Code from
Scene Model

……..
……..
……..
……..

Completed
3D Scene

Complete with
Authoring Tool

……..
……..
……..
……..

Completed
Program Code

Complete with
Programming Tool

SSIML
Models

Design Scene & 
Interrelations

Application
Programmer

SSIML – Roles & Workflow

The models form a contract
between 3D developer and 
application programmer

Project:
Java/
JARTookit

Project: VRML



8

AR-Übung - Vitzthum/Boring - SSIML/AR15

AR-Übung - Vitzthum/Boring - SSIML/AR16



9

AR-Übung - Vitzthum/Boring - SSIML/AR17

Extensions

<<KFTransformAnimationState>>
CloseHood

{rotations=0 0 1 50°, 0 0 1 25°, 0 0 1 0°,
keyTimes=0, 0.5, 1}

<<KFTransformAnimationState>>
OpenHood

{keyTimes=0, 0.5, 1,
rotationsZ=0°, 25°, 50°}

HoodIsClosed

HoodIsOpen

MessageEvent
[message=
"hoodTS clicked"]

MessageEvent
[message=
"hoodTS clicked"]

Behaviour

3D Components


