Beyond-the-Desktop Interactive Visualizations

Steffen Wenz

Abstract— There are many established information visualizations on desktop computers that rely on a regular screen and the
combination of mouse and keyboard as input devices. Mobile devices, however, are becoming more and more widespread. Also,
tabletop computers may soon find their way into everyday life. Existing visualizations cannot be ported to these devices due to

different screen sizes and input modalities.

In this paper, nine exemplary interactive visualizations across different devices are

discussed, covering three different areas: photo collections, maps and scatterplots. Then, four different criteria are applied to them.
The examples are categorized by data type, screen size, input bandwidth and supported tasks and techniques to reduce screen
clutter. The resulting classification leads to some discoveries concerning how the examples deal with the limitations and opportunities
of new devices. Photo collection tools, for example, are forced to abandon their typical file browser interface on mobile devices. Maps,
on the other hand, profit from innovative methods of input. Altogether, interactive visualizations on devices beyond the desktop have
the potential to develop new input and output concepts that increase usability.

Index Terms—Interactive visualizations, mobile devices, tabletop computers, taxonomy

1 INTRODUCTION

Information visualizations have been a subject of research for many
years by now. Computers are becoming more and more powerful and
enable complex scientific visualizations. But moreover, information
visualizations have found their way into many everyday application
domains. People increasingly use visual tools such as zoomable maps,
charts and diagrams to navigate large data sets or visualize data them-
selves. For example, map visualizations such as Google Maps have
found widespread use in recent years. Also, Microsoft Excel and other
spreadsheet applications allow users to generate many kinds of dia-
grams with just a few clicks.

s o compPaa © (@
\* iPAQ pocket pc

Path View

New Folder Delete

As lcons [Modified
13:27 Uhr
13:27 Uhr
13:27 Uhr

2 o asvist

[ ascolums

[#  asGraphspace

[ AsDotspace 1327 Uhr

3 AcGeospace | 13:27Uhr

I — 1327 Unr

7 harror Today, 13:27 Uhr
musial Today, 13:27 Uhr
mystery Today, 13:27 Uhr

romance. Today, 13:27 Uhr
scifi Today, 13:27 Uhr
short Today, 13:27 Uhr
thriller Today, 13:27 Uhr
war Taday, 13:27 Uhr
western Today, 13:27 Uhr

VV'V"V'VV'V'VV‘

&
[
:
E
e
E
e
&
&
;
[

Fig. 1. Small screen space on a PDA [13]

However, these applications usually run on desktop computers and
therefore rely on a regular computer screen for output, and a keyboard
and mouse for input. Furthermore, they are tailored to the usage be-
havior associated with desktop computers, meaning that applications
can assume that the user is seated at a desk. But nowadays, comput-
ers come in all shapes and sizes! Surface computers and large wall-
mounted displays offer more screen space than desktop computers and
enable new forms of collaboration in applications, but require radically

o Steffen Wenz is studying Media Informatics at the University of Munich,
Germany, E-mail: steffen.wenz@campus.lmu.de

o This research paper was written for the Media Informatics Advanced
Seminar on Information Visualization, 2008/2009

different input devices and methods of usage. Also, mobile devices are
becoming ubiquitous and are slowly catching up to desktop computers
in terms of processing power and storage capacity, but have limited
methods of input and little screen space. This issue is demonstrated
in figure 1, where a file browser view, though very compact, can only
display 15 data items on a PDA.

Visualizations that are designed for desktop computers cannot sim-
ply be ported to other device types. The differences in screen size,
methods of input and general usage behavior have to be taken into
account [6]. These can either be limiting factors, or they can enable
interactive visualizations beyond what is possible on a desktop com-
puter. In this paper, a selection of example interactive visualizations
across different devices is discussed. The purpose of this is to find out
how common visualizations are adapted to the characteristics of cer-
tain devices. Since this discussion should be structured in some way,
a set of properties or criteria will be applied to all examples. These
criteria, which are introduced in the following section, will make it
possible to quickly see differences and similarities between visualiza-
tions on various devices.

2 PROPERTIES OF INTERACTIVE VISUALIZATIONS

There are some requirements for the criteria chosen in this paper.
Firstly, they should reflect the properties of the device the visualiza-
tion was designed for. Visualizations may depend on certain methods
of input or output that are not available on other devices. Secondly, the
criteria should contain information on how the visualization is adapted
to the characteristics of its device. For example, an application on a
mobile phone has to deal with the limited screen space, while an ap-
plication on a surface computer may have to deal with the lack of a
keyboard for text entry. The criteria introduced in this section build
on previous research in the field of visualization taxonomies, which is
discussed in the following subsection.

2.1 Related Work

A relatively early attempt to categorize visualizations is the task by
data type taxonomy by Ben Shneiderman [12]. It assumes users are
navigating a large set of structured data in search of certain informa-
tion. Shneiderman proposes two criteria for classifying visualizations:
data type and task. The data type describes the attributes of the data
set that is to be visualized and can either be 1-, 2-, 3- or multidi-
mensional, or temporal, network or tree data. The tasks are actions
which the user may perform within the visualization tool, and can be
any combination of the following: Overview, zoom, filter, details-on-
demand, relate, history and extract. These tasks may seem familiar as
they are based on the information-seeking mantra coined by Shneider-
man: “Overview first, zoom and filter, then details-on-demand” [12].



Table 1. Data type criteria [12]

Data type
1-dimensional
2-dimensional
3-dimensional
Temporal
Multi-dimensional

Typical example

Textual data, lists

Images, geographic data

Architectural models

Timelines with (overlapping) events
Database records with more than three at-
tributes

Hierarchically organized data

Data sets with complex relationships

Tree
Network

The tasks proposed by Shneiderman are generic and independent of
their technical implementation on different devices. However, techni-
cal limitations of input devices are a critical factor for visualizations.
In [5], the design space for input devices is analyzed. Devices are
modeled as combinations of sensors which measure their position in
one of three linear or rotary axes. The model also allows for discrete
sensors, such as buttons. Individual sensors are then combined to form
devices, using different composition methods. The authors prefer this
parametrical analysis over a taxonomy, as the criteria one chooses are
not guaranteed to be complete and on the same logical level. The pa-
per also deals with different bandwidths of human muscle groups to
be used with input devices, and of course also of the devices itself.
Based on this concept, [14] proposes an abstraction layer to allow for
substitution of input devices for other, equivalent devices. The au-
thors specifically mention the need to emulate mouse and keyboard on
mobile devices. One given example is text entry on mobile phones.
The phone’s number keypad has to replace a keyboard - the number of
keys is of course much smaller, and the model accurately predicts that
multiple key presses are needed to type a single letter.

Applications developers for handheld devices have to take great
care to utilize the limited screen space efficiently. For this purpose,
a number of techniques have emerged. [7] attempts to categorize these
techniques for clutter reduction, as the authors call it, in a taxonomy.
On the top level, the authors distinguish between techniques that af-
fect appearance of data items, spatial distortion or temporal appear-
ance (meaning animation). Sampling, filtering, changing point size
or opacity and clustering are examples for appearance clutter reduc-
tion techniques. Point/line displacement, topological distortion, space-
filling, pixel-plotting and dimensional reordering on the other hand are
techniques working with spatial distortion. Finally, animation can also
reduce clutter. The authors also compare these techniques against each
other using a set of criteria, for example if they avoid overlap or if they
keep spatial information intact.

2.2

While the taxonomies and models explained in the previous section
seem very suitable for this paper, they cannot be applied to visualiza-
tions across devices as-is. Therefore, a combination of the criteria is
proposed in this subsection.

Introduction of Criteria

Data The first criterion is the data type, in accordance with [12].
The data type not only tells what kind of data can be visualized, but is
also characteristic of the task the user is trying to solve. Also, it may
indicate what kinds of data sets visualizations are compatible with. For
example, tools for viewing maps, which are essentially 2-dimensional
data, may also be suitable for other types of images. The possible data
types are defined in table 1. It should be noted that not all visualiza-
tions fit neatly into these categories. As this is a qualitative analysis,
combinations of different data types shall simply be identified as such.

Screen size Screen size differs greatly among computers and is
thus the second criterion. It is directly correlated with the amount of
information that can be displayed at once. But different screen sizes
are usually also associated with certain user behaviors. For example,
mobile phones are not only characterized by their small screen, but
also by their mobility context. Users may be outside in the sun (and

Table 2. Screen size criteria

Screen size Typical devices

Small Mobile phone, PDA

Medium Laptop, desktop computer

Large Tabletop, surface computer, wall-mounted-
display

Table 3. Task criteria [12]

Task Explanation

Overview Gain an overview over the entire data set

Zoom Zoom in on interesting data subsets

Filter Filter out uninteresting data items

Details-on-demand Show additional attributes

Relate Show relationships with other data items

History Keep a history of actions to support undo and
refine

Extract Extract interesting data subsets or query pa-
rameters

low-contrast text thus be hard to read) and have a limited attention
span. For this reason, the general device types will be noted alongside
the screen size. This criterion will make it possible to identify types
of visualizations which have not (yet) been adapted to certain screen
sizes and device types. For simplicity, screen sizes are grouped into
three categories (see table 2), and resolution is not taken into account.
This list is imprecise and by no means complete. It is designed to fit
the examples discussed later in the paper and needs to be expanded to
include other devices.

Input device Applications may also heavily depend on certain
input devices. The characteristics of input methods are the third cri-
terion. To quickly characterize an input device, some hints are taken
from [5]. A mouse would be described as a combination of two lin-
ear sensors (2D), a discrete rotary sensor (the mouse wheel, 0.5D) and
three binary linear sensors (the buttons). The authors of the referenced
design space analysis include much more detail in their model. How-
ever, since this paper constitutes only a qualitative analysis, it can be
allowed to be less precise. Given these criteria, it can be determined
if a visualization can in theory be ported to a different device which
offers compatible methods of input.

Task/Technique Finally, it is interesting to see how applications
deal with the characteristics of the device they were designed for. The
fourth criterion is a combination of the tasks proposed in [12] and the
clutter reduction techniques described in [7]. The tasks are defined in
table 3.

The clutter reduction techniques identified in [7] are listed in table
4. The authors explicitly leave out some techniques, such as changing
color as an appearance technique. The list of criteria will have to be
expanded here.

These two sets of criteria are on slightly different semantic levels.
Shneiderman’s tasks can be actively performed by the user. The clut-
ter reduction techniques, on the other hand, are generally techniques
used by the application to enhance usability. However, there is some
overlap: Zooming is both a task and a form of topological distortion,
and also, filtering can be found in both taxonomies. Also, the clutter
reduction techniques are meant to deal with limited screen space. But
these techniques can be universally applied to visualizations, as clutter
of information is also a problem on large screens due to cognitive lim-
itations. The application of these criteria is expected to show whether
certain devices only allow for visualizations with few supported tasks.
Also, applications will be comparable in what techniques they apply
to deal with device limitations.



Table 4. Clutter reduction technique criteria [7]

Technique Explanation

Appearance

Sampling Show a random data subset

Filtering Show a data subset based on query parame-

ters

Change size of item representation
Change opacity of item representation
Merge items into a cluster

Change point size
Change opacity
Clustering

Spatial distortion
Point/line displacement
Topological distortion

Change position of data items

Distort the background, either uniformly
(zoom) or non-uniformly (fisheye)

Arrange items as non-overlapping rectangles
(tree map)

Show data items as single pixels

Change attribute axes

Space-filling

Pixel-plotting
Dimensional reordering
Temporal

Animation

Animate item representation

3 EXAMPLES

In this section, nine example visualizations from three different areas
are introduced. The criteria chosen in the previous section are then
applied to them.

3.1 Photo Collections

Digital cameras are becoming ubiquitous, and many modern mobile
phones are capable of taking high quality photos with built-in cam-
eras. As such, more and more people carry photo collections on their
mobile devices. Typical tasks when working with photo collections
include finding pictures from a certain time or event, but also organiz-
ing the pictures in folders and annotating them with keywords. The
data type of photo collections is not immediately clear. Photos are 2-
dimensional data, but since the focus for the following applications is
on navigating the entire collection, the dimensions of the visualized
metadata shall be considered the data type. For example, a tool that
organizes photos by their average brightness would be considered to
have 1-dimensional data.

Pocket PhotoMesa The first example is Pocket PhotoMesa, a
zoomable image browser for PDAs [10]. To gain an overview over a
collection of photos, a lot of screen space is usually needed. The au-
thors of Pocket PhotoMesa avoid the need for any scrolling by display-
ing the entire photo collection in a tree map. The photos are organized
in folders, each occupying a rectangular area on the screen which is
filled with small thumbnails. The user then interacts with the applica-
tion using a stylus. By tapping into the whitespace inside a folder, the
application zooms in to this folder. By tapping a picture in any zoom
stage, it is enlarged and brought to the foreground. Users can then pan
and zoom the picture, and return to the collection view by tapping the
white space surrounding the picture. Interestingly, Pocket PhotoMesa
is an adaptation of an application on desktop computers. The authors
mention the difficulties of dealing with the small screen space and the
stylus input, which offers fewer input sensors than a mouse.

TiDi Browser TiDi Browser is also an image browser for PDAs,
but employs different techniques to efficiently display many pictures
on a small screen [3]. It takes advantage of metadata embedded in
picture files, specifically time and location information. Users usually
group pictures by events which are bound to a certain time and place.
TiDi Browser does not require its users to sort pictures in folders them-
selves. Instead, two small histograms are displayed at the sides of the
screen. One of them plots photo frequency over time, the other en-
codes the distance of each photo to a specified home zone (thus reduc-
ing location information to one dimension). Users can then identify
events where many photos were taken at the same time in the same
place and quickly jump there by tapping with a stylus. The center of

the screen is reserved for viewing photos. The current photo takes up
about a fourth of the screen area; its file name, time and distance to the
home zone are also displayed. Below the currently selected picture, a
small number of thumbnails is displayed, showing the temporal con-
text. Users can drag along the time line and bring other pictures into
view. Figure 2 shows a screenshot of TiDi Browser in action.

T

DI Browser V0.2
Fraunhofer IGD, Rostock

Fig. 2. TiDi Browser plots photo metadata in two histograms to provide
an overview [3]

Flux Flux is an application for photo collections that runs on a
surface/tabletop computer [2]. Unlike the previous two examples, it
is mainly intended for organizing photo collections, rather than just
browsing through them in a given structure. Flux makes use of the
large available screen area to display many thumbnails at once. It
sports a tangible user interface using real-world physical interaction,
meaning that users manipulate screen objects directly using their fin-
gers or two pens. Photos can be dragged, resized and rotated at will.
They react in a physically plausible way by simulating inertia and fric-
tion. Using a circular gesture, photos can be hierarchically organized
in clusters or “workspaces”. These are visualized as white rectangles
and can themselves be manipulated by touch gestures. The contained
photos then behave as they were attached to the workspace. Photos
can also be annotated using actual handwriting. In addition to this,
Flux supports automatically arranging all photos by time, quality or
similarity.

3.2 Maps

The visualization of geospatial data is a common application in many
fields. Interactive geographic visualizations can convey more data than
static maps, for example by using multiple layers of data. The exam-
ples in this section are limited to simple street map visualizations in
the likes of Google Maps. In this case, the data type is 2-dimensional,
as the maps are basically image data. Typical tasks when viewing a
map are locating a certain place, judging distances or finding paths.

Halo + ZUI'  One common problem of map visualizations is that
users lose their context when they zoom in on a point of interest. Sev-
eral focus plus context visualizations exist to address this problem:
Overview minimaps can always keep the entire map in sight, but take
up some screen space and may to too small to be useful [6]. Fish-
eye visualizations make judging distances difficult. The authors of [1]
take a different approach: Halo, which is a technique for visualizing
off-screen locations. With Halo, the entire screen area is dedicated to
the zoomable user interface (ZUI) of the map. It is assumed that points
of interest (such as results of a location-based search) are marked with
overlays on the map. If one of these points leaves the screen area due
to panning or zooming, a circle is drawn around that location. The
radius is calculated so that the arc of the circle is visible at the edge of
the screen area. In addition to that, the opacity of the arc decreases as
the point of interest moves further away. This way, users can quickly



and intuitively judge the distance to that point. If the program de-
termines that too many circles would overlap in the same area, they
are clustered to form a single halo with double line strength. Halo is
a device-independent concept, but it is especially relevant for small
screens. As such, for the sake of this paper it is assumed to run on a
small screen device using a stylus as input.

PengYo Modern phones allow for interaction methods beyond
button and stylus input. Apple’s iPhone is a prime example: Its multi-
touch screen is the main means of interaction. Several sensors provide
additional input: The iPhone has GPS support and also sports an ac-
celeration sensor, allowing it to sense its orientation when at rest !.
PengYo is an iPhone application for social interaction that takes ad-
vantage of these sensors [9]. It displays the position of nearby friends
on a street map. (Facebook data is used for this purpose.) Friends
can be “penged” simply by tapping their representative icons, upon
which they receive a notification, much like Facebook’s poke fea-
ture. The map is initially centered on the user’s position, but can
be panned by dragging the finger across the screen, and zoomed by
touching the screen with two fingers and then varying their distance.
This control scheme is a de facto standard for navigating large images
on the iPhone, but PengYo employs another trick to enhance usabil-
ity. The street maps images are loaded from Google Maps and are
thus 2-dimensional, but they are displayed as a plane in 3-dimensional
space in PengYo. The user can control the viewing angle by tilting the
device: If the iPhone is held parallel to the earth’s surface, the map
is viewed straight from the top. But if the device is tilted upwards
towards the horizon, or rotated, the view changes accordingly (see fig-
ure 3). The user interface serves as a metaphorical window to “hybrid
space”, meaning the enrichment of actual spatial data with abstract
information. The user can thus examine his surroundings intuitively
while preserving his position or context.

LL)

Fig. 3. The viewing angle is controlled by tilting the iPhone in PengYo
(9]

DTLens DTLens is amap visualization tool for MERL Diamond-
Touch tabletop computers [8]. Its approach for providing a focus plus
context interface is very different from the previous two mobile solu-
tions. As the screen area of a tabletop computer is quite large, DTLens
can afford to display the map in its entirety at all times. DTLens sup-
ports multiple users who interact with the tool using a multi-touch
interface, as can be seen in figure 4. To view a point of interest in
detail, the user creates a small rectangular fisheye lens by tapping
once, or by opening and dragging the lens to the desired size with
two fingers. The user has to press down both fingers firmly, or else
the lens collapses when both fingers are released. These lenses serve
as windows to a higher zoom level, while the information normally
obstructed is preserved with fisheye distortion. DTLens offers some
convenience functions: Users can change the size and zoom level of a
lens, move it around on the map, and minimize it. Also, it is possible
to draw overlays on objects in the lens view. If the lens is collapsed,
the overlay is translated to the overview map. The global zoom level
is constant, which greatly aides collaborative work. Also, the Dia-
mondTouch screen is capable of distinguishing multiple users. The
authors take advantage of this and allow each user only to manipulate
the lenses he or she created.

Uhttp://www.apple.com/iphone/features/

Fig. 4. DTLens supports collaboration of multiple users [8]

3.3 Scatterplots

Scatterplots are a quite universal visualization. They plot two (or
three) variables of a given data set in a Cartesian coordinate system.
Individual data items are displayed as points in the appropriate loca-
tion. Additional data dimensions can be encoded in the appearance of
the points, for example size and color. With scatterplots, it is possible
to quickly see correlations between variables by the shape of the cloud
made up of single data items.

Scatterplots with geometric-semantic zoom Scatterplots are
generally used to visualize large data sets and as such seem unsuitable
for small screens. It is vital for a scatterplot visualization to support
the overview task as this is required to see trends and correlations.
But also, users may be interested in details on single data items. [4]
attempts to bring these features to mobile devices. The authors imple-
mented a prototype that visualizes a book database with 7,500 items
on a PDA. Two approaches to managing the limited screen size are
then compared. The first approach uses geometric-semantic zoom.
The user starts out with an overview of the entire collection. The date
of publication and sales price are plotted on the two axes. Interaction
is realized with a stylus. The user can zoom into a region of interest
by tapping and holding near an item he or she wants more details on.
At this point, some items may move off the screen. Thus, context is
not preserved; only the labels on the axes provide some orientation.
As the user zooms further by holding the stylus, the few data items
still in sight transform from single pixels to white rectangles. They
now contain more details on the books they represent, at first only the
book title, then a picture of the cover and eventually other metadata.
At the highest zoom level, a single item takes up most of the screen,
with only the edges of neighboring items visible. As an alternative
to this interface, the authors also developed a scatterplot visualization
that uses fisheye distortion to preserve context at all zoom levels. Data
item representations remain single pixels up to the highest zoom level,
where they take up the entire screen.

Mobile Liquid 2D Scatter Space Another approach for a scat-
terplot interface on mobile devices is introduced in [13]. The authors
created a scatterplot tool named Mobile Liquid 2D Scatter Space, or
ML2DSS. The main feature of this visualization is the “liquid brows-
ing” technique. One common problem of scatterplots is that items
might overlap. The previous example solved this by letting the user
zoom in until individual items were distinguishable. ML2DSS takes a
different approach. Data items, in this case entries of a movie database,
are represented as circles of different sizes. Instead of zooming, the
user taps and holds a stylus near a single item or a cluster of items.
The immediate area around the stylus is then magnified using a sort
of fisheye distortion. The strength of this effect is controlled by the
amount of force on the stylus. But instead of distorting the appearance
of the data items themselves, only the distances between the circles
are changed. As a result, the selected item stands out as neighboring
items move to the side in a smooth animation. Users can receive de-
tails on items in a popup window. Also, they have full control over
the configuration of the axes. Users can assign different attributes to



axes using drop-down list, and also adjust the range using text entry.
Since these are quite disruptive changes to the visualization, the transi-
tion between two different states is always animated. Figure 5 shows a
screenshot of ML2DSS where the user has selected a number of items
(marked blue) and is currently holding the stylus near a data item to
see additional details.

-l "”(,,\ @
@

selection as filter

invert selection
animate selectian
show details

Fig. 5. Mobile Liquid 2D Scatter Space (selected items marked blue)
[13]

3D scatterplots 3-dimensional scatterplots solve some of the
shortcomings of 2-dimensional ones: A third dimension is added, and
as such, yet more information can be visualized, and items that would
be overlapping in a 2-dimensional projection are now distinguishable.
However, user interaction is quite problematic. The three data dimen-
sions still need to be reduced to two for output on a screen. The user
needs to be able to navigate within the “cloud” made up by the data,
and be able to select single or multiple data items. [11] shows a pro-
totype of a 3D scatterplot on desktop computers. It allows users to
load multidimensional data sets and then visualize up to five selected
attributes (three axes as well as color and opacity). The information is
then visualized in four linked views, each of which the user can rotate
and zoom using a mouse. The prototype allows the selection of data
items through brushing. Users can paint on any 3D scatterplot view;
the data items that are painted over are highlighted in all views. Since
this prototype was designed with Shneiderman’s information-seeking
mantra in mind, it supports many of the proposed tasks: It is possible
to extract details-on-demand by plotting selected items in a separate
histogram. Also, users can deduce relations/correlations between data
items. For convenience, the prototype keeps a history of performed
actions, and allows the extraction of selected data sets.

4 DISCUSSION

In table 5, the results of the previous section are summarized. Alto-
gether, the criteria are applicable for the chosen examples. However,
in some cases, applying the criteria is a matter of interpretation and
thus not deterministic. The visualizations are always designed specif-
ically for small, medium or large screens and have well-defined meth-
ods of input. But the data type criterion is at times not easily appli-
cable to the examples. Photo collections are hard to categorize. Not
the pictures themselves, but the context in which they were taken is

visualized. This is highly abstract information. In the end, however,
all examples reduce this complexity by choosing only a few numer-
ical dimensions to visualize. For example, Flux can sort pictures by
their timestamp, quality and similarity, each of which is implemented
as a 1-dimensional scalar value. This way, abstract information can be
reduced to fit the data type criterion. Although intended for informa-
tion visualizations by Shneiderman in [12], the data type criteria seem
more suitable for scientific visualizations.

A taxonomy is “useful only if it facilitates discussion and leads to
useful discoveries” [12]. A quick look at table 5 shows that all ex-
amples require at least 2-dimensional input. This is due to the fact
that all examples let the user select or manipulate data item represen-
tations in 2-dimensional screen space. Examples that require only two
dimensions of input are in principle portable to other devices that of-
fer at least the same input bandwidth, for example a desktop computer
in combination with a mouse. Pocket PhotoMesa and ML2DSS were
ported from a desktop computer to PDAs and thus had to be adapted,
since a stylus supports fewer modes of operation than a mouse [10].
Applications that run on tabletop computers, namely DTLens and
Flux, take advantage of multi-touch and are not compatible with de-
vices that do not offer this functionality.

The most interesting of the criteria are the tasks/techniques used by
the visualizations. As mentioned before, the tasks as defined in [12]
are actions the user can perform while seeking information, whereas
the techniques as defined in [7] are mostly performed automatically by
the application to reduce clutter. Visualizations for large or medium
screens support 4 tasks on average, whereas small screen visualiza-
tions support only 2.7. On the other hand, small screen visualizations
employ 4.3 clutter reduction techniques on average, compared to 3.7
for large or medium screens. This is not a proper statistical analysis,
as the sample size is very limited and the criteria are not deterministic.
But it is nevertheless an interesting observation. The medium/large
screen applications all have more screen space and higher bandwidth
methods of input. This seems to enable the support of more tasks.
Especially relate, history and extract can be seen as convenience func-
tions and are rarely implemented in the small screen examples. The
additional controls needed to support these tasks would take up screen
space and complicate the usage of the visualizations. Also, the clutter
reduction techniques are intended for small screens by the authors. As
such, it seems logical that they are used less frequently on medium and
large screens.

Some tasks and techniques are common to all examples: All but
one of the visualizations make use of animation of some sort. For ex-
ample, DTLens animates the closing or minimizing of lenses, while
ML2DSS animates selected data subsets to make them stand out from
the rest of the data. Also, all examples with the exception of TiDi
Browser support the overview task, and all but two support zooming.
Some tasks and techniques are specific to certain types of applications.
All map visualizations only support the overview and zoom tasks. Ad-
ditional tasks would only be needed for more complex overlays. But
since all examples focus on navigation within the map itself, zooming
and panning suffice. Photo collections support more tasks, such as fil-
ter and relate. This makes sense, since users may want to filter large
photo collections by their attributes, or see which photos relate to each
other. The scatterplot examples all supported the details-on-demand
task. The reason for this is that items in a scatterplot are only ab-
stract representations of the original data. Once a user has navigated
to an item of interest, it is necessary to provide additional attributes
that were not visible in the overview visualization.

The visualization of photo collections is a very common task on
desktop computers. Many tools for this purpose borrow heavily from
the typical interface of file browsers. Figure 6 shows a photo collec-
tion viewed in the Microsoft Windows Vista Explorer. Google Picasa
may arrange photos in “albums” instead of “folders”, but the interface
is still similar to that of a file browser, specialized for photo organiza-
tion tasks 2. The photo collection examples in this paper run on PDAs
or tabletop computers and cannot use a mouse and keyboard for input.

Zhttp://picasa.google.com/support/bin/answer.py ?answer=93 183#organize



Table 5. Visualizations and criteria

Visualization Data type Screen size Input Task/Technique

Pocket PhotoMesa Photo collections  Small (handheld)  Stylus (2D) Overview, zoom; Clustering, uniform topological dis-
(folder structure) tortion (zoom), space-filling (tree maps), animation

TiDi Browser Photo collections  Small (handheld) Stylus (2D) Filter, details-on-demand, relate; Filtering, pixel-
(1D temporal, 1D plotting (histograms), animation
distance)

Flux Photo collections  Large (surface ~ Multi-touch Overview, zoom, filter, relate; Filtering, change point
(1D temporal, ID  computer) (2%2D) size, clustering, point/line displacement (reordering),
quality, 1D simi- animation
larity)

Halo + ZUI Maps (2D) +  Small (handheld)  Stylus (2D) Overview, zoom; Change point size, change opacity,
overlay (2D) clustering, uniform topological distortion (zoom), an-

imation

PengYo Maps (2D) +  Small (handheld) Tilt-sensor (3D),  Overview, zoom; Change point size, topological dis-
overlay (2D) multi-touch tortion

(2*2D)

DTLens Maps (2D) + Large (surface  Multi-Touch Overview, zoom; Non-uniform topological distortion
overlay (2D) computer) (2#2D), discrete  (fisheye), animation

touch  strength
(strong/normal)

Scatterplot with geometric- | 2D Small (handheld)  Stylus (2D) Overview, zoom, details-on-demand; Change point

semantic zoom size, topological distortion, space-filling, pixel-

plotting, animation

Mobile Liquid 2D Scatter Space 2D + size/opacity ~ Small (handheld) Stylus (2D),  Overview, filter, details-on-demand, relate; Filtering,
coupled (1D) continuous touch  change point size, change opacity, point/line displace-

strength (1D) ment, non-uniform topological distortion (liquid ef-
fect), dimensional reordering (axes assignment), ani-
mation

3D scatterplot 3D +color (1ID)+  Medium (desktop ~ Mouse (“2.5D”) Overview, zoom, details-on-demand, relate, history,
opacity (1D) computer) extract; Uniform topological distortion (zoom), pixel-

plotting, dimensional reordering, animation

Therefore, they are forced to depart from the file browser metaphor
and develop completely different interface concepts. For example,
Flux simulates physical properties of the photos so that the user is
reminded of sorting actual photos on a table. TiDi Browser uses meta-
data embedded in the photos to cluster them by events and locations,
instead of relying on a given folder structure. These new interaction
concepts can be more tailored to the specifics of photo collections as
a data type and to the typical tasks performed with them. Therefore,
the development of photo collection visualizations for small and large
screens might result in better interfaces that will in the future influence
the way photo collections are visualized on desktop computers.

200708 Lustige Wohnon < | iy 0037,pg

img_0035jpg
IPEG-Bild

ngen:
= Srofe: 194 MB

1 Element ausgewahit 194ME M Computer

Fig. 6. Photo collection in Microsoft Windows Vista Explorer 3

The map visualization examples show that interaction with a map
is possible on mobile devices through intuitive methods of input, such
as dragging the map to pan. Each of the three examples focuses on

3http://www.microsoft.com/windows/

a different aspect of map visualizations. Halo is concerned with the
visualization of off-screen locations, which in turn is intended to cope
with the limited screen space on small screen devices. PengYo uses
acceleration sensors to intuitively adjust the 3D viewing angle of the
map and thus concentrates on the input method rather than the visu-
alization itself. DTLens enables collaboration through its multi-user,
multi-touch interface. Therefore, each example aims to perfect a dif-
ferent component of interactive map visualizations. These could be
combined to leverage all of the advantages. In contrast to the photo
collection examples, which were mainly driven by input device lim-
itations, map visualizations take advantage of new methods of input
which increase usability. An example to support this hypothesis is
the multi-touch capability of the iPhone. The iPhone uses multi-touch
prominently to pan and zoom images and maps. Since this method of
input turned out to be very successful, it has by now been ported to
the new generation of MacBooks, which have multi-touch touchpads
4. Also, Windows 7, the upcoming version of Microsoft’s operating
system, will support multi-touch input 3.

Scatterplots are still a domain of desktop computers. They are used
to visualize large data sets. Examples for scatterplots on mobile de-
vices are still rare. But they show that scatterplots are capable of dis-
playing relatively large data sets on small screens as a lot of infor-
mation can be shown at once. Therefore, more scatterplot visualiza-
tions on small screen devices may be developed in the future. The 3D
scatterplot example discussed in this paper was developed for desktop
computers, but has the potential to be ported to tabletop computers. It
would benefit from the higher screen area and resolution. Also, the
main interaction method is brushing to select items, which could be
realized with a touch interface.

“http://www.apple.com/macbook/
Shttp://www.microsoft.com/windows/windows-7/whats-new-
possibilities.aspx



5 CONCLUSION

The criteria and the examples in this paper led to some interesting in-
sights. Visualizing photo collections is a common application on desk-
top computers, but existing tools are inspired by file browsers and rely
on a keyboard and mouse. This may not be the most effective concept
to visualize photo collections, but people are simply used to working
with file browsers. Photo collections on other devices are forced to
abandon the file browser metaphor due to input and screen size limita-
tions. As a consequence, this could introduce people to new concepts
more suitable for photo collections, which might be ported to desktop
computers in the long term. Interactive maps are also a very common
application on desktop computers and mobile devices alike. Maps can
take advantage of new methods of input offered by mobile devices.
Multi-touch user interfaces for navigating 2-dimensional data such as
images and maps have proven to be very successful on mobile de-
vices. This realization has in turn started to influence desktop comput-
ers: Multi-touch will be supported by upcoming Apple and Microsoft
operating systems, and has already found its way into some current
laptops. Scatterplots are used to visualize large data sets in science
and business, but are less common in consumer applications. How-
ever, they have potential to increase the usability of small screens since
many data items can be visualized at once. Traditional visualizations
for large data collections, such as column views, fill up small screens
very quickly. In contrast, scatterplots visualize single data items as
small circles or even single pixels, and show additional metadata only
when an item of interest has been found.

The data type criterion was at times difficult to apply and seems
more suitable for scientific visualizations that use numeric data. For
example, photo collections are quite abstract data. The photos them-
selves may be 2-dimensional, but the examples in this paper focus on
navigating within entire collections of photos, for example to find cer-
tain events. But in the end, this abstract task is accomplished by taking
metadata such as a photo’s timestamp or location into account - these
additional attributes have a concrete data type.

The tasks and techniques supported by the examples were in some
cases a matter of interpretation. Many tasks and techniques are some-
what abstract in nature and thus not deterministic. Still, the criteria
chosen in this paper led to the desired results. One outcome was that
applications on small screen devices seem to support fewer tasks, but
apply more clutter reduction techniques. This makes sense since big-
ger devices have more screen space to position controls for additional
functions, whereas applications on small devices have to use the avail-
able screen space as efficiently as possible and therefore apply clutter
reduction techniques more aggressively.

The clutter reduction techniques proposed by [7] seemed somewhat
arbitrary and overall incomplete. Using different colors to encode in-
formation was not included in the appearance criteria, but it was used
by the 3D scatterplot prototype in [11]. The space-filling technique,
described by the authors as a “non-overlapping rearrangement of large,
rectangular points” [7], is mostly implemented in tree maps in practice,
which is not reflected by its name. Also, it is unclear why the pixel-
plotting technique is defined to encode information in single pixels
only. The ML2DSS example displays data items as circles, i. e. iden-
tical geometric shapes, the only difference to single pixels being that
items can vary in size and overlap partly.

These shortcomings could be addressed by conducting a more com-
prehensive survey of visualizations on various devices, including both
scientific prototypes and commercial applications. The list of tasks
and techniques could be expanded and refined in this way. Addition-
ally, common techniques to compensate for input device limitations
might be discovered. This paper was limited to only three application
domains for visualizations. But of course there are many more types of
visualizations which are appearing on small and large screen devices.
This is an ongoing process, and as such it can be expected that entirely
new concepts to visualize information on devices beyond the desktop
will emerge in the future.

REFERENCES

[1] P. Baudisch and R. Rosenholtz. Halo: a Technique for Visualizing Off-
Screen Locations. In CHI-CONFERENCE-, pages 481-488. ASSOCIA-
TION FOR COMPUTING MACHINERY INC, 2003.

[2] D. Baur, O. Hilliges, and A. Butz. Flux: Enhancing Photo Organization
through Interaction and Automation.

[3] G. Bieber, C. Tominski, and B. Urban. TiDi browser: a novel photo
browsing technique for mobile devices. In Proceedings of SPIE, volume
6507, page 650700. SPIE, 2007.

[4] T. Biiring, J. Gerken, and H. Reiterer. User Interaction with Scatter-
plots on Small ScreensA Comparative Evaluation of Geometric-Semantic
Zoom and Fisheye Distortion. /JEEE TRANSACTIONS ON VISUALIZA-
TION AND COMPUTER GRAPHICS, pages 829-836, 2006.

[5] S.Card, J. Mackinlay, and G. Robertson. A morphological analysis of the
design space of input devices. ACM Transactions on Information Systems
(TOIS), 9(2):99-122, 1991.

[6] L. Chittaro. Visualizing Information on Mobile Devices. COMPUTER,
pages 40-45, 2006.

[7]1 G. Ellis and A. Dix. A Taxonomy of Clutter Reduction for Information
Visualisation. IEEE TRANSACTIONS ON VISUALIZATION AND COM-
PUTER GRAPHICS, pages 1216-1223, 2007.

[8] C. Forlines and C. Shen. DTLens: multi-user tabletop spatial data ex-
ploration. In Proceedings of the 18th annual ACM symposium on User
interface software and technology, pages 119-122. ACM New York, NY,
USA, 2005.

[91 M. Gross, H. Mangesius, D. Filonik, A. Hackel, and M. Bilandzic.
Pengyo: A mobile application to support phatic communication in the
hybrid space. In Proceedings of the 6th International Conference on In-
formation Technology: New Generations. IEEE Computer Society Wash-
ington, DC, USA, 2009.

[10] A. Khella and B. Bederson. Pocket PhotoMesa: a Zoomable image
browser for PDAs. In Proceedings of the 3rd international conference
on Mobile and ubiquitous multimedia, pages 19-24. ACM New York,
NY, USA, 2004.

[11] G.SAHLING. Interactive 3D Scatterplots—From High Dimensional Data
to Insight. PhD thesis, Masters Dissertation, Institute of Computer Graph-
ics and Algorithms, 2002.

[12] B. Shneiderman. The eyes have it: a task by data type taxonomy for in-
formationvisualizations. In Visual Languages, 1996. Proceedings., IEEE
Symposium on, pages 336-343, 1996.

[13] C. Waldeck, D. Balfanz, C. Center, and G. ZGDV. Mobile liquid 2D
scatter space (ML2DSS). In Information Visualisation, 2004. 1V 2004.
Proceedings. Eighth International Conference on, pages 494-498, 2004.

[14] J. Wang and J. Mankoff. Theoretical and architectural support for input
device adaptation. In Proceedings of the 2003 conference on Universal
usability, pages 85-92. ACM Press New York, NY, USA, 2002.



