
Mensch-Maschine-Interaktion 2

Mobile Environments

Prof. Dr. Andreas Butz, Dr. Julie Wagner

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide 1
Tuesday 28 October 14

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Mensch-Maschine Interaktion 2

2

Desktop Environments

Mobile Technology

Interactive Environments

Tuesday 28 October 14

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Human-Computer Interaction 2

3

Desktop Environments

Mobile Technology

Interactive Environments

Desktop

context and task

theory

interaction techniques

in/output technologies

Mobile

context and task

theory

interaction techniques

in/output technologies

Interactive Environments

context and task

theory

interaction techniques

in/output technologies

Tuesday 28 October 14

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Mobile Technologies

4

context and task

theory

interaction techniques

in/output technologies

Tuesday 28 October 14

Mobile

context and
task

theory

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Designing for mobile technologies
• technological perspective:

– It’s technology that we can carry around (portable)
• phones, smart watches, google glasses, interactive

cloth, etc.

• body-centric perspective
– It’s an interface where input/output is performed

relative to the body.
• same technology needs to be designed depending on

its position on the body
• same technology can be controlling objects fixed in

the world

5

http://turkeytamam.com/wp-content/uploads/2014/04/Smart-Phones.jpg

The body’s spatial relationship with an
input device effects interaction design
(how you hold a phone effects touch
interaction)

Tuesday 28 October 14

http://turkeytamam.com/wp-content/uploads/2014/04/Smart-Phones.jpg
http://turkeytamam.com/wp-content/uploads/2014/04/Smart-Phones.jpg

Mobile

context and
task

theory

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Is a notebook mobile technology?
• technological perspective

– yes. It’s portable!

• body-centric perspective
– no. the interaction is restrictively designed to support

sitting in front of it
– does not consider the dynamic shift of body positions

we interact in with technology

6
Tuesday 28 October 14

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

New Body configurations
• standing

– device held in hand, i.e. no fixed support
– will desktop models still work???

• walking
– everything is in motion (precision??)
– „secondary“ task of not running into things

• lying on the sofa...

7
Tuesday 28 October 14

Mobile

context and
task

theory

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

overview: designing for....

8

• device support
• bimanual interaction
• touch input problems

– midas touch
– occlusion
– input precision

• mid-air/hands-free gestures
– fatigue effects

• limited screen real estate
• social issues

Tuesday 28 October 14

Mobile

context and
task

theory

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Device Support
• Device support restricts your input

movements.
– free-hand gestures
– device attached to your body
– holding a device

• manual multi-tasking

9

Literature: Ease-of-juggling: Studying the effects of manual multi-tasking, CHI 2011

Tuesday 28 October 14

Mobile

context and
task

theory

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Bimanual Interaction

10

Literature: Foucault et al. SPad Demo: A bimanual Interaction technique for productivity applications on multi-touch tablets,
CHI14

Tuesday 28 October 14

Mobile

context and
task

theory

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

touch input
• midas touch problem:

– no hover state. Touching is selecting.
– specific location and selection. Touch conveys both

at the same time. Mouse device separates both
information.

• occlusion problem:
– touching means covering information through your

finger

• input precision:
– finger is an area, not a pixel.
– in current interfaces, developers need to work with

pixels.

11
Tuesday 28 October 14

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Mobile phones: social issues
• https://www.youtube.com/watch?v=OINa46HeWg8

12
Tuesday 28 October 14

https://www.youtube.com/watch?v=OINa46HeWg8
https://www.youtube.com/watch?v=OINa46HeWg8

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Let‘s discuss these issues:

• (un)divided attention
• not living in the moment, instead trying to

capture the moment
• hyper-multi-tasking?

• privacy issues
– e.g., current research of Alina Hang and Emanuel

von Zezschwitz
– e.g., http://pleaserobme.com/why

13
Tuesday 28 October 14

http://pleaserobme.com/why
http://pleaserobme.com/why

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Example: fake cursors

14
Tuesday 28 October 14

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Example: back-of-device authentication

15

http://www.youtube.com/watch?v=sToX-v4TmRg

Tuesday 28 October 14

http://www.youtube.com/watch?v=sToX-v4TmRg
http://www.youtube.com/watch?v=sToX-v4TmRg

Mobile

context and
task

theory

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Take-away message
• designing mobile technology faces the

challenge to design for
– dynamic shift of human’s body position (is user

seated, walking etc?)
– dynamically changing focus of attention between

multiple tasks
– dynamically changing external context (is user

seated, but in a driving (hence shaking) bus?)

16
Tuesday 28 October 14

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Mobile Technologies

17

context and task

theory

interaction techniques

in/output technologies

Tuesday 28 October 14

Mobile

context and
task

theory

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Overview
• Device Support

– Guiard’s Kinematic Chain Theory
– BiTouch Design Space, extension to Guiard’s theory

• Pointing
– FFitts’ Law
– targeting behavior studies

• Gestural interaction
– Gesture taxonomy
– how to formally describe gestures?
– how to communicate gestures? how to support

learning of gestures?
– methods to produce gestures sets
– do intuitive gestures exist?

18
Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Bimanual interaction

• symmetric bimanual action: the two hands
have the same role

• asymmetric bimanual action: the two hands
have different roles

19

http://www.lecker.de/media/redaktionell/leckerde/backen_1/
weihnachten_10/plaetzchenbacken/hbv_1382/muerbeteig-
ausrollen_img_308x0.jpg

symmetric
bimanual

action

asymmetric
bimanual

action

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Kinematic Chain Theory (KC)

20

“Under standard conditions, the spontaneous
writing speed of adults is reduced by some 20%
when instructions prevent the non-preferred
hand from manipulating the page”

Literature: Yves Guirad (1987). Asymmetric Division of Labor in Human Skilled Bimanual Action:
The Kinematic Chain as a Model

Tuesday 28 October 14

http://www.lobshots.com/wp-content/uploads/2011/08/lobster_560x375.jpg

Mobile

context and
task

theory

bimanual
interaction

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide 21
Tuesday 28 October 14

http://www.lobshots.com/wp-content/uploads/2011/08/lobster_560x375.jpg
http://www.lobshots.com/wp-content/uploads/2011/08/lobster_560x375.jpg

Mobile

context and
task

theory

bimanual
interaction

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Kinematic Chain Theory
• Guiard’s principles

– Right-to-left spatial reference
• The non-dominant hand sets the frame

of reference for the dominant hand

– Left-right contrast in the spatial-
temporal scale of motion

• Non-dominant hand operates at a
coarse temporal and spatial scale

– Left hand precedence in action

• Kinematic chain
– each limb a motor if it contributes to the

overall input motion.

• Kinematic chain theory
– although separated, the two hands

behave like being linked within the
kinematic chain.

22

Dominant arm

input motor
assembly

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Bimanual interaction with hand-helds

23

Literature: Wagner, J. et al. (2012). BiTouch and BiPad: Designing Bimanual Interaction for Hand-held Tablets. CHI‘12

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

How do people naturally hold
tablets?

24

Literature: Wagner, J. et al. (2012). BiTouch and BiPad: Designing Bimanual Interaction for Hand-held Tablets. CHI‘12

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide 25

Thumb Bottom
(TBottom)

Thumb Corner
(TCorner)

Thumb Side
(TSide)

Fingers Top
(FTop)

Fingers Side
(FSide)

Figure 2. Five spontaneous holds (portrait orientation).

positions included the four screen borders and horizontally
and vertically in the screen center.

Participants were asked to hold the iPad comfortably and
perform each task as quickly as possible. They were allowed
to adopt a new hold only when beginning a new block.
Sessions lasted approximately 45 minutes. At the end, we
debriefed each participant as to the true goal of the study to
learn how they chose to hold the tablets. We first asked them
to reproduce the holds they had used and then to adapt them
so that the fingers or thumb of the support hand could reach
the touch screen. We asked them to rate comfort and ease
of interaction when using the support hand to interact and
whether they had suggestions for other holding positions.

Data collection. We videotaped each trial and coded how
participants supported the tablet with the non-dominant hand,
wrist or forearm. We collected touch events, including those
that occurred outside experiment trials and while reading
instructions. We also measured completion time per trial.

Results
We did not find a single, optimal hold and found significant
differences according to experience. All four novices used the
same uncomfortable position: the fingers, thumb and palm of
their non-dominant hand supported the center of the tablet,
like a waiter holding a tray. Novices found this tiring but
worried that the tablet would slip if they held it by the border.
None found other holds. In contrast, the four experts easily
found a variety of secure, comfortable holds. We identified
ten unique holds, five per orientation, all of which involved
grasping the border of the tablet with the thumb and fingers.
Fig. 2 shows these five holds in portrait mode, with the thumb
on the bottom, corner or side, or the fingers on the top or side.

Table 1 shows how these holds were distributed across the six
conditions: most common was F-side (41%), least common
was T-side (9%). The latter was deemed least comfortable,
especially in landscape mode, but participants felt that they
could use it for a short time. Experts tried nine of ten possible
holds in the sitting and walking conditions, but only six
when standing, omitting F-top or T-side in both orientations.
Individuals varied as to how many unique holds they tried,
from three to eight of ten possible. All switched holds at least

Table 1. Total holds per condition (expert users)

F
side

T
bottom

F
top

T
corner

T
side

La
nd

sc
ap

e 3 4 4 4 1
8 4 0 4 0
4 4 7 0 1

Po
rtr

ai
t 8 3 1 0 4

8 4 0 4 0
8 1 3 1 3

41% 21% 16% 14% 9%

once and two switched positions often (50% and 66%) across
different blocks of the same condition.

We were also interested in whether accidental touches, de-
fined as touches located more than 80 pixels from the target
or slider, during or outside of experiment trials, interfered
with intentional touches by the dominant hand. Experts who
carried the tablet by the border made very few accidental
touches (3%). All were with the dominant hand, far from the
screen border, suggesting that they unconsciously prevented
the support hand from touching the screen.

Design Implications
First, tablets can feel heavy and users are more comfortable
when they can change orientation or swap the thumb and
fingers. We should thus seek a small set of roughly equivalent
bimanual interactive holds that are easy to shift between,
rather than designing a single, ‘optimal’ hold. Second, users
can use the thumb and fingers of the support hand for interac-
tion. We can thus create interactive zones on the edges of the
tablet, corresponding to the holds in Fig. 2, which were not
vulnerable to accidental touches. Fig. 3 shows these zones in
portrait and landscape mode. Although changes in the form
factor of a tablet, such as its size, shape or weight, may affect
these holds, users are still likely to shift between holds for
comfort reasons, just as when reading a book or holding a
notebook.

Fingers

Thumbs

Fingers

Thumbs

Portrait Landscape

Figure 3. Five support-hand interaction zones.

The next section describes BiTouch, a design space for ex-
ploring how to incorporate bimanual interaction on hand-held
multitouch tablets.

ha
l-0

06
63

97
2,

 v
er

si
on

 1
 -

27
 J

an
 2

01
2

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide 26

Dominant arm

input motor
assembly

KC:
frame + interaction

Non-dominant arm
input motor
assembly

Support
-affected

BiTouch:
frame + support +
interaction

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Role of Support

27

FrameFra
me

Fra
me

Intera
ct

Dominant arm Non-dominant arm

Frame Fram
e

Fram
e

Support

Inter
act

Inte
ractInteract

SupportSupport

Interac
t

Interact

Support

One-hand Palm
Support

One-hand Forearm
Support

Two-hand Palm
Support

(a)

(b)

(c)

Figure 4. The user creates a spatial frame, supports the device, and
interacts with it. Different holds offer different trade-offs with respect
to interactive power and comfort.

BiTouch DESIGN SPACE
Unlike desktop PCs or multi-touch tables, bimanual interac-
tion on hand-held tablets must account for the dual role of
the non-dominant hand as it simultaneously carries the tablet
and interacts with it. Although we designed the BiTouch
design space to explore bimanual interaction on hand-held
tablets, the reasoning applies to a wider range of human-body
interaction with objects [19] and devices ranging from small,
mobile devices to large, fixed interactive tables or walls.

Kinematic Chain: Frame, Support, Interact
The first step is to understand the complementary roles of
support and interaction. Guiard’s [9] analysis of bimanual in-
teraction emphasizes the asymmetric relationship commonly
observed between the two hands. He proposes the kinematic
chain as a general model, in which the shoulder, elbow, wrist
and fingers work together as a series of abstract motors. Each
consists of a proximal element, e.g. the elbow, and a distal
element, e.g. the wrist, which together make up a specific
link, e.g. the forearm. In this case, the distal wrist must
organize its movement relative to the output of the proximal
elbow, since the two are physically attached.

Guiard argues that the relationships between the non-dominant
and dominant hands are similar to those between proximal
and distal elements: the former provides the spatial frame of
reference for the detailed action of the latter. In addition, the
movements of the proximal element or non-dominant hand
are generally less frequent and less precise and usually pre-
cede the movements of the higher frequency, more detailed
actions of the distal element or dominant hand.

We see the kinematic chain in action when users interact with
hand-held tablets: the non-dominant hand usually supports
the tablet, leaving the fingers and thumb of the dominant hand
free to interact. Fig. 4 shows three bimanual alternatives,

Table 2. Trading off framing, support and interaction functions of the
kinematic chain with respect to the body and the device.

Framing
Location: proximal link in the kinematic chain
Distribution: 1 – n body parts

Support
Location: none or middle link in the kinematic chain
Distribution: 0 – n body parts
Independence: 0% – 100% body support

Interaction
Location: distal link in the kinematic chain
Distribution: 1 – n body parts
Degrees of freedom: 0% – 100% body movement
Technique: touch, deformation,...

based on the location of tablet support within the kinematic
chain: the palm or forearm of the non-dominant arm (Fig. 4a,
4b); shared equally between the palms of both hands (Fig.
4c). In each case, the most proximal links control the spatial
frame of reference; support links are always intermediate be-
tween framing and interaction links; and the most distal links
use whatever remains of the thumb and fingers to interact.

The preliminary study highlighted ten user-generated support
holds that permit the thumb or fingers to reach the interactive
area. Each poses trade-offs between comfort and degrees of
freedom available for interaction. For example, supporting
the tablet with the forearm (Fig. 4b) provides a secure, stable
hold but forces the fingers to curl around the tablet, leaving
little room for movement. In contrast, holding the tablet in the
palm (Fig. 4a) gives the thumb its full range of movement, but
is tiring and less stable.

Note that comfort is subjective, influenced not only by the
physical details of the device, such as its weight, thickness
and size of the bezels, but also by how the tablet is held. For
example, shifting between landscape and portrait orientations
changes the relative distance between the tablet’s central
balance point and the most distal part of the support link. The
tablet acts as a lever: users perceive it as heavier as support
moves further from the fulcrum. The next step is to formalize
these observations into a design space that describes existing
and new bimanual holds and interaction techniques.

BiTouch Design Space
Table 2 summarizes the key dimensions of the BiTouch de-
sign space, according to framing, support and interaction
functions of the kinematic chain. Each is affected by the
relationship between specific characteristics of the human
body, the physical device and the interaction between them.

Framing is handled at the most proximal locations within the
kinematic chain and may be distributed over multiple parts of
the body. Support always occurs in locations within the kine-
matic chain, distal to the frame. Support may be completely
distributed over one or more body parts, symmetrically or
not; shared with an independent support, e.g. a table or lap;
or omitted, e.g. interacting on a freestanding interactive table.

Interaction is always handled at the most distal location in
the kinematic chain, immediately after the support link. Inter-

ha
l-0

06
63

97
2,

 v
er

si
on

 1
 -

27
 J

an
 2

01
2Literature: Wagner, J. et al. (2012). BiTouch and BiPad: Designing Bimanual Interaction for Hand-held Tablets. CHI‘12

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide 28

Inverse correlation: performance & comfort

>
Performance

<

Comfort

Support Support
Distribution

Degree of Freedom

Frame

Interact

Fr
am

e

Support

high low

Create further hypotheses

Tuesday 28 October 14

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Mobile

context and
task

theory

bimanual
interaction

pointing

interaction
techniques

in/output
technologies

Mini-Brainstorming: what is Touch?
• Think about how we touch a planar surface

– touching as opposed to grasping…

• What do we mean by it?
• What can we measure on the screen?

29

http://www.freegreatpicture.com/gestures-album/touch-screen-with-a-finger-26333 http://www.freegreatpicture.com/gestures-album/gestures-transparent-touch-screen-phone-32075

Tuesday 28 October 14

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Mobile

context and
task

theory

bimanual
interaction

pointing

interaction
techniques

in/output
technologies

Challenges with pointing
• Occlusion:

– The hand covers parts of the display…
–…while the mouse didn’t

• Precision & Fat Finger Problem:
– The finger area is not a pixel…
–…but the mouse pointer was!

• Midas Touch Problem:
– the finger can only touch or release…
–…while the mouse was able to hover

30
Tuesday 28 October 14

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Mobile

context and
task

theory

bimanual
interaction

pointing

interaction
techniques

in/output
technologies

Dealing with Occlusion
• Hand: Choose a fitting screen layout

– selection choices not appearing under the hand!
– e.g., bottom-up or right to left strategy

• Finger: Things appear from under the cursor
– offset cursor, shift [Vogel, D. and Baudisch, P.: „Shift: A Technique for

Operating Pen-Based Interfaces Using Touch“, In Proceedings of CHI 2007]

31
Tuesday 28 October 14

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Mobile

context and
task

theory

bimanual
interaction

pointing

interaction
techniques

in/output
technologies

Imprecision & Fat Finger Problem
• Problem: small screens with small targets

• Comparatively large fingers
• Fingers will occlude the actual touch point
• Unclear, which point is actually intended

• Also: Limited accuracy of finger touch
• Touch positions are not exact, but random

with a normal distribution

32
Tuesday 28 October 14

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Mobile

context and
task

theory

bimanual
interaction

pointing

interaction
techniques

in/output
technologies

Dealing with Imprecision: FFitts’ law
• Look at Fitts’ law as a

normal distribution Xr
• Finger imprecision as

another distribution Xa
• Combine X = Xr + Xa

to get a better Match
• holds for small targets

33

FFitts law: modeling finger touch with fitts' law, Xiaojun Bi, Yang Li, Shumin Zhai, Proceedings CHI '13

Tuesday 28 October 14

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Mobile

context and
task

theory

bimanual
interaction

pointing

interaction
techniques

in/output
technologies

Perceived Input Point Model
• Assume we can sense touch position and angles!
• Depending on angles, we can say more exactly

what point a user „means“!
• Distribution is very individual per user!
• [Holz, C. and Baudisch, P. 2010. The Generalized Perceived Input Point Model and How to

Double Touch Accuracy by Extracting Fingerprints. In Proceedings of CHI'10, 581–590.]

34

http://www.hpi.uni-potsdam.de/baudisch/projects/ridgepad.html

Tuesday 28 October 14

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Mobile

context and
task

theory

bimanual
interaction

pointing

interaction
techniques

in/output
technologies

Dealing with Imprecision: another example

• Observation: language contains a lot of redundancy
• Idea: match geometric patterns, not character sequences
• method: compare input paths to stored ones
• [Relaxing stylus typing precision by geometric pattern matching,

Per-Ola Kristensson, Shumin Zhai, Proceedings IUI ’05]

35
Tuesday 28 October 14

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Mobile

context and
task

theory

bimanual
interaction

pointing

interaction
techniques

in/output
technologies

Midas Touch Problem

• Story of king Midas:
• wished that everything he

touched turned into gold
• problems with food ;-)
• all kinds of problems…

• exists in touch interfaces

• also in eye tracking
interfaces

36

http://upload.wikimedia.org/wikipedia/commons/d/d6/Midas_gold2.jpg

Tuesday 28 October 14

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Mobile

context and
task

theory

bimanual
interaction

pointing

interaction
techniques

in/output
technologies

Buxton’s 3 state model
• Buxton, W. (1990). A Three-State Model of Graphical Input.

In Proceedings INTERACT ’90

• Mouse button switches between
tracking (hover) and dragging

• Stylus and finger suffer from
midas touch problem

• Stylus with button solves
the problem

37
Tuesday 28 October 14

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Mobile

context and
task

theory

bimanual
interaction

pointing

interaction
techniques

in/output
technologies

Lift-off strategy (1988)
• see http://www.cs.umd.edu/hcil/touchscreens/
• Potter, R.L., Weldon, L.J., Shneiderman, B. „Improving the accuracy of touch

screens: an experimental evaluation of three strategies“, Proc. CHI `88

• everybody: take out your phones and try!

• finger touches -> screen provides feedback
• finger can still move -> still feedback
• finger lifts off -> target is selected

• Seems very natural today (used everywhere)
• Only becomes apparent when violated

38
Tuesday 28 October 14

http://www.cs.umd.edu/hcil/touchscreens/
http://www.cs.umd.edu/hcil/touchscreens/

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Taxonomy of Gesture styles

39

Literature: Baudel et al. Charade: remote control of objects using free-hand gestures, Communications of the ACM 1993

http://thomas.baudel.name/Morphologie/These/images/VI11.gif

• sign language
• gesticulation

– communicative gestures made in conjunction
with speech

– know how your users gesture naturally and
design artificial gestures that have no cross-talk
with natural gesturing

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

• manipulative
– gestures which tightly related movements to an object being

manipulated
• 2D Interaction: mouse or stylus
• 3D Interaction: free-hand movement to mimic manipulations of

physical objects

• deictic gestures (aimed pointing)
– establish identity or spatial location of an object.

• semaphoric gestures (signals send to the
computer)
– stroke gestures, involve tracing of a specific path (marking

menu)
– static gestures (pose), involving no movement
– dynamic gestures, require movement

40

Taxonomy of Gesture styles

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

• pantomimic gestures:
– demonstrate a specific task to be performed or

imitated
– performed without object being present.

• iconic
– communicate information about objects or entities

(e.g. size, shapes and motion path)
• static
• dynamic

41

Taxonomy of Gesture styles

Data Miming: Inferring Spatial Object Descriptions
from Human Gesture

Christian Holz1,2 and Andrew D. Wilson2

1Hasso Plattner Institute
Potsdam, Germany

2Microsoft Research
Redmond, WA 98052 USA

chr.isti.an.holz@hpi.uni-po-tsd.am.de a-wil.s.on@micro.soft.com

ABSTRACT
Speakers often use hand gestures when talking about or
describing physical objects. Such gesture is particularly
useful when the speaker is conveying distinctions of shape
that are difficult to describe verbally. We present data mim-
ing—an approach to making sense of gestures as they are
used to describe concrete physical objects. We first observe
participants as they use gestures to describe real-world
objects to another person. From these observations, we
derive the data miming approach, which is based on a voxel
representation of the space traced by the speaker’s hands
over the duration of the gesture. In a final proof-of-concept
study, we demonstrate a prototype implementation of
matching the input voxel representation to select among a
database of known physical objects.

Author Keywords
Gestures, shape descriptions, 3D modeling, depth camera,
object retrieval.

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User
Interfaces. Input devices & strategies.

General Terms
Design, Experimentation, Human Factors.

INTRODUCTION
In conversation we sometimes resort to using hand gestures
to assist in describing a shape, particularly when it would
be cumbersome to describe with words alone. For example,
the roofline of a new car might be conveyed by a swoop of
the outstretched hand, or a particular chair style might be
indicated to a shopkeeper by a series of gestures that de-
scribe the arrangement of surfaces unique to that chair. In
such cases, the speaker often appears to trace the precise 3D
shape of the described object. Meanwhile, the listener ap-
pears to effortlessly integrate the speaker’s gestures over
time to recreate the 3D shape. This exchange strikes us as a
remarkably efficient and useful means of communicating
the mental imagery of the speaker.

Figure 1: Data miming walkthrough. The user performs ges-

tures in 3-space, as they might during conversations with
another person, to query the database for a specific object that
they have in mind (here a 3-legged stool). Users thereby visual-
ize their mental image of the object not only by indicating the
dimensions of the object (a), but more importantly the specific

attributes, such as (b) the seat and (c) the legs of the chair.
Our prototype system tracks the user’s gestures with an over-
head camera (a) and derives an internal representation of the
user’s intended image (d). (e) The query to the database re-

turns the most closely matching object (green).

In this paper, we consider the use of gestures to describe
physical objects. We present data miming as an approach to
enable users to spatially describe existing 3D objects to a
computer just as they would to another person.

We make two contributions in this paper. First is an obser-
vation of how people use gestures in a natural way to de-
scribe physical objects (i.e., without telling them how to use
a certain gesture to specify a certain part of an object).
From these observations, we derive the data miming ap-
proach to making sense of gestures as they are used to de-
scribe physical objects (i.e., which object was described).
Our second contribution is a prototype system, which al-
lows for walk-up use with a single overhead depth camera
to sense the user’s gestures. Our system follows a query-by-
demonstration approach and retrieves the model in a data-
base that most closely matches the user’s descriptions.

a

b c

ed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05....$10.00.

Literature: Holz et al. Data Miming: Inferring Spatial
Object Descriptions from Human Gesture, CHI
2011

Literature: Aginer et al.: Understanding Mid-air
Hand Gestures: A Study of Human Preferences in
Usage of Gesture Types for HCI, Tech Report
Microsoft Research

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide 42

Taxonomy of Gesture styles

actor without any objects actually being present, such as
filling an imaginary glass with water, by tilting an imaginary
bucket. They often consist of multiple low-level gestures,
e.g., (i) grabbing an object, (ii) moving it, and (iii) releasing
it again. We code these as a single pantomimic gesture.

Figure 4. The classification we used to analyze gestures in this

research, including examples for each of the gesture types.

Iconic
Iconic gestures are used to communicate information about
objects or entities, such as specific sizes, shapes, and
motion paths.

Static iconics are performed by static hand postures. In
contrast to static semaphorics they do not rely on a
commonly known vocabulary, instead they are rather
spontaneous, such as forming an “O” with index finger and
thumb, meaning “circle”.

Dynamic iconics are often used to describe paths or shapes,
such as moving the hand in circles, meaning “the circle”.
Compared to concatenated flicks (which would be
semaphoric strokes), the motions are usually performed
more slowly. Another difference is that in strokes, the
actual range of the movement does not hold information
about the action, however in dynamic iconics it does.

Manipulation Gestures
Manipulation gestures are used to guide movement in a
short feedback loop. Thus, they feature a tight relationship
between the movements of the actor and the movements of
the object to be manipulated. The criterion for
distinguishing them from pantomimic and dynamic iconic

gestures is the presence of the feedback loop. In the case of
manipulation gestures, the actor waits for the entity to
“follow” before continuing, instead of performing
beforehand, only causing a reaction subsequently.

RESULTS
To review the results of our study, we begin with classifying
each of the observed gestures used for each effect.

Gesture Effects
Three researchers collected approximately 5,500 gestures
and categorized them using our classification scheme,
constantly consulting each other in order to prevent from
biasing and diverging interpretations. We also differentiated
by unimanual and bimanual gestures. The overall results are
depicted in Figure 5. This represents our primary
contribution: the types of gesture chosen for each of the
desired effects.
Note that some gestures may include elements of more than
one type, as actors displayed diverse creativity in
composing gestures from different types. This is especially
apparent in the case for bimanual gestures, since gestures
might be combined, such as expressing “move the round
block” by forming a round static-iconic gesture and then
pantomiming a movement with that shape. Also, some
movements were not gestures to convey meaning, such as
when the actors hesitated or when they were irritated. As a
result, the sums for any given effect may not add up to
100%.
As predicted, actors used a wide variety of gestures to
accomplish the same effect. However, the type of gesture
that they used was often consistent across time, and
participant. Thus, while a classification of particular
gestures might find a high degree of variance [28], our
results suggest that classifying by type reveals a much
greater degree of consistency.

Select
Selection was most often indicated with pantomimic
gestures, primarily in the form of “grasping”. Bimanual
gestures were rarely present for selection.

Release
Pantomimics, semaphoric strokes and iconic dynamics
showed high proportions of bimanual acting. Pantomimic
gestures were “releasing hand gestures”, thus the
counterpart of the grasping gestures used for selection.
Semaphoric strokes were usually flicks downwards, mostly
with stretched palms facing down, indicating placement of
the object down onto the table.

Accept
All gestures were semaphoric static, either by showing
thumbs-up hand poses, okay-signs (foming an “o” with
index finger and thumb), or the previously described
pointing-like semaphoric gesture.

Refuse
97% were semaphoric dynamic gestures, either by waving
sideward with one or two hands and palms facing down,

Literature: Aginer et al.: Understanding Mid-air Hand Gestures: A Study of Human Preferences in Usage of Gesture Types for
HCI, Tech Report Microsoft Research

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide 43

Gestural Input vs. Keyboard+Mouse
• loosing the hover state
• gesture design
– ‘natural’ gestures

• dependent on culture

– multi-finger chords (what does that remind
you of?)

• memorability, learnability
– short-term vs. long-term retention

• gesture discoverability
• missing standards
• difficult to write, keep track and

maintain gesture recognition code
– detect/resolve conflicts between

gestures
• and how to communicate and

document a gesture?

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Proton++
• declarative multitouch framework
• enables Multitouch gesture description as

regular expression of touch event symbols
• generates gesture recognizers and static

analysis of gesture conflicts
• note:

– “*” kleene star indicates that a symbol can appear
zero or more consecutive times.

– “|” denotes the logical or of attribute values
– “ֺֺ ‧ ”ֺ wildcard, specifies that an attribute can take any

value.

44

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Proton++ - formal description language

45

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

• touch event:
– touch action (down, move, up)
– touch ID (1st, 2nd, etc.)
– series of touch attribute values

• direction = NW, hit-target = circle

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Proton++

• stream generator
– converts each touch event into a touch symbol of the

form

46

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

where E ∈ {D,M,U}, attribute values A1:A2:A3, A1
corresponds to first attribute etc.

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

move-with-first-touch-on-star-object-in-
west-direction

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Proton++ Gesture
• describe a gesture as regular expression over

these touch event symbols

47

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

where E ∈ {D,M,U}, attribute values A1:A2:A3, A1
corresponds to first attribute etc.

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

consider attributes:
hit-target shape,
direction

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Proton++ Gesture
• describe a gesture as regular expression over

these touch event symbols

48

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

where E ∈ {D,M,U}, attribute values A1:A2:A3, A1
corresponds to first attribute etc.

consider attributes:
hit-target shape,
direction

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

1 Minute Micro Task:
Create the regular expression for this gesture

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Proton++ Gesture
• describe a gesture as regular expression over

these touch event symbols

49

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

where E ∈ {D,M,U}, attribute values A1:A2:A3, A1
corresponds to first attribute etc.

consider attributes:
hit-target shape,
direction

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E 2 {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

Literature: Kin,K. et al. ”Proton++: A Customizable Declarative Multitouch Framework”, UIST 2012

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Custom Attributes
• for example a pinch attribute:

– relative movements of multiple touches
– touches are assigned a ‘P’ when on average the touches

move towards the centroid, an ‘S’ when the touches move
away from the centroid and an ‘N’when they stay stationary

50
Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

1 Minute Micro Task:
Create the regular expression for this gesture

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

Custom Attributes
• for example a pinch attribute:

– relative movements of multiple touches
– touches are assigned a ‘P’ when on average the touches

move towards the centroid, an ‘S’ when the touches move
away from the centroid and an ‘N’when they stay stationary

51
Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180�. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105�), left (>105�), and right (<75�). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

Tuesday 28 October 14

Mobile

context and
task

theory

bimanual
interaction

pointing

gestures

interaction
techniques

in/output
technologies

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — !Mensch-Maschine-Interaktion II — WS2014/15 Slide

• Direction Attribute
• Touch Area Attribute
• Finger Orientation Attribute
• Screen Location Attribute

52

Further Attributes

→ Let’s practice that in the exercise

Tuesday 28 October 14

