
Ludwig-Maximilians-Universität Online Multimedia
LFE Medieninformatik WS 2019/2020

1

Assignment 7

Due: Wed 11.12.2019; 18:00h (1 Week)

Goals
After doing these exercises, you will know how to create an API with NodeJS from scratch.
Submit only one code bundle, regardless of how many tasks you finished – each effort counts!

Task 1: Create a Node App with the Express Generator Difficulty: Easy

Use the express generator as shown in the tutorial, or download the example from GitHub:

https://github.com/mimuc/omm-ws1920/tree/master/tutorials/07-
nodejs/examples/OMMExpressApp

a) Inside the app root directory, run “npm install” to download the necessary dependencies
b) Run “npm start” to launch the app.
c) Go to http://localhost:3000 to verify that the app works.
d) Contact us, if it doesn’t work.

No submission necessary, task continues in Task 2.

Task 2: Slideshow API

Remember the image slideshow from assignment 1? Back then, it only showed some static
images. Let’s make it a little bit
more dynamic!

In the assignment-material folder on
GitHub, you will find an improved
version of the slideshow website
slide-show.html. It queries images
from an API, allows filtering by
category and location, and
uploading new images. The
webpage frontend is already done,
but the backend is missing.

https://github.com/mimuc/omm-ws1920/tree/master/tutorials/07-nodejs/examples/OMMExpressApp
https://github.com/mimuc/omm-ws1920/tree/master/tutorials/07-nodejs/examples/OMMExpressApp
https://github.com/mimuc/omm-ws1920/tree/master/tutorials/07-nodejs/examples/OMMExpressApp
http://localhost:3000/
https://github.com/mimuc/mmn-ws1819/tree/master/assignments/skeletons/05-rest-api/assignment-material

Ludwig-Maximilians-Universität Online Multimedia
LFE Medieninformatik WS 2019/2020

2

Task 2a: Return predefined images Difficulty: Easy
In subtask a, let’s start implementing a matching backend API. To start, focus on simply
fetching existing image URLs:

• Use the NodeJS Express app of Task 1.
• To fetch a list of image URLs, the webpage’s JavaScript code performs a request to

http://localhost:3000/images . It expects a response JSON structured like this:
[
 {

“url” : ” https://cdn.worldnomads.net/Media/Default/Travel-
Safety/colombia/bogota-colombia-skyline.jpg”,
“categories” : [“travel”, ”cityscape”],
“location” : “Bogota, Colombia”

 }
]

• Such data is contained in the file imagedatabase.json . Create a route in your Express
app, matching the webpage’s request and returning those images.

• Don’t care about the filter, upload, … options in the first grey boxes so far!
• No changes in the webpage should be done!

Task 2b: Slideshow API – URL uploads Difficulty: Medium

As you might have noticed, the website also allows filtering images and uploading new ones.

In subtask b, you should:

• make filter features work (first grey box)
• make the image URL uploads work

Appropriate steps might be:

• Read the request parameters in your GET route
and filter the returned images

• Create a new route for the URL uploads (don’t
care about file uploads yet!)

• Depending on how you solved task one, replace
the imagedatabase.json with some editable
“database” (No real database is required, you
can simply use a JavaScript variable!)

• Again, any changes in the webpage must not
be done.

http://localhost:3000/images
https://cdn.worldnomads.net/Media/Default/Travel-%20Safety/colombia/bogota-colombia-skyline.jpg
https://cdn.worldnomads.net/Media/Default/Travel-%20Safety/colombia/bogota-colombia-skyline.jpg

Ludwig-Maximilians-Universität Online Multimedia
LFE Medieninformatik WS 2019/2020

3

Task2c: Slideshow API – File Uploads Difficulty: Hard

Adapt your Express app’s POST endpoint, so that it can handle file uploads from the webpage.

Appropriate steps might be:

• Add a special handling for file uploads in the post route.
• Save the file in a directory within the NodeJS app.
• Serve this directory’s content as static resources.
• Create URLs for these static images files, and put them in your image “database”.

Tips:

• The NodeJS library express-fileupload might be helpful.
• If you use the Express generator to create empty express apps, the created example app

already does some static file hosting (all files in the public directory). You could reuse
that code or implement it in a similar way.

Submission
Please turn in your solution as ZIP file via Uni2Work. You can form groups of up to three people.

We encourage you to sign up for Slack! All you need is a CIP account and an email address that
ends in “@cip.ifi.lmu.de”. Ask us if you don’t know how to get them.

If you have questions or comments before the submission, please contact one of the tutors.
They are on Slack @Aleksa and @Andre, remember that they also want to enjoy their
weekends

It also makes sense to ask the question in our #omm-ws1920 channel. Maybe fellow students
can help or benefit from the answers, too!

https://www.npmjs.com/package/express-fileupload
https://mimuc.slack.com/team/UP580C86L
https://app.slack.com/team/UPV0L1092

	Goals
	Task 1: Create a Node App with the Express Generator Difficulty: Easy
	Task 2: Slideshow API
	Task 2a: Return predefined images Difficulty: Easy
	Task 2b: Slideshow API – URL uploads Difficulty: Medium
	Submission

