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ABSTRACT 
Real-world data can significantly enhance the functionality of 
mobile services. For this, real-world data needs to be collected, 
stored and integrated with other information available on mobile 
devices. A flexible and user-friendly interface to the data is also 
needed. This paper describes an experience in collecting real-
world data and integrating it into a semantic data repository. We 
use an innovative Natural Query language and engine to 
automatically connect the resulting repository to the natural 
language user interface. The resulting system on S60 mobile 
platform successfully answers user questions about Personal 
Information Management (PIM) data extended with real-world 
data.    

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval], H.5.2 [User 
Interfaces]: Natural language  

Keywords 
Data access, query language, natural language. 

1. INTRODUCTION 
Mobile devices make a perfect user interface to the real-

world environment. They are constantly carried with the user [2] 
enabling gathering of user location information. Mobile devices 
are equipped with more and more sensors including GPS 
receivers, Bluetooth transmitters and receivers, RFID receivers 
and others. They also receive and store information about such 
real-world events as messages, phone calls, meetings, application 
usage and access to digital services. It is therefore natural to 
expect that this real-world data should be collected and made 
accessible on mobile devices. However, there are some open 
questions that need to be resolved in order to make this kind of 
data useful and accessible both to the programs and to the mobile 
device users. Collected real-world data must be structured and 
integrated with other information available on mobile devices 
such as, for example, the information found in the user’s phone 
book or calendar. There also needs to be an intuitive interface that 
allows flexible access to collected information. 

In this paper we present a framework that collects real-world 
data, structures it according to an extended PIM ontology, 
augments and integrates it with earlier collected data, and stores it 
in an RDF repository. 

To access the data, an intuitive interface is needed. Natural 
language based information access is increasingly viewed as a 
promising alternative to graphical user interfaces (GUIs), 
especially in the domain of mobile devices. We have developed a 
Natural Query language and engine that can automatically map 

meaning representation produced by language systems into formal 
database queries. This enables us to provide a natural language 
interface to the integrated real-world and on-device data. 

The paper describes our data gathering framework (Section 
2) and explains our solution to data storage (Section 3). Natural 
Language Interface to the stored data is simplified via using 
Natural Query system (Section 4). Then we describe our 
experience with the system (Section 5). We finish with the related 
work and conclusions. 

2. DATA GATHERING 
Data collection on mobile devices is an active field of 

research [3][8]. We have extended one of the frameworks 
available within Nokia to collect events that occur on a mobile 
device: phone calls, SMS messages, nearby Bluetooth devices, 
and GSM locations. All of these events are tagged with a 
timestamp when they occur. For phone calls the device records 
the phone number called (or the phone number that called the 
phone user) and the call length. For messages, the phone number 
and the message text is recorded. A GSM location change event is 
recorded when the cell tower associated with the phone changes. 
Finally, the phone periodically scans for Bluetooth devices in its 
vicinity and records their names and IDs. 

Although the real world data gathered is interesting by itself, 
it becomes even more important when connected to the data 
already available inside the device. Mobile devices store a rich set 
of structured information. The address book or phone book 
application contains names, phones, addresses and affiliations of 
personal contacts. The calendar application contains entries for 
meetings with participants, meeting location and time. All these 
data are related. Retrieving these data based on their relation 
could be very useful for device owners. With such retrieval 
capabilities they could learn who called them when they were in 
California, or when is their next meeting with Ann from 
Accenture. Unfortunately, the relations between different data 
items are not explicit when the events occur or information is 
entered in some application. Therefore it is important to integrate 
the collected data by explicating its relation to data available on 
the device. To achieve this goal, we have developed an extended 
PIM ontology that covers all relevant types of information 
available on the mobile device: from observed events, information 
from external data stores, to on-device data from several mobile 
applications. Once the data was structured and augmented with 
relations, it is stored in RDF [10] repository.  

3. STRUCTURED DATA STORAGE AND 
ONTOLOGY 

We created the PIM ontology to cover all data available in 
the device. We considered using such standard ontologies as W3C 



foaf [4] and vcard [15]. However, the information available on the 
mobile device was richer than the types supported by standard 
ontologies. Main classes in our ontology are Person, 
Organization, CalendarEntry, EmailAddress, Location, 
Observation, Message, Call, and PhoneNumber. Part of the 
ontology is shown in Figure 1. 

 
Figure 1. Part of Mobile PIM ontology 

There are about ten more secondary classes and class 
attributes. The real-world data observations are stored in the 
objects of Observation subclasses: BTDeviceObserved, 
CallObserved, MessageObserved, and LocationObserved. The 
attributes of these objects connect with other objects of the 
repository. For example, the phoneNumber attribute of a 
CallObserved is of type PhoneNumber, which is also used in the 
attribute phoneNumber of a Person or Organization class. 
Therefore the gathered real-world data directly integrates with the 
on-device data.  

For some other data, programs or users have to add 
information to facilitate integration. For example, a Bluetooth 
device ID and name attributes have to be added to the Person 
class and filled in with concrete values in order to associate the 
BTDeviceObserved observation to a specific person carrying a 
Bluetooth device. 

Another area where observed data integrates with on-device 
data is the location information. A significant part of ontology 
deals with locations at various granularity levels: from meeting 
rooms, to office buildings, cities, and countries. We use the 
partOf relation between different objects to represent geographic 
or organizational inclusions. For example, a relation can indicate 
that Boston is a part of Massachusetts, which in turn is a part of 
the USA. This attribute is also used to describe the GSM location 
containment within a certain geographical object. Since GSM 
locations are somewhat imprecise, we have chosen to associate 
them with town or city level geographical entities. This provides 
sufficient information in most cases.  

Overall, we found that our RDF repository is significantly 
more flexible than a relational database. For example, it naturally 
supports multiple classes of contacts, multiple affiliations per 
person, and supports a sophisticated typing system. 

4. NATURAL LANGUAGE INTERFACE  
Although the repository of integrated real-world and in-

device data can be used in variety of ways, for example, via 
querying it using SPARQL [14], we were interested to provide an 
intuitive and flexible user interface to it. We decided that a 

general natural language interface to a rich data set could be more 
effective than a GUI based application.   

As a rule, information bases and language systems are 
developed independently of each other. Therefore information 
bases are not designed for interaction using natural language and 
their integration process is mostly ad hoc, manual process. Figure 
2 is a sketch of a typical architecture that is used to provide a 
natural language interface to databases and other back-end or 
native services. 

 
Figure 2. Architecture sketch of Natural Language Interface 
to Services 

The speech recognition and generation components translate 
between text and speech modalities. The language understanding 
component converts the text into a formal representation of 
meaning sometimes called semantic frame [12]. The language 
generation component converts the formal meaning representation 
to a natural language text [1]. The dialog manager uses the 
context of conversation to complete frames received from the 
language understanding module or created by the custom 
integration code from responses of backend services. The custom 
integration code also translates meaning representation frames it 
receives from the dialog manager into a standard database query 
or backend specific API requests. 

We have designed and implemented the Natural Query (NQ) 
language and engine [9] that removes the need for custom 
integration code. NQ can automatically map meaning 
representation produced by language systems into precise 
database queries. NQ employs two mechanisms: language tags 
and data graph search to return requested data using only the 
information in the meaning representation of the user request.  

Language tags are words, expressions, and linguistic tokens 
attached to database elements such as classes and properties. 
Multiple tags can be attached to a single element and a single tag 
can be attached to multiple elements. Language tags are the names 
of the corresponding categories used by the language system(s). 



Figure 3 illustrates language tags associated with a part of our 
PIM ontology. A generalization like “Contact” can be attached to 
specific classes like “Person” and “Organization”. Tags like “in” 
can be attached to all location elements. A general reference like 
“Name” can be attached to multiple elements like “givenName”, 
“familyName”, and so on. In our RDF repository of real-world 
and in-device data, we added language tags to the RDF objects 
using a subproperty of RDFS label field. 
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Figure 3. Language tags for database elements 
While ad hoc integration needs to have the information about 

the organization of the database, NQ avoids the need for such 
information by using a graph search to achieve the same objective. 
Given a question “Who are my contacts at IBM in Ulm?”, NQ 
finds paths connecting the nodes known from the meaning 
representation, such as “Person”, “name”, “Organization”, 
“City”, “Ulm”, and “IBM”.  One of such paths is highlighted in 
Figure 4. 
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Figure 4. Answering query via graph search 

We have created a proof of concept implementation of NQ in 
Python [7] that runs on S60 [11] mobile phones. Full description 
of the Natural Query system is presented in [9]. 

5. EXPERIENCE WITH THE SYSTEM 
We tested our system on a PIM test data set containing 550 

contacts with about 150 meetings and 250 phone calls, which is 
normal for executives with a lot of contacts and meetings. The 
repository contained over 11000 RDF triples. We asked over 50 
natural queries corresponding to over 600 parameterized 

questions. We did not count various parameters, such as different 
cities or names, since these numbers can be made arbitrarily large 
and the resulting number of questions does not really reflect the 
capabilities of the system. 

The system can answer questions ranging from “What is the 
email of John?” to “Where does Ann work?” to “My meetings next 
week with John” and “Who called me yesterday”. Some of these 
questions would convert to quite complex relational or SPARQL 
queries. For example for the query “Who called me yesterday”, we 
need to find all telephone numbers of calls that occurred yesterday 
and then find all people who have these telephone numbers. NQ 
query for this is very simple: “fromClass = 'Person', select = 
['givenName', 'familyName'], where = [(["ReceivedPhoneCall", 
'start'], TimeInterval ('yesterday'))]”. 

If we classified questions according to domains, one domain 
would contain questions about the personal information data from 
an address book application, for example “Who works as a real 
estate broker?”. Another set of questions is about meetings, for 
example, “When are my meetings next month at MIT?”. Yet 
another set is about calls and messages, for example, “Who called 
me last Friday?”. Finally there are questions spanning multiple 
domains, for example, “What are emails of people who 
participated in a meeting on Monday?”, “Who called me when I 
was in Finland?”, and so on.  

All these types of queries (Figure 5) were successfully 
created and executed on the extended PIM data store. 

 
Figure 5. Example questions 

We found out that we could easily ask questions both about 
the in-device data and the collected real-world data. Integration of 
the two enhanced our question answering capability significantly, 
allowing such questions as “Who called me when I was in 
Helsinki?”, “Which messages did I receive during the meeting 
with Juha?”. Although the detection of someone’s Bluetooth 
device is a weak indication the phone user met other person with a 
Bluetooth device, in our experiments we assumed such 
implication. This allowed us to ask questions such as “Who did I 
meet last week?”.  

Test NQ queries mostly returned expected answers (96% 
recall, 92% precision) (Figure 6) including the approximate 
answers where the exact answers were not available. For example, 
the question “When was my meetings with Sam last month?” had 
no exact answers, so the system returned approximate answers of 



meetings with Sam that did not occur last month as well as the 
meetings that occurred last month, but did not include Sam. 

The performance of the system was acceptable with answers 
taking from less than a second to several seconds. The system 
implementation is a prototype in Python that was not optimized 
for memory or speed. The detailed evaluation of system 
performance is outside the scope of this paper. We are planning to 
optimize the system performance in the near future.  

 

 
Figure 6. Example question and answer 

6. RELATED AND FUTURE WORK 
Real world data has been gathered on mobile devices by a 

number of projects including Context [8] and Reality Mining [3]. 
In our work, we have extended one of the data gathering 
frameworks available at Nokia. 

Mobile data storage in RDF repositories is investigated by 
ConnectingMe [5] project at Nokia Research Center. We are 
collaborating with ConnectingMe in the ontology and repository 
development. 

We have not discovered any research directly corresponding 
to the Natural Query approach.  The Precise system by Popescu et 
al. [6] attaches language tokens to database elements in a way 
very similar to language tags of NQ. Also the query derivation 
approach of Precise is based on database graph search. NQ uses a 
more flexible data model, supports incomplete answers, and 
collects data for explanations.  

In the future, we plan to connect our system to such natural 
language and speech systems as TINA [12] and Galaxy [13]. We 
plan to perform user trials to evaluate our system and its user 
interface to real world data. We will collect additional data such 
as email messages, songs listened, and pictures viewed and taken.  
We will also optimize the current prototype implementation. 

7. CONCLUSIONS 
Mobile devices are now able to continuously collect real 

world data and present it to the users. In addition to real world 
data, mobile devices host structured and semi-structured 

information bases. We have demonstrated integration of such data 
with the collected real world data using a flexible and powerful 
RDF repository and a common ontology. We have designed and 
implemented a query language and engine NQ that can 
automatically map meaning representation produced by language 
systems into formal database queries. We have used NQ to access 
extended PIM (Personal Information Management) data on 
mobile phone. Our experience indicates that real-world data 
gathering and integration with in-device data, together with a 
natural language interface is a valuable addition to capabilities of 
mobile devices. 
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