

Pervasive Mobile Interaction Devices PERMID 2005

A Mobile Device as User Interface for Wearable Applications

P. Iso-Ketola, T. Karinsalo, M. Myry, L. Hahto, H. Karhu, M. Malmivaara and J. Vanhala

TAMPERE UNIVERSITY OF TECHNOLOGY Institute of Electronics

Contents

I. THE PREDICTION

II. THE CHALLENGE

III. THE SOLUTION

IV. THE RESEARCH

V. THE FUTURE

I. THE PREDICTION

II. THE CHALLENGE

III. THE SOLUTION

IV. THE RESEARCH

V. THE FUTURE

The Prediction

In the late 1990's

- Wearable technology will soon make mass market
- Wearable applications will overthrow the mobile handset
- Electronics will move closer to the user's body

The Prediction

In the late 1990's

- Wearable technology will soon make mass market
- Wearable applications will overthrow the mobile handset
- Electronics will move closer to the user's body

Year 2005

- Wearable electronics haven't still made mass market
- Mobile handset market is flourishing

I. THE PREDICTION

II. THE CHALLENGE

III. THE SOLUTION

IV. THE RESEARCH

V. THE FUTURE

Tampere University of Technology Kankaanpää Research Unit on Wearable Technology

🕀 KP1 🔘

The Challenge

Maintenance of the garment

- Machine washing
- Recharging
- Customer service

The Challenge

Maintenance of the garment

- Machine washing
- Recharging
- Customer service

Integrated wearable user interface

- Soft washable keypad
- Rigid surfaces on the body
- Flexible display
- Energy consumption
- Interfacing with multiple layers of clothing

I. THE PREDICTION

II. THE CHALLENGE

III. THE SOLUTION

IV. THE RESEARCH

V. THE FUTURE

Tampere University of Technology Kankaanpää Research Unit on Wearable Technology

🕀 KP1 🔘

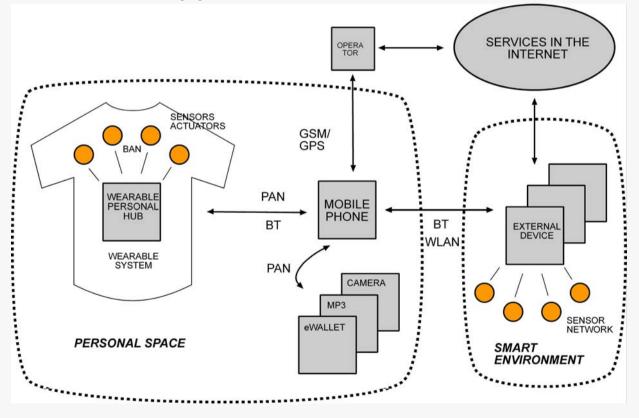
The Solution

A mobile device

- User interface for wearable applications
 - Wireless connection
 - Good input/output capability
 - Customizable for different applications
 - Widely available and familiar to use
 - No added manufacturing costs

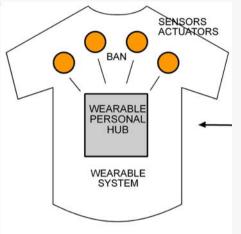
The Solution

A mobile device


- User interface for wearable applications
 - Wireless connection
 - Good input/output capability
 - Customizable for different applications
 - Widely available and familiar to use
 - No added manufacturing costs
- Communication hub
 - Communication between the personal space and the environment
 - Bluetooth, GPRS, WLAN,...
 - Capability to run third party applications

The Solution

A Mobile Device as User Interface for Wearable Applications


🕀 KP1 🔝

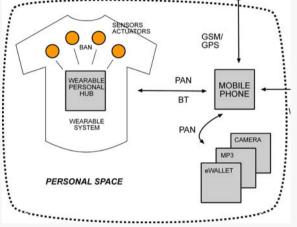
The Solution

Body Area Network

- Includes all parts of the wearable system located in the garment
- The wearable personal hub communicates with sensors and actuators

Data transfer methods for BAN

- Wiring inside the garment
- Capacitive communication using body's skin surface
- Wireless data transfer



The Solution

Personal Area Network

- Includes everything in the user's close proximity
- The mobile phone is the mediating device

- Provides data transfer between BAN, PAN, smart environment and the Internet
- Communicates with the wearable personal hub
- Processes the data received from the garment
- Communicates with the smart environment
- Provides access to services in the Internet

I. THE PREDICTION

II. THE CHALLENGE

III. THE SOLUTION

IV. THE RESEARCH

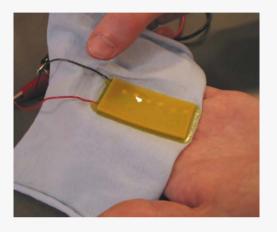
V. THE FUTURE

The Research

Wearable Electronics Maintenance Project

Polymer casting electronics

- Objective is to make machine washable and flexible electronics
- Unobtrusive and comfortable to wear
- Fully garment integrated
- Fits nicely with the concept of wireless external user interface



The Research

Testing the prototypes

- Regular household washing machine
 - 40°C with color detergent
 - Spin-dry at 900rpm
- Mechanical durability
 - Connections are critical with flexible circuit boards
- Waterproofing
 - Shielding against moisture and chemicals has proven to be sufficient

🕀 KP1 🔘

The Research

The Noise Shirt concept

- Prototype of a garment integrated electronic device
 - Flexible encasing
 - Wireless recharging
 - No wearable communication hub
- Built to test the maintenance solutions
- Measures the noise level of surrounding environment
 - Dynamic range from 65 to 100 dB
 - Indication with LEDs

The Research

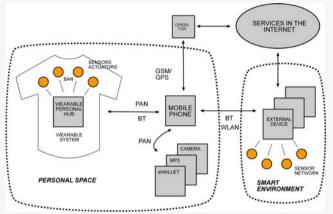
Wireless recharging

- Inductive power transfer
 - A recharging interface in a clothes hanger
 - A neck-tab with induction coil and electronics
 - Recharging time 3 hours (3,7V 100mAh battery)
 - Run time from 2 to 4 hours (10 mA per LED)
- No bulky connectors
 - No need to plug in the shirt

The Research

Interfacing wearable applications

- Typical application could be a body monitoring garment with sensors
- Input data to the garment
 - Low bit rate information
 - Device on/off, operation mode
- Output data from the garment
 - Mostly measurement data
 - Heart rate, respiration rate, EKG, EMG, perspiration, temperature, movement,...
 - Bit rate depends heavily on the application and the amount of pre-processing



The Research

Data processing

- In the garment
 - Real-time processing
 - Less data transfer
 - Limited data memory
 - Limited computing resources
- In the mobile phone
 - Reduced costs and complexity for the garment
 - Not real-time processing
- By a service provider
 - Data transfer costs (motion 24h 6 sensors ca. 40 MB)
 - Extensive resources for physical modelling

I. THE PREDICTION

II. THE CHALLENGE

III. THE SOLUTION

IV. THE RESEARCH

V. THE FUTURE

The Future

- A full featured implementation of the communication architecture will be done in the Wearable well-being project
- Research on the infrastructure around wearable electronics continues
- Our prediction
 - Fully garment integrated, machine washable electronics with a mobile device as user interface and communication hub will have a role in future wearable applications

TAMPERE UNIVERSITY OF TECHNOLOGY Institute of Electronics

Thank you!

