Motion Detection as Interaction Technique for Games & Applications on Mobile Devices

Stephan A. Drab Upper Austria University of Applied Sciences Hagenberg, Mobile Computing

MOBILE COMPUTING

Interaction Techniques on Mobile Devices

- Common Interaction Techniques:
 - Keys
 - Stylus
 - Voice Recognition

• Classification in Terms of Usability:

1 00 2 abc 3 def 4 ghi 5 jkl 6 mm 7 pqr3 8 tuv 9 wxyz ** 0 - 1 #	eteronics weety	Speech recognition software? Sorry. I could have swern you asked for those exhibitionist au pairs.

- Reaction time	very good	good	very bad
- Input quantity	very good	medium	bad
- Intuitivity	very bad	good	very good

- Optical Markerless Inertial 2D-Tracking
- Idea: Device Motion => Motion in Camera Images

- Optical Markerless Inertial 2D-Tracking
- Idea: Device Motion => Motion in Camera Images

- Analysis of Motion in Camera Images
- Very intuitive User interaction

• Classification in Terms of Usability:

- Reaction time	very good	good	very bad	good
- Input quantity	very good	medium	bad	good
- Intuitivity	very bad	good	very good	very good

- Algorithms capable of analysing Scene Motion
 - Edge Detection and Tracking
 - Analysis of Scene Components
 - Block Matching
 - Analysis of Optical Flow

- Edge Detection and Tracking
 - 3D Tracking of Edges and Vertices

- Analysis of Scene Components
 - Analysis of Movement of 2D Scene Components

- Block Matching
 - Method from Video Compression Sector

- Interpret Block References as Motion Vectors
- Motion Estimation =

(sum of all v_{motion}) *block_size/nr_blocks

- In our example: $(8/9; 8/9) \approx (1; 1)$

Analysis of Optical Flow

• Summary:

- Edge Detection and Tracking
 - Computing time dependent on Scene Complexity (AR, 3D)
- Analysis of Scene Components
 - Computing time dependent on Scene Complexity (2D)
- Block Matching
 - Image sizes very small (Mozzies)
- Analysis of Optical Flow
 - Fairly interactive framerates (Sweep Technology)

=>

Development of an Efficient Optical Markerless Inertial 2D-Tracking Algorithm

• Starting Basis:

- We have two Successive Images captured by the Camera:

• Starting Basis:

- We have two Successive Images captured by the Camera:

- Wanted:
 - The relative Motion Vector of the image contents

• Idea

- Correlate the images using every possible 2D Shift

• Idea

- Correlate the images using every possible 2D Shift
- Algorithm too complex by Orders of Magnitude
 - Computing Time dependent on 4th power of image size
 - Reduce amount of Information to Correlate

- Concept
 - Project the Image onto its X- and Y-Axis

- Concept
 - Project the Image onto its X- and Y-Axis
 - Calculate Color MSE for Overlaps of every 1D-Shift

- Concept
 - Project the Image onto its X- and Y-Axis
 - Calculate Color MSE for Overlaps of every 1D-Shift
 - Best Matching Shift is the Actual Motion

• Concept

- Project the Image onto its X- and Y-Axis
- Calculate Color MSE for Overlaps of every 1D-Shift
- Best Matching Shift is the Actual Motion
- Computing time
 - n*size⁴ => o*size²+2*p*size²

Advantages

- Fast MotionDetection Algorithm
- Capable of running on a Mobile Device
- works with Greyscale Images (YUV)
- Relatively Resistent to
 - Rotation
 - Scaling

Advantages

- Fast MotionDetection Algorithm
- Capable of running on a Mobile Device
- works with Greyscale Images (YUV)
- Relatively Resistent to
 - Rotation
 - Scaling

Disadvantage

- The algorithm estimates the Motion inexact when pointing the camera at:
 - repetitive patterns
 - images with a low dynamic range, e.g.
 - * dark spots
 - * white walls

Demonstrators

- Demonstrators for the Concept of MotionDetection as Interaction Technique on Mobile Devices
 - CameraCursor
 - TestApplication
 - TheBiggerPicture
 - LabyrinthGame
 - MapNavigator

Demonstrators – CameraCursor

- Test of Cursor Concept
- Motion Information moves Cursor
- Lines can be drawn

Demonstrators – TestApplication

- Test & Debug of MotionDetection
- Motion Information is visualized by a red cross
- The cross always points at the same spot

Demonstrators – The Bigger Picture

- Multiple Camera Images combined to one
- Motion Information tells where to Accumulate the Captured Frame
- Works in Real-Time

Demonstrators – LabyrinthGame

- PhysicsDemo of Labyrinth Game (remake of the old style wooden version)
- Pitch of Mobile Device accelerates the sphere.
- Visualization of Motion Information acceleration, speed and position of sphere
- Further graphic enhancement needed, e.g.:

Stephan A. Drab, Upper Austria University of Applied Sciences Hagenberg, Mobile Computing

PocketHAL 0.7

Demonstrators – MapNavigator

- Map Navigation Tool
- Designed to view large maps
- Motion Information moves the viewing window

• User Tests regarding Usability & Acceptance

- User Tests regarding Usability & Acceptance
- MotionDetection
 - Further Optimization of the MotionDetection
 - Detection of Rotation and Scaling

- User Tests regarding Usability & Acceptance
- MotionDetection
 - Further Optimization of the MotionDetection
 - Detection of Rotation and Scaling
- Integration of the Cursor Concept in the native GUI of WindowsCE

- User Tests regarding Usability & Acceptance
- MotionDetection
 - Further Optimization of the MotionDetection
 - Detection of Rotation and Scaling
- Integration of the Cursor Concept in the native GUI of WindowsCE
- Motion Gestures

End of Presentation

Any Questions?

contact: stephan.drab@fh-hagenberg.at mc.fh-hagenberg.at

Stephan A. Drab, Upper Austria University of Applied Sciences Hagenberg, Mobile Computing

MOBILE