
Motion Detection as Interaction Technique for Games &
Applications on Mobile Devices

Stephan A. Drab
Upper Austria University of Applied Sciences

Mobile Computing
Hauptstrasse 117

Hagenberg, Austria

stephan.drab@fh-hagenberg.at

Nicole M. Artner
Upper Austria University of Applied Sciences

Media Technology and Design
Hauptstrasse 117

Hagenberg, Austria

nicole.artner@fh-hagenberg.at

Keywords
mobile devices, pervasive, interaction techniques, motion de-
tection

ABSTRACT
Mobile devices become smaller and more powerful with each
generation distributed. Because of the tiny enclosures the
interaction with such devices offers limited input capabili-
ties. In contrast there are hardly any mobile phones pur-
chasable that do not have a built-in camera. We developed
a concept of an intuitive interaction technique using optical
inertial tracking on mobile phones. The key of this con-
cept is the user moving the mobile device which results in
a moving video stream of the camera. The direction of the
movement can be calculated with a suitable algorithm. This
paper outlines the algorithm Projection Shift Analysis devel-
oped to run on mobile phones.

1. MOTIVATION
Our approach detects the relative motion of the camera in
the two-dimensional pixel space of the image. As camera
movement directly results in motion of all scene components
the motion of the camera movement can be defined as the
inverse movement of the scene. If there are no significant
scene components moving for itself conventional motion de-
tection methods can be used to analyse the video stream.
There are several algorithms from different fields of com-
puter graphics and image processing used to parameterise
the motion of the scene. Although they pursue different
approaches, all of them would analyse the scene motion suf-
ficiently. Due to low CPU and memory resources on mobile
phones we developed the Projection Shift Analysis algorithm
for motion analysis. There is a wide range of applications
for the motion parameter, for example controlling a game
similar to joystick interaction. Another possible application
could interpret motion gestures or control the cursor like the
stylus input technique on PDAs.

2. RELATED WORK
In [8] Geiger et al. present concepts for mobile games and
address interaction issues concerning mobile devices.

The simplest approach to track objects is detecting signif-
icant features in an image, e.g. edges. Naturally, edge de-
tection methods like the Robert, Prewitt, Sobel, Laplace or
Canny [2] filters are used to achieve this.

Motion Detection in 3D-Computer Graphics, Mixed- and
Augmented Reality is often referred to as Tracking. Beier
et al. presented a markerless tracking system using edge de-
tection in [1]. Comport et al. propose a robust marker-
less tracking system in [3]. A specialised solution to the
problem of markerless tracking was published by Simon et
al. in [15]. In [11] Moehring et al. present a marker-based
tracking system designed especially for mobile phones. Kato
and Billinghurst developed the optical marker based track-
ing system ARToolKit published in [9].

Foxlin et al. present a wide spectrum of optical inertial track-
ing systems in [5, 6, 17]. Additionally, a taxonomy of Motion
Detection methods has been published in [4]. In [10] Koller
presents a method to track the position of cars using an
optical system.

Siemens Mobile developed a game called Mozzies, that is
distributed with the mobile phone SX1 by default. This
Symbian based game augments the background video from
the camera with moths. The user can point the gun at a
moth and shoot it by moving the phone and pressing the
appropriate button. In [7] Geiger et al. present an inter-
esting approach of an augmented reality version of a soccer
game running on a PDA.

3. INTERACTION TECHNIQUES
This chapter describes and classifies various interaction tech-
niques used on mobile devices nowadays. There are a few
main parameters that define the usability of those tech-
niques. The reaction time between the user input and
the response on output devices such as the display is a very
crucial parameter. Any visual response on the output device
after about 200 ms is not interpreted as a direct reaction to
the user, but as a separate event. The quantity of actions
a user is able to perform using a specific input technique de-
fines the speed at which he can interact with the device. The
intuitivity of an input method strongly affects the usability

x

y

x

y

x

y

Figure 1: An example of the Block Matching algo-
rithm.

and user acceptance.

The following interaction techniques for mobile phones were
evaluated regarding the above parameters. Keys are the
most common input technique for mobile phones. They
offer a very short reaction time but lack intuitivity. The
rate of interaction is dependent on the user’s experience
with this technique. Voice recognition is a very intu-
itive input technique, but lacks fast reaction time and input
quantity. Touch screens are the most intuitive way of in-
teracting with a screen based mobile device. The reaction
time is comparable with key input but the input quantity
strongly depends on the GUI design. Unfortunately aside
from smartphones there are no mobile phones featuring a
touch screen.

Each of these techniques has mentionable advantages. Key
interaction offers a good reaction time. Voice recognition is
very intuitive to use. Touch Screens combine a fair amount
of intuitivity and interaction quantity, but aside from smart-
phones they are not available on mobile phones. Thus we
developed a concept and implementation for an interaction
technique particularly for mobile phones that incorporates
the advantages of all presented techniques.

4. MOTION DETECTION ALGORITHMS
The term Motion Detection describes a set of algorithms
that detect the motion in a successive image sequence, e.g. in
a video captured by a camera. In this section we present
suitable motion detection algorithms:

4.1 Block matching
Block matching is a method from the video compression
sector. It divides the images in equally sized blocks to find
the best matching block in a reference picture for all blocks
of the current image. It yields to describe an image not
using color values per pixel, but as block references to the
previous image along with other parameters, as Richardson
describes in [13].

Even tough the algorithm has not been developed to analyse
motion in an image sequence, it can be extended to fit this
purpose. The algorithm determines where a block of an
image will be positioned in the next image. The resulting
block references can be interpreted as motion vectors in units
of blocks. An arithmetic middle of all block motion vectors
multiplied by the pixel size of a block would lead to a single
motion vector describing the approximate relative motion.

Figure 2: Edge Detection and Tracking sample.

In figure 1 a sample of a matching procedure is depicted.
The frame on the left shows the reference image. In the
middle the current image is depicted which is encoded using
block references to the previous image. The arrows in be-
tween indicate the block mapping information calculated by
the algorithm. In the right frame the block references are
vizualised as motion vectors. The arithmetic middle of the
motion information from the right frame in figure 1 would
result in a vector of (8

9
, 8

9
) which almost matches the relative

movement of (1, 1) in our example.

4.2 Edge Detection and Tracking
Edge Detection and Tracking is used throughout markerless
3D-Tracking algorithms1. In the first step the edges are
extracted from the image. This is possible through either
folding the image with an appropriate Edge Detection matrix
[2, 14] or using the Hough Transformation [16]. The detected
edges can then be tracked throughout the image sequence.
Figure 2 shows an example of detected edges of a cube that
have been tracked in two images.

The edge comparison step in the Edge Detection and Track-
ing algorithm is applied to an unpredictable high number
of edges. Thus the processing time used for this operation
cannot be forecast and can become a bottleneck in case the
images depict a huge number of edges. Although Edge De-
tection and Tracking is the most promising algorithm, it is
not capable of running on devices with low computing power
at a reasonable frame rate.

4.3 Analysis of Scene components
Moving scene components in a video stream result in a par-
tial motion of a scene. In [10] Koller describes an algorithm
to extract motion information of scene components from an
image sequence. The first step in this approach extracts the
objects’ parameters from the image. Thereafter the prox-
imate image is searched for objects and relative motion in
pixel space is calculated. An example is depicted in figure
3. Again, an arithmetic middle of the motion vectors of all
scene components could be used to determine the scene and
camera motion.

The analysis of the motion of scene components is similar
to Edge Detection and Tracking and incorporates the same
disadvantages like unpredictable computing time and con-
suming high computing power. Therefore, it cannot be used
on mobile devices.

1See [3, 15] for examples of 3D Tracking algorithms.

Figure 3: Scene Component Analysis sample.

0 2 5 1 0

1 7 9 8 2

0 4 5 3 1

1 1 6 2 0

0 0 1 0 0

2 142614 3

8

27

13

10

1

1

9

26

14

9

2 5 1 0

7 9 8 2

4 5 3 1

1 6 2 0

0 00 1 0

1

0

1

0

142514 4 2

x

y

x

y

Figure 4: Horizontal and Vertical projection buffers
for each of the two successive images.

5. PROJECTION SHIFT ANALYSIS
The previously presented motion detection algorithms qual-
ify for detecting motion information in an image sequence
using a high amount of calculating time. However, in mo-
bile applications computing power is a rare resource, there-
fore we propose a new method called Projection Shift Analy-
sis. The algorithm does not require color information, but
grayscale images as input. Fortunately, most cameras sup-
port captured images in the YUV format2 which holds a
separate luminance (Y) channel containing grayscale infor-
mation. This algorithm will discard the provided color in-
formation (U and V).

5.1 Image Projection
In the first step the image is projected onto its x- and y-axis.
That means all luminance values of each row is summed up
in the vertical and each column in the horizontal projection
buffer as depicted in figure 4. The horizontal and vertical
projection buffers pbh(x) and pbv(y) of the image im(x, y)
with the corresponding width w and height h are defined as
pbh(x) =

Ph−1
i=0 im(x, i) and pbv(y) =

Pw−1
i=0 im(i, y) with

x ∈ [0..w[and y ∈ [0..h[.

5.2 Shift Analysis
If the scene within an image sequence is moved vertically or
horizontally the corresponding projection buffers will shift
equally. For example an image sequence containing a hor-
izontal panning shot from the left to the right will result
in a horizontal projection buffer whose values will shift to
the left over time. Thus our approach searches for the best
matching shift between two projection buffers of two succes-
sive images. Figure 5 shows three examples of different shift
values.

To estimate the best match we introduce a value called bad-

2For more information on the YUV format we refer to [12].

normalized
badness factor

badness factor=
sum of squared
differences

projection buffer of
previous image

projection buffer of
current image

absolute
differences

1

9

26

14

9

8

27

13

10

1

1

1

1

1

4

1

1

9

26

14

9

8

27

13

10

1

18

13

4

8

155

7

26

4

16

13

1

9

26

14

9

8

27

13

10

1

1
4

Shift -1 Shift 0 Shift 1

622 1117
1
2 279

Figure 5: Example of badness factor calculation for
different shifts of two projection buffers.

ness factor that is similar to a correlation factor and char-
acterises the badness of a shift. A lower value indicates a
higher probability for this shift to be correct. The algorithm
calculates the badness factor for every possible shift through
summing up all squared differences of the values of the com-
pared projection buffers. Because the calculated badness
factors result from a different number of compared values
they are normalised by dividing it by the number of values
compared. Figure 5 shows the calculation of badness factors
using the vertical projection buffers of the image displayed
in figure 4.

The shift value used to calculate the smallest normalised
badness factor is assumed to be the correct relative mo-
tion between the two compared images. In our example de-
picted in figure 4 the best matching shift value of −1 exactly
matches the vertical movement of 1 pixel. This procedure
can be applied to horizontal and vertical projection buffers
equally to estimate the motion in x- and y-axis.

6. RESULTS
Tests determining the robustness of the algorithm Projection
Shift Analysis elicited the following restrictions:

If there are significant scene components moving in the cap-
tured video stream the motion detection often ”follows”
these objects instead of detecting the motion of the back-
ground. Repeating patterns – for example a chess board –
often lead to jumping motion detection results. The color
values of the analysed images need to have a wide dynamic
range. Most cameras of mobile phones use a relatively long
shutter time due to low quality lenses and CCD chips. If
the camera moves too fast this can result in blurred images
which cannot be analysed correctly. The quality of the de-
tected motion parameters decreases if a lower frame rate is
used. The camera used to capture the video stream must
support a sufficient resolution and image quality. The al-
gorithm does not support detection of rotations around the
camera’s view axis. However, unusable motion detection
results are only produced in some cases.

To further examine the robustness two application proto-
types were developed to evaluate the functionality and us-
ability of the proposed concept:

Figure 6: The prototypes MAPnavigator and Cam-
eraCursor.

MAPnavigator is an application that allows the user to
view different maps. The problem in this context is the low
display resolution of mobile phones. Consequently it is not
recommended to scale down a huge map because then the
user is not able to make out important details in the map.
The solution to this problem is to divide the map into sev-
eral parts. MAPnavigator uses the Projection Shift Analysis
motion detection algorithm to seamlessly navigate through
the map. It is very easy and intuitive to find the requested
part of the map using the motion detection technique. The
left part of figure 6 shows a screenshot of the application.

The application CameraCursor was developed to test if
our motion detection algorithm is capable of controlling a
cursor. The user is able to control the cross cursor by mov-
ing around the mobile phone. By pressing and holding the
appropriate button the cursor draws lines while moving on
the screen. Additionally the speed of the cursor can be con-
figured at run time. An example of the application is shown
in the right part of figure 6.

7. CONCLUSIONS
The Projection Shift Analysis algorithm works if none of the
given cases in section 6 occur. Compared to the algorithms
in section 4 it uses very little CPU and memory resources.
Therefore it is ideal to be used on mobile phones. In case the
camera is moved quickly the results may be inaccurate by a
few pixels. Using the motion parameters as user interaction
does not require high exactness for fast movements because
the user does not have an indication of inaccuracy as long as
the movement displayed on the screen is approximately fol-
lowing his motion. However, there are some cases the algo-
rithm cannot keep track of the motion and fails completely.
This mostly happens when the user quickly moves the cam-
era while pointing at dark spots or repeating patterns. Fu-
ture implementations are planned to filter out motion noise
using the Kalman Filter which would also reduce jumping
motion parameters caused by unfavorable environments.

8. REFERENCES
[1] D. Beier, R. Billert, B. Brderlin, D. Stichling, and

B. Kleinjohann. Marker-less vision based tracking for
mobile augmented reality. In The Second IEEE and
ACM International Symposium on Mixed and
Augmented Reality, pages 258–259. IEEE, Inc., 2003.

[2] J. F. Canny. Finding edges and lines in images.
Master’s thesis, MIT, 1983.

[3] Andrew I. Comport, Eric Marchand, and Francois
Chaumette. A real-time tracker for markerless

augmented reality. In The Second IEEE and ACM
International Symposium on Mixed and Augmented
Reality, pages 36–45. IEEE, Inc., 2003.

[4] Eric Foxlin. Handbook of Virtual Environment
Technology, chapter 8, Motion Tracking Requirements
and Technologies. 2002.

[5] Eric Foxlin, Yury Altshuler, Leonid Naimark, and
Mike Harrington. Flighttracker: A novel
optical/inertial tracker for cockpit enhanced vision. In
IEEE/ACM International Symposium on Mixed and
Augmented Reality (ISMAR 2004), 2004.

[6] Eric Foxlin and Leonid Naimark. Circular data matrix
fiducial system and robust image processing for a
wearable vision-inertial self-tracker. In Joint
International Immersive Projection Technologies
(IPT)/Eurographics Workshop on Virtual
Environments (EGVE) 2003 Workshop, 2002.

[7] C. Geiger, B. Kleinnjohann, C. Reimann, and
D. Stichling. Mobile ar4all. In Proceedings of the IEEE
and ACM International Symposium on Augmented
Reality (ISAR), 2001.

[8] Christian Geiger, Volker Paelke, and Christian
Reimann. Mobile entertainment computing. In
TIDSE, pages 142–147, 2004.

[9] H. Kato and M. Billinghurst. Marker tracking and
hmd calibration for a video-based augmented reality
conferencing system. In proceedings of IEEE
International Workshop on Augmented Reality, pages
125–133, 1999.

[10] Dieter Koller. Detektion, Verfolgung und Klassifikation
bewegter Objekte in monokularen Bildfolgen am
Beispiel von Strassenverkehrsszenen. Infix, 1992.

[11] M. Moehring, C. Lessig, and O. Bimber. Optical
tracking and video see-through ar on consumer cell
phones. In proceedings of Workshop on Virtual and
Augmented Reality of the GI-Fachgruppe AR/VR,
pages 193–204, 2004.

[12] Wikipedia, the free encyclopedia. YUV.
http://en.wikipedia.org/wiki/YUV.

[13] Iain E. G. Richardson. Video Codec Design:
Developing Image and Video Compression Systems.
Wiley, June 2002.

[14] J. Shen and S. Castan. An optimal linear operator for
step edge detection. Computer Vision, Graphics and
Image Processing, (54), 1992.

[15] Gilles Simon, Andrew W. Fitzgibbon, and Andrew
Zisserman. Markerless tracking using planar structures
in the scene. In Proc. of ISAR.

[16] Sargur N. Srihari. Analysis of textual images using the
hough transformation. Technical report, State
University of New York at Buffalo, 1988.

[17] Dean Wormell and Eric Foxlin. Vis-tracker: A
wearable vision-inertial self-tracker. In Joint
International Immersive Projection Technologies
(IPT)/Eurographics Workshop on Virtual
Environments (EGVE) 2003 Workshop, 2003.

