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Figure 1. GravitySpot guides users towards designated positions in front of a display. We modify UI properties, such as brightness or resolution of images,
depending on the user position. Thus we make passersby anticipate the spot where they can optimally perceive the content. In a sample application
deployed in the wild, a trivia game is initiated as a user approaches the display (left). The answer is then provided as image which we modify based on
user position (here pixelation, middle). As users move towards the sweet spot, the effect gets smaller until they can optimally perceive the image (right).

ABSTRACT
Users tend to position themselves in front of interactive pub-
lic displays in such a way as to best perceive its content. Cur-
rently, this sweet spot is implicitly defined by display proper-
ties, content, the input modality, as well as space constraints
in front of the display. We present GravitySpot – an approach
that makes sweet spots flexible by actively guiding users to ar-
bitrary target positions in front of displays using visual cues.
Such guidance is beneficial, for example, if a particular input
technology only works at a specific distance or if users should
be guided towards a non-crowded area of a large display. In
two controlled lab studies (n=29) we evaluate different visual
cues based on color, shape, and motion, as well as position-
to-cue mapping functions. We show that both the visual cues
and mapping functions allow for fine-grained control over po-
sitioning speed and accuracy. Findings are complemented by
observations from a 3-month real-world deployment.

Author Keywords
Public Displays; Interaction; Sweet Spot; Audience Behavior

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User
Interfaces—Input devices and strategies

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

UIST ’15, November 08 – 11, 2015, Charlotte, NC, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3779-3/15/11...$15.00
DOI: http://dx.doi.org/10.1145/2807442.2807490

INTRODUCTION
Displays have become ubiquitous in public spaces, such as
shopping malls or transit areas in airports and train stations.
At the same time, researchers and practitioners aim to in-
crease suer uptake by providing interactive and engaging ex-
periences [1]. This trend is further supported by sensing tech-
nologies (cameras, depth sensors, etc.) becoming available
for easy and low cost integration with such displays. Sensing
technology, however, has specific requirements regarding the
optimal operating distance, thereby constraining the possible
interaction space. For example, while touch sensors require
the user to come in close proximity to the display, gestures-
based interaction using Kinect allows users to position them-
selves freely between 0.5 m–4.0 m in front of the display. Sta-
tionary eye trackers require the user’s head to be inside the
tracking box – about 30 cm×30 cm – at a distance of 70 cm
in front of the screen [26]. Hence, interactive displays face the
challenge of how to encourage users to position themselves in
a target location within the interaction space.

Similar challenges arise in situation where public displays are
deployed opportunistically. Such deployments are often con-
strained by the size and layout of the physical space surround-
ing the intended target location [3]. This results in displays be-
ing positioned in non-optimal spots where, for example, users
cannot easily stop without blocking the way of other passers-
by. This phenomenon has been coined the butt-brush effect
[28]. In such cases, it would often be desirable to guide users
towards less crowded areas, particularly in front of large dis-
plays. As a solution to these challenges, deployments aim to
either anticipate the default sweet spot, i.e. the area where



users are most likely to stop as they approach the display, or
they try to actively promote the optimal interaction area by
means of explicit hints on the floor (footprints), next to the
display (text), or on the display itself (text or silhouette).

We present GravitySpot, a novel approach that modifies the
visual appearance of the display content based on user posi-
tion. We leverage findings from human vision research that
show that humans can very quickly process certain visual
cues, such as color, motion, and shape. By showing the un-
modified content only from a specific location in front of the
display, users are made to anticipate this so-called sweet spot.
GravitySpot advances the state of the art in several ways.

1. It allows for changing the sweet spot in an adaptive and
dynamic manner, for example based on the current number
and position of people in front of the display.

2. It does not require attention switches as cues are not de-
coupled from the actual screen content, in contrast to, for
example, hints displayed on the floor or next to the screen.

3. It is more robust against occlusions, since by showing the
cue on the screen, users can simply re-position themselves
to perceive the cue, compared to cases, where other users
are standing on a cue shown statically on the floor.

4. It neither requires space nor time-multiplexing between
cue and content nor any overlays (e.g., silhouette) since it
integrates smoothly with the actual content.

5. It requires minimal hardware. Any sensor that allows the
user position to be determined can be used (e.g., Kinect).

We compare different visual cues with regard to positioning
accuracy and speed and show how to improve them by adapt-
ing the mapping between user position and visual cue. We
conduct two controlled lab studies (n=29). Results suggest a
trade-off between accuracy and speed depending on the cue.
In a second study we demonstrate that by altering the map-
ping between user position and cue intensity, this trade-off
can be overcome and accuracy (up to +51%) and speed (up
to +57%) be enhanced. This is valuable for designers, since
it allows cues to be chosen based on the content shown on
the display (for example, readability of text can be preserved
by choosing appropriate cues). The studies are complemented
with a real-world deployment. We show that also in a real-
world situation, where users are unaware of how the cues
work, they can quickly and accurately position themselves.

Our contribution is threefold. First, we introduce the idea of
flexible sweet spots and propose a set of visual cues to guide
users to arbitrary sweet spots in front of a display. Second,
we present two controlled lab experiments to study the effi-
ciency of the proposed cues and the impact of different map-
ping functions. Third, we present an in-the-wild deployment,
demonstrating how to integrate the approach with an interac-
tive application. We found that the approach is easily under-
standable to users with its efficiency being similar to the lab.

RELATED WORK
Our work builds on previous studies on (1) interaction models
to influence audience behavior, (2) applications where interac-
tion depends on or is influenced by a particular user location,
as well as (3) positioning cues for public display applications.

Audience Behavior
Prior work investigated how people behave in the display
vicinity and aimed to describe the process between the user
being a passers-by until finally interacting. Spatial mod-
els [24, 30] describes different zones that define the inter-
actions offered and the information shown on the display.
These model often noticeably draw from Hall’s theory of
proxemics [14]. The public interaction flow model studies
how groups socialize around public displays [9]. It identifies
three activities – peripheral awareness, focal awareness, and
direct interaction – as well as thresholds to be overcome by
the user to proceed to the next phase. An extension of this
model is the audience funnel, which attempts to model the
probability of users transitioning between different phases of
the interaction process [18]. The model distinguishes between
a stage where users are simply passing by, followed by a stage
where users are viewing and reacting. After this, subtle inter-
actions (e.g. to find out how interaction works), direct interac-
tion and eventually follow-up actions may occur.

All prior work has in common that it models important as-
pects in the interaction process in a spatial or temporal man-
ner. At the same time, it is implicitly assumes that users are
not only able to identify how interaction works but also to un-
derstand where they need to position themselves. Our work is
based on the observation that attention is a crucial prerequi-
site for user positioning. Only after users notice the display it
makes sense to focus on guidance. Our approach allows the
stages defined in prior models to be refined by a positioning
phase. This phase is not necessarily a part of the ultimate inter-
action step only but may span across multiple phases or zones.
For example, positioning cues can already guide users before
they notice that the display is interactive. Most closely related
to our work is research by Koppel et al. [25] who showed
that, by changing the display configuration, audience behav-
ior could be altered, for example, how people approached, po-
sitioned, and interacted with the displays. Our method creates
a similar effect but without the need to reconfigure the display,
which is not feasible on-the-fly.

Location-Aware Display Deployments
A lot of display applications exist in which the interaction
depends on the user location. Beyer et al. detect the user’s
position in front of a cylindrical display to let users draw a
flower pattern on the screen [5]. GazeHorizon enables users
to interact with the screen content based on gaze [35]. Spi-
derEyes is a toolkit for designing proximity-aware collabora-
tive display applications [13], using the Kinect to determine
the user’s distance to the screen and adapt the content visual-
ization accordingly. The Clavier is a walkable piano projected
on a path [15]. A projection of the keyboard communicates
the interaction area in which light sensors would detect user
movements and then trigger auditory output. The Proxemic
Peddler is an advertising display that makes the content adapt
or move as users change their position [33]. The aim is to raise
attention and foster (touch) interact with the content. Brudy et
al. presented a system using the position of multiple users in
front of a public display to increase privacy. One sample ap-
plication they present is a spotlight that makes only areas of
the screen visible that users obstruct with their body [10].



Figure 2. Visual cues investigated in this work (shown on a test pattern for intelligibility only): Original test pattern (a); color cues: brightness (b),
contrast (c), and saturation (d); shape cues: pixelation (e) and distortion (f).

Users can also benefit from positioning in the context of vi-
sualizations on large wall displays. Ball et al. found increased
physical navigation to improve user performance [4]. Further
work found that in perception estimation tasks, users should
position themselves at a certain distance and in a close-to-
orthogonal angle to the display [7]. All aforementioned chal-
lenges can be addressed by the presented approach.

The variety of these applications shows that guiding the user
in front of public displays can be beneficial in many ways.
Whereas from a technology perspective a sensor may be lim-
ited to a narrow area in front of the display, users could also
be guided towards less crowded areas in front of the display
so they don’t stand in the way of others or to increase privacy.
We designed GravitySpot with these various application ar-
eas in mind, considering that visual cues for guiding the user
should (1) not obscure the actual user interface, (2) be shown
on the display itself in order not to be overlooked by users, (3)
not require any attention switches, and (4) not be textual so as
to minimize the cognitive load and be language-independent.

Positioning in Front of Public Displays
Beyer et al. showed that people tend to position themselves
in a way so they can optimally perceive the content of a pla-
nar display and there is evidence that this also holds for non-
planar display types [5]. As a result of this, sensors are usually
placed so that they can best sense the user and their interac-
tion. For example, the Kinect is usually placed below or above
the screen [2, 19, 25, 29, 31] or cameras are placed above the
display to sense the location [5, 6]. Some works employ very
wide displays where one sensor cannot easily cover the en-
tire interaction area. In such cases, several sensors are usually
combined [29]. Beyer et al. later showed that frames on a
(cylindrical) screen lead to users positioning themselves cen-
trally in front of these frames [6]. This seems to work also
in a subtle way since many of the users later could not recall
the presence of frames. At the same time, this positioning cue
(though it was not employed as such) only allows for a very
coarse-grained positioning and overlays the user interface.

Few previous work studied means to influence user position
in front of public displays. One recent work is GazeHorizon,
an application that uses a webcam for gaze-based interaction
with public displays [35]. To position users the authors used
different cues, including floor labels, explicit on-screen dis-
tance information, and a mirror video feed overlaid with a
face outline. While floor labels were usually overlooked by
users, distance information worked better but required con-
siderable time for correct positioning. In contrast, our work
provides a thorough investigation and comparison of differ-
ent positioning cues. Our cues can be employed to a user in-
terface without obstructing any information and that can be
constantly applied, leading to users staying in focus.

GUIDING USERS USING VISUAL CUES
Findings in cognitive psychology suggest that the human vi-
sual system can rapidly process a visual scene to extract low
level features, such as color, shape, orientation, or movement,
without the need to cognitively focus on them [27]. We aim
to leverage this ability by mapping a user’s current position
to visual cues shown on the display.

Psychological Foundations
Our work exploits effects of attentive and pre-attentive visual
perception, as introduced by Neisser [20] and confirmed by
Treisman [27]. Neisser describes the process of visual percep-
tion as a two-step process. First, simple features of a scene
are perceived, such as separating textures or the distinction
between an object and its background (figure-ground percep-
tion). This stage is pre-attentive and characterized through
parallel processing. It results in a set of features not yet as-
sociated with specific objects [17]. Second, users associate
features to scenes, directing attention serially towards the dif-
ferent scene objects.

There is no consent in research literature as to which fea-
tures are perceived pre-attentively [11]. There is strong evi-
dence that the list of tasks working pre-attentively presented
by Neisser is not conclusive. Hence, also the distinction be-
tween pre-attentive and non pre-attentive features is rather
blurry. Research that aims to make this distinction includes
the work from Wolfe [34]. He presents a list of 28 features,
separated into likely, possible, and unlikely candidates for pre-
attentive perception. As Wolfe noted himself, for many cases
there is only little evidence since results stem from single pub-
lications – so the list may have to be extended in the future.

We base our research on the work of Nothdurft on the role
of visual features during pre-attentive visual perception [21].
Nothdurft classified pre-attentive features into three cate-
gories: color, shape, and motion.

Selection of Visual Cues
We selected five visual cues according to Northdurft’s cate-
gories (see Figure 2). According to Wolfe, all of these cues
are likely to be perceived pre-attentively.

Color
Public displays often contain monochrome content, such as
text. Hence, we opted for brightness and contrast as color
cues, since these have a smaller impact on readability. To also
consider features that affect the color information of multi-
color content, we included saturation (see Figure 2b-d).

Shape
We selected shape features that alter the form of content and
can be applied to content post-hoc. In particular we chose pix-
elation and distortion. While pixelation simply decreases the



resolution of the content, distortion applies a non-affine map-
ping function (see Figure 2e-f). Both cues have a strong im-
pact on readability. Based on the font size, content becomes
only readable near the sweet spot (10–20 cm).

Motion
Finally, as a motion cue, we opted for jitter that moves content
with a frequency of 5 Hz along the screen axes. Based on the
distance of the user from the sweet spot, the effect intensity
is increased by adapting the motion amplitude.

Baseline
We compare these cues with two baselines from prior work.
We opted for on-screen cues, since they were shown to work
best in public settings [35]. The first cue is a compass-like ar-
row on the display that points to the direction in which users
should move to reach the sweet spot. The arrow is slightly
tilted in z-direction, indicating that “up” means moving for-
ward. The second cue is a simple text telling users whether
they should move ‘forward’, ‘backward’, ‘left’, or ‘right’.

Apparatus
To evaluate how well users could be guided using visual cues
we implemented the GravitySpot prototype. The C# prototype
consists of (1) a tracking module that measures users’ 2D po-
sition in realtime using Kinect and (2) a rendering module
that allows any of the aforementioned visual cues to be ap-
plied to the display content. The intensity of the cue depends
on the current distance of the user to the target position. We
implemented different mappings (Figure 3), where the mini-
mum is defined by the target spot and the maximum by the
largest distance at which the user can still be sensed.

Sensor Calibration
We use the Kinect skeleton data to calculate the user position
(x- and z-coordinate) in the 2D space in front of the display.
To cover as much space as possible, we support the use of mul-
tiple Kinects – for example, with two Kinects a visual angle
of up to 90◦ can be covered. We implemented a calibration
tool that allows position information obtained from multiple
Kinect sensors to be transformed into an x/z user position. For
calibration we use triangulation based on 2 reference points.

To be able to change the sweet spot during runtime, our pro-
totype allows a rectangular area to be defined within the field
of view of the Kinect sensors. Arbitrary locations within this
area can then be selected as sweet spots.

Mapping Between Position and Cue
During first tests, we noticed that the visual cues were subject
to a trade-off between speed and accuracy of guiding a user to
the sweet spot. To investigate this phenomenon in more detail
we decided to implement different position-to-cue mapping
functions. The functions were designed in such a way as to
improve the visual cues so that the users find the sweet spot
faster and/or more precisely. We chose four mapping func-
tions (Figure 3): Linear, SlowStart, QuickStart and SCurve.

Linear mapping function. The linear mapping function was
chosen as a baseline. The Euclidean distance x of the user is
linearly mapped to the intensity of the visual cue.

linear(x) = x
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Figure 3. Position-to-cue mapping functions: While we hypothesize slow
start to increase accuracy and quick start to increase speed, the S-curve
was employed as a trade-off. A linear mapping was used as a baseline.

Slow start mapping function. We use a root function for
the slow start mapping. At larger distances to the sweet spot,
changes in user position cause only subtle visual changes.
Changes become more obvious closer to the sweet spot. Thus,
we expect that far away from the sweet spot, users need more
time to figure out the direction in which to move, but then hit
the sweet spot more precisely due to the increased change.

slowstart(x) =
√
1− (x− 1)2

Quick start mapping function. For the quick start mapping
function, the most prominent changes to the visual cue hap-
pen at great distance to the sweet spot. We expect this func-
tion to guide the user early into the direction of the sweet spot
and to improve task completion time. Since changes in posi-
tion at smaller distances to the sweet spot only cause minor
changes in the visual cue, we expect the accuracy to be low.

quickstart(x) = −
√

1− x2 + 1

S-shaped mapping function. The s-shaped mapping func-
tion is a combination of the quick start and slow start mapping
functions. We expect it to provide clearly visible changes at
great distances and accurate feedback when the user draws
near to the sweet spot. In the center span this function keeps a
steady increase and does not fall flat. As a result, we avoid ar-
eas where the user receives no feedback on position changes.
We expect this function to provide a good combination of
speed and accuracy, while outperforming the linear function.

scurve(x) =
(2(x− 0.5))7 + 2(x− 0.5) + 2

4

Approach
To evaluate GravitySpot we designed three studies. In the first
controlled laboratory study we compare the different cues
with regard to positioning time and accuracy. Furthermore,
we collect user feedback with respect to how easy it is for
them to understand the different cues. The anticipated mea-
sures required a controlled setting where lighting was kept
constant and where participants were able to approach the dis-
play from constant distances and angles. The study followed
a repeated measures design.



In the second study we investigate the influence of the map-
ping functions that determine how the user position is mapped
to the cue shown on the display. We are particularly interested
whether positioning speed and accuracy could be further in-
creased by applying the mapping functions. We also investi-
gate whether the accuracy of fast cues can be increased and
vice versa. We believe this to be valuable for designers who
want to work with particular cues and show specific content.
We selected two cues – brightness and pixelate – that users
considered to work best in the first study.

As prior work showed user behavior to often differ in the real
world as opposed to the lab [16, 19], we validated the ecologic
validity of our findings through an in-the-wild deployment.

Applications
For the lab studies we needed an application that required
users to position themselves precisely while timing measure-
ments for a given task could be taken. For the in-the-wild
deployment we needed an application that was engaging and
easy-to-understand while at the same time requiring minimal
interaction techniques, since these are in general very difficult
to communicate in a public setting [31].

Spot-the-Difference
For the lab study we implemented a Spot-the-Difference
game. In this game the screen shows computer-generated im-
ages of two shelves that contain a number of items in different
colors. The position and color of the items on each shelf can
be modified. The task of the user is to spot all items which dif-
fer between the right and the left shelf. We do not allow any in-
put, such as touching or pointing at the respective items. This
is because measurements may be affected by the recognition
accuracy of the system or users would be required to leave the
sweet spot. Instead, users are asked to notify the experimenter
verbally once they find the solution. The game was shown on
a 78” projection screen with a resolution of 1600×1200 px.

Trivia Game
For the in-the-wild deployment we implemented a Trivia
game (Figure 4) in which questions are shown on the display
(55”, LCD, 1600×1200 px) as soon as users enter the inter-
active area. Answers are shown in the form of still images to
which the system applies the corresponding visual cue. A sam-
ple question could ask for the tallest building in the US and
then show an image of the new World Trade Center in New
York. Answers are shown as soon as users do not alter their
position any more, assuming that at this point they reached
the (subjective) current best position. We use a time-based
threshold to decide when to display the answer, i.e. users have
to stop for at least 1.5 s. Answers are shown for five seconds
before the next question is displayed. For each question we
make sure that the new sweet spot has a minimum distance to
the old sweet spot, so that users need to alter their position.

LAB STUDY I: ACCURACY AND POSITIONING TIME
Participants
In total, 15 people (six female) participated in the study. Par-
ticipants were students and employees with an average age of
23 years (std.dev.=2.8). Two participants owned a Kinect and
seven wore glasses or contact lenses.

Figure 4. Trivia Game: Answers to questions are provided in the form
of images. Only as users approach the sweet spot they can see the un-
modified image and hence the answer to the question. As users remain
in the sweet spot for some time we also display a textual answer before
switching to the next question.

Stimulus and Task
As stimulus we used the Spot-the-Difference game. We se-
lected five objects for the shelf – a pen, a shirt, a compass, a
pile of books, and a briefcase. Five instances of each object
were shown in different locations and colors (green, blue, red,
yellow, purple). This way, we controlled for any potential ef-
fects caused by the shape or color only. For example, if we
had only changed the position of two objects, the user would
have been likely to spot the difference already at low contrast
or brightness, whereas with the addition of color we ensured
that users went as close to the intended sweet spot as possible.

Participants had to detect three differences in two images
shown on the screen. To eliminate any side effect from par-
ticipants trying to figure out what caused the visual changes,
we told them beforehand that the visualization changes based
on their position. We measured the duration between the user
entering the Kinect’s field of view – triggering the display
of the stimulus – until participants notified the experimenter
that they found the first difference. Participants had to explain
their solution for verification. Note that we deliberately de-
cided not to make finding the sweet spot the primary task, i.e.
telling the user to find the spot where the image is optimally
displayed. This way we created a task closely resembling a
real-word situation and we avoided that users had to learn the
“optimal” visualization. Thus, we can assume high internal
and external validity, in particular regarding user feedback.

Experimental Setup and Procedure
We conducted the study in a room at our lab where we had set
up the prototype consisting of two Microsoft Kinects and a
wall-sized projection (see Figure 5). We marked two starting
positions on the floor – one on the right side and one on the
left side of the display at a distance of 5 m.

Upon arrival in the lab, participants were informed about the
purpose of the study and asked to complete a questionnaire
on demographics and experience with Kinect. We then pro-
ceeded with a series of vision tests, including a Snellen test



Figure 5. Setup for the lab study: participants started from two differ-
ent starting points in alternating order. The sweet spot was randomly
positioned within the visual field of view of the cameras.

[23] to measure visual acuity, an Ishihira test [8] to detect
any form of color blindness, and a Pelli-Robson test [22] to
assess contrast sensitivity. Only participants who passed all
three tests were allowed to participate in the study.

We first asked participants to position themselves centrally in
front of the screen and to play the game with no visual cue
applied. We measured the time they needed to spot the first
difference and repeated this task 5 times. The measurement
allowed us to later correct the task completion time by the
average search time of the participants.

We then tested the five visual cues and the two baseline cues.
Each cue was tested in blocks of five repetitions. The block
order was counter-balanced and the sweet spot was randomly
positioned within the visual field of view of the cameras. For
each repetition we changed the starting position (left or right)
with the aim to cancel out any effect caused by ocular domi-
nance [12]. After each block, participants were asked to fill in
a brief questionnaire (5-Point Likert scale; 1=do not agree at
all, 5=fully agree), assessing (1) how easy participants could
recognize the relation between position and visualization, (2)
whether changes in position where sufficiently accurate, and
(3) whether changes in the visualization were easy to spot.

Results
Task Completion Times
We first analyzed mean task completion times per cue for
each participant (see Figure 6–left). Greenhouse-Geisser cor-
rected ANOVA found a significant main effect of visual cue
(F3.101,43.413=23.631, p<0.001).

We first compared our cues to the baselines: Bonferroni-
corrected post-hoc tests revealed significantly shorter task
completion times for contrast and saturate than for arrow
(both p<0.05). Moreover, task completion times for jitter
(p<0.005), brightness, contrast, and saturate (all p<0.001)
were significantly shorter than for text. These results suggest
that visual cues can significantly speed up guiding users to a
defined sweet spot, compared to textual or symbolic cues.

Further differences were found between cues: distort and pix-
elate were significantly slower than the rest (distort vs jit-
ter: p<0.005, distort vs rest: p<0.001; pixelate vs others:

p<0.01). Distort was not significantly different from pixelate,
and all other visual cues also showed no significant differ-
ences between them. These results show the existence of two
“groups” of visual cues with respect to task completion time:
1) slower ones (distort, pixelate), and 2) faster ones (bright-
ness, contrast, jitter, saturate).

Positioning Accuracy
We analyzed mean euclidean distances to the sweet spot per
cue for each participant (see Figure 6–right). Greenhouse-
Geisser corrected ANOVA found a significant main effect
of visual cue (F3.356,43.623=36.333, p<0.001). Bonferroni-
corrected post-hoc tests revealed that the differences between
distort and the baselines were not significant (arrow: p=0.194,
text: p=0.226). In contrast, all other cues showed significant
differences to both baselines (all p<0.01).

Furthermore, distort and pixelate were not significantly dif-
ferent, but they were both significantly more accurate than
all other cues (brightness: p<0.05, all others: p<0.005).
Brightness was significantly more accurate compared to jit-
ter (p<0.05), but not compared to saturate (p=0.241) and
contrast (p=0.076). There were no significant differences be-
tween saturate, contrast and jitter.

In conclusion, similar to task completion times, this analysis
revealed two main groups of visual cues, as can be also de-
rived from users’ trajectories (Figure 7): 1) More accurate
ones (distort, pixelate), and 2) less accurate ones (saturate,
contrast, jitter), with brightness as a compromise.

Questionnaire
In the following we analyze the questions users had to answer
with regard to each cue during the study.

Correlation between position and visualization: There was a
significant difference (χ2(7)=24.289, p=0.001) depending on
the cue. Post-hoc tests revealed that jitter was ranked signif-
icantly worse than arrow, text, and brightness (all p<0.05).
Arrow received the best median rank (2), followed by bright-
ness and text (both 3). Jitter was ranked worst (7).

Accuracy of visualization: We found no significant differ-
ence depending on the cue (χ2(7)=10.378, p=0.168). Arrow,
brightness, pixelate, and text were ranked with median 4. Dis-
tort/saturate received 5, followed by contrast (6) and jitter (7).

Changes in visualization: We discovered a significant effect
for the cue (χ2(7)=30.000, p<0.001). Post-hoc tests revealed
that jitter was ranked significantly worse than arrow, text, and
pixelate (all p<0.05). Arrow and text received the best me-
dian rank (2), followed by pixelate (3), brightness (4), distort
(5), contrast/saturate (6), and jitter (7).

Overall, jitter stands out: despite good performance with
regard to task completion time it was perceived as less clear
as the rest in all questions. From this we conclude that
designers need to be particularly careful when applying this
cue. Future work could further investigate this cue by (a)
modifying the frequency of the movement and (b) applying
this cue to particular objects rather than the entire screen.
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Figure 7. User trajectories (yellow dots: end points of trajectory; black
dots: average of all end points per cue; yellow ellipse: covariance con-
taining 95% of end points). The visualization shows which cues are more
(baseline, pixelate, distort) and less accurate (contrast, saturate, jitter).

Conclusion
Our results show that visual cues differ significantly regard-
ing guiding speed and accuracy. We revealed that these two as-
pects are opposed to each other, resulting in two groups: Slow
but accurate guidances (distort, pixelate); and faster, less ac-
curate cues (saturate, contrast, jitter). Brightness can be seen
as a compromise. In consequence, we regard these cues as a
flexible foundation to fit the different needs of deployments.

Next, we present two studies to further evaluate 1) fine-tuning
with respect to guiding speed and accuracy, and 2) the cues’
performances “in the wild”.

LAB STUDY II: MAPPING FUNCTIONS
We were interested whether accuracy and/or task completion
time could be further increased by using different mapping
functions. This is potentially valuable information for a de-
signer because it allows (1) a visual cue to be selected based
on the specific positioning accuracy and task completion time
required by the application and (2) a cue that preserves read-
ability to be chosen. We selected two cues based on user rat-
ings from the first study. To this end, we compared the four
mapping functions for the pixelate and the brightness cue.

14 participants (six female) with an average age of 23.1 years
(std.dev.=2.87) were recruited via mailing lists and Facebook.

Task, Setup and Procedure
As for the first study, we again used the Spot-the-Difference
game to compare different mapping functions and we used
the same setup depicted in Figure 5.

Participants had to complete the same pre-test and tasks and
were provided the same instructions as in the first lab study.
Again, time was measured until participants spotted the first
difference. We began the study with a block of five repetitions
were participants played the game with no visual cue applied.
Then the eight conditions (2 cues×4 mapping functions) were
presented in blocks with five repetitions in counter-balanced
order. None of the subjects had participated in the first study.

Results
Task Completion Time
We analysed mean task completion times per cue and map-
ping per participant. Greenhouse-Geisser corrected ANOVA
revealed significant main effects for cue (F1,13=148.760,
p<0.001), mapping (F2.247,29.208=23.896, p<0.001), and
cue × mapping (F2.362,30.710=9.389, p<0.001). Bonferroni-
corrected post-hoc tests showed that brightness led to signif-
icantly faster task completion times than pixelate (p<0.001),
matching the findings from the first lab study. Regarding map-
pings, SCurve was not significantly different from linear, but
all pairwise comparisons were significant (quick vs linear,
slow vs linear, slow vs SCurve: p<0.05, all others: p<0.001).

The directions of the mappings’ influences matched our ex-
pectations. QuickStart resulted in significantly shorter task
completion times than linear, while SlowStart resulted in sig-
nificantly longer ones. Hence, guiding speed can be signifi-
cantly influenced by choosing different mappings. The results
also suggest that speeding up adaptation has a larger influence
on slower cues (QuickStart: +51% with pixelate, +7% with
brightness), while slowing down is stronger for faster ones
(SlowStart: -62% with brightness, -31% with pixelate).

Positioning Accuracy
As in the first lab study, we analyzed mean euclidean
distances to the sweet spot per cue for each partici-
pant. Greenhouse-Geisser corrected ANOVA revealed signif-
icant main effects for cue (F1,13=369.280, p<0.001), map-
ping (F1.672,21.370=108.359, p<0.001), and cue × mapping
(F2.311,30.048=12.827, p<0.001). Bonferroni-corrected post-
hoc tests revealed that brightness resulted in significantly
lower accuracy than pixelate (p<0.001). This matches find-
ings from the first lab lab. Comparing the mappings, we found
no significant difference between linear and SCurve, but sig-
nificant differences for all other comparisons (all p<0.001).
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Figure 8. Average task completion time (left) and accuracy (right) in the second lab study. Note the two central cases in each figure, namely pixelate
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used to influence the speed-accuracy tradeoffs of the different cues.

Again, the directions of the influences fit our expectations:
QuickStart resulted in significantly larger distances to the
sweet spot than linear, SlowStart in significantly shorter dis-
tances. Thus, guiding accuracy can be significantly influenced
by choosing different mapping functions. The results also sug-
gest that speeding up adaptation has a larger influence on ac-
curate cues (QuickStart: -232% accuracy with pixelate, -51%
with brightness), while slowing down increases accuracy al-
most equally well for both more accurate and less accurate
cues (SlowStart: +52% with brightness, 57% with pixelate).

Conclusion
Different mapping functions can be used to tweak desired
visual cues towards either faster or more accurate guidance
(Figure 8). In particular, faster adaptation leads to faster com-
pletion, but also increases final distances to the sweet spot. In
contrast, slower adaptation guides users closer to the spot, but
comes at the price of higher task completion times. In conclu-
sion, we regard these mapping functions as a flexible toolset
to tailor specific cues towards different needs for deployment.

REAL-WORLD DEPLOYMENT
We finally deployed the Trivia game in a public space to
qualitatively and quantitatively assess the approach embed-
ded with a playful public display application. In particular, we
investigated how people behaved and how accurately users an-
ticipated the sweet spot under non-controlled conditions.

Setup and Procedure
We deployed the Trivia game over 60 working days in a Uni-
versity building that hosts about 300 researchers from differ-
ent disciplines (politics, sociology, communication science,
computer science), a cafeteria, and several lecture theaters
(see Figure 1). The display was deployed in the main foyer
at a 90◦ angle to the normal walking direction of passers-by.

We used the most accurate cues (pixelate, distort, jitter)
and selected SlowStart, QuickStart, and the SCurve (which
yielded similar results as linear) as mapping functions. As a
baseline, we selected arrows due to language independency
and results similar to text. This resulted in ten experimen-
tal conditions (3 cues × 3 mappings + baseline). Conditions
were randomly selected for each user. If users played subse-
quent games, the same cue was used.

Results
During the deployment 775 games were played in a total of
234 sessions. Overall, the most games were completed with
pixelate (343), followed by distort (243). The least games
were completed with baseline (121) and jitter (68).

Observations
To understand how to best integrate the cues, we tried differ-
ent initial screen layouts during the deployment. In particular
we compared showing the cue immediately as users entered
the visual field of the camera to a screen that first explained
the game to them. Showing the cue immediately led to more
people interacting, since the motion caused by the movement
seemed to attract the attention of passersby. We furthermore
found that the different cues attract a user’s attention to differ-
ent extents. Cues that have stronger effects on the image (e.g.,
pixelation) seem to work better than more subtle cues (e.g.,
distort). This can be exploited by designers to attract more or
less people to the display, for example based on the overall
number of people in the vicinity or the application. Finally,
cues seem to differ in attractiveness, reflected by how often
people played in the different conditions. Pixelate had a quite
immersive effect, leading to people playing on average more
questions before leaving than for jitter, distortion, or arrow.

In general, observed numbers indicate that users preferred
playing the game with the pixelate and distort cues. Most
games (41) were completed for pixelate and SCurve mapping,
and for distort and QuickStart (31). Over all mappings, Slow-
Start led to fewer completed games (63) than QuickStart and
SCurve (both 71). This suggests that slow initial adaptations
may result in a less engaging / motivating gaming experience.
Designers should thus base their decision for a particular map-
ping both on the required accuracy and application purpose.

Quantitative Findings
We focused on the accuracy of the different cues and mapping
functions. We did not compare task completion times since
we could not control for the time it took users to read and
think about the questions. To account for the different sample
sizes for the cues / mappings (see above) we report the follow-
ing analyses / ANOVAs based on estimated marginal means
(weighted means) instead of unweighted means, using SPSS.
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Regarding accuracy we found no significant effect of cue
(F3,224=1.350, p>0.05). Averaged over all mappings, pixe-
late was most accurate (mean dist. 0.21 m), followed by dis-
tort, baseline (both 0.22 m), and jitter (0.25 m). We found
a significant effect of mapping on distance (F3,224=6.011,
p<0.01). Averaged over all cues, SCurve (0.19 m) was more
accurate than SlowStart (0.23 m) and QuickStart (0.25 m).
The difference between QuickStart and the others was signif-
icant (Bonferroni-corrected post-hoc tests, p<0.05).

In summary, findings from our deployment confirm most re-
sults from the lab. In particular, the mapping functions can in-
deed enhance accuracy in the intended way. For example, ac-
curacy in the deployment was on average 50% higher than in
the first lab study with the standard mapping (e.g., pixelate –
lab: 0.33 m, deployment: 0.21 m; distort – lab: 0.31 m, deploy-
ment: 0.22 m). Furthermore, differences in accuracy between
cues are comparable for the lab and in-the-wild. From this
we conclude that our approach is in fact capable of enabling
interaction that requires accurate positioning of the user due
to narrow interaction spaces, for example, eye tracking where
users need to position themselves in a 30 cm × 30 cm area.

LIMITATIONS AND FUTURE WORK
First, we focused on single-user interaction. We configured
our system to recognize and react to the first person to arrive.
In future work, multiple users could be supported, which is
beneficial for very large screens or screens employing multi-
ple sensors and sweet spots. We believe the major challenge
to be the relationship between cue and user. To make the rela-
tionship understandable for users, future work could investi-
gate proximity or kinaesthetic matching. The latter approach
is particularly promising since recent work showed that user
representations on interactive public displays attract signifi-
cantly more visual attention than other screen content [32].

Second, we only investigated playful applications. Yet the
approach is in theory easily applicable to other applications,
such as information displays. Text content may require further
investigation, since some cues impact on readability. Optimal
perception may require high accuracy, hence reducing speed.

Third, we employed our approach to the entire user interface,
thus making it very prominent. Hence, we cannot draw any
conclusion how well the approach works in situation where it
is only applied to parts of the UI and where users may more
easily oversee it. For example, an information display in an art
gallery could provide textual information on an exhibit along-
side with an image of the artist. Future work could investigate
how well applying the cue only to the image works.

IMPLICATIONS FOR DESIGN
Our results show that designers can guide users with different
cues, and that they should consider mapping functions to tune
these cues with respect to speed and accuracy. Figure 9 sum-
marises the resulting trade-offs, allowing designers to choose
the setup that suits their needs best. Apart from accuracy and
speed, cues should be considered regarding readability. For
textual content, color cues seem more appropriate than shape-
changing ones. In contrast, the latter seem to not only attract
more attention (usually desirable for any public display app)
but also to be more entertaining and engaging for users, mak-
ing these cues particularly suitable for playful applications.

CONCLUSION
We presented GravitySpot – an approach to guide users in
front of public displays using visual cues. The approach was
evaluated in both lab and field experiments. The results sug-
gest that the approach can ease the deployment of arbitrary
kinds of sensors that have particular requirements regarding
interaction distance but also allows the content and type of
application to be considered.
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